Acta Metallurgica Sinica (English Letters) ›› 2025, Vol. 38 ›› Issue (12): 2179-2196.DOI: 10.1007/s40195-025-01935-w
Previous Articles Next Articles
Hong Ju1, Cheng Wang1(
), Wei-Jiang Guo1, Zhao-Yuan Meng1, Peng Chen1, Hui-Yuan Wang1,2
Received:2025-05-08
Revised:2025-07-26
Accepted:2025-08-09
Online:2025-12-10
Published:2025-11-14
Contact:
Cheng Wang, chengwang@jlu.edu.cn
Hong Ju, Cheng Wang, Wei-Jiang Guo, Zhao-Yuan Meng, Peng Chen, Hui-Yuan Wang. Solute Segregation and Grain Boundary Cohesion of Magnesium Binary Alloys: A First-Principles Study[J]. Acta Metallurgica Sinica (English Letters), 2025, 38(12): 2179-2196.
Add to citation manager EndNote|Ris|BibTeX
Fig. 1 Atomistic structures of six STGBs rotating around [0001] axis of Mg: a $({12\bar{3}0})[0001]$/21.8°-A STGB, b $( {12\bar{3}0})[0001]$/21.8°-T STGB, c $(13\bar{4}0)[0001]$/32.3° STGB, d $(23\bar{5}0)[0001]$/13.2°-A STGB, e $(23\bar{5}0)[0001]$/13.2°-T STGB, f $( {15\bar{6}0})\left[ {0001} \right]$/42.1° STGB
Fig. 2 Schematic illustrations of six STGBs in hcp Mg after relaxation: a $( {12\bar{3}0})[0001]$/21.8°-A STGB, b $( {12\bar{3}0} )[0001]$/21.8°-T STGB, c $( {15\bar{6}0} )\left[ {0001} \right]$/42.1° STGB, d $(13\bar{4}0)[0001]$/32.3° STGB, e $(23\bar{5}0)[0001]$/13.2°-A STGB, f $(23\bar{5}0)[0001]$/13.2°-T STGB
| Grain boundary | $\theta$ | N | Cell dimensions | k-points | γGB |
|---|---|---|---|---|---|
| $\left( {12\bar{3}0} \right)\left[ {0001} \right]-A$ | 21.8 | 124 | 10.24 × 8.50 × 32.97 | 5 × 6 × 1 | 0.309 |
| $\left( {12\bar{3}0} \right)\left[ {0001} \right]-T$ | 21.8 | 124 | 10.24 × 8.49 × 32.99 | 5 × 6 × 1 | 0.308 |
| $\left( {13\bar{4}0} \right)\left[ {0001} \right]$ | 32.3 | 176 | 10.24 × 11.54 × 34.50 | 5 × 4 × 1 | 0.313 |
| $\left( {23\bar{5}0} \right)\left[ {0001} \right]-A$ | 13.2 | 196 | 10.28 × 14.11 × 31.22 | 6 × 5 × 1 | 0.214 |
| $\left( {23\bar{5}0} \right)\left[ {0001} \right]-T$ | 13.2 | 196 | 10.28 × 14.11 × 31.22 | 6 × 5 × 1 | 0.214 |
| $\left( {15\bar{6}0} \right)\left[ {0001} \right]$ | 42.1 | 272 | 10.24 × 17.71 × 34.82 | 6 × 4 × 1 | 0.368 |
| $\left( {25\bar{7}0} \right)[0001]$ | 27.8 | 292 | 10.22 × 20.07 × 33.00 | 5 × 3 × 1 | 0.352 |
Table 1 Detailed information of the six studied STGBs in Mg, including misorientation angles (°), number of atoms in each supercell, supercell dimensions (Å), k-points, and GB energies (γGB, J/m2)
| Grain boundary | $\theta$ | N | Cell dimensions | k-points | γGB |
|---|---|---|---|---|---|
| $\left( {12\bar{3}0} \right)\left[ {0001} \right]-A$ | 21.8 | 124 | 10.24 × 8.50 × 32.97 | 5 × 6 × 1 | 0.309 |
| $\left( {12\bar{3}0} \right)\left[ {0001} \right]-T$ | 21.8 | 124 | 10.24 × 8.49 × 32.99 | 5 × 6 × 1 | 0.308 |
| $\left( {13\bar{4}0} \right)\left[ {0001} \right]$ | 32.3 | 176 | 10.24 × 11.54 × 34.50 | 5 × 4 × 1 | 0.313 |
| $\left( {23\bar{5}0} \right)\left[ {0001} \right]-A$ | 13.2 | 196 | 10.28 × 14.11 × 31.22 | 6 × 5 × 1 | 0.214 |
| $\left( {23\bar{5}0} \right)\left[ {0001} \right]-T$ | 13.2 | 196 | 10.28 × 14.11 × 31.22 | 6 × 5 × 1 | 0.214 |
| $\left( {15\bar{6}0} \right)\left[ {0001} \right]$ | 42.1 | 272 | 10.24 × 17.71 × 34.82 | 6 × 4 × 1 | 0.368 |
| $\left( {25\bar{7}0} \right)[0001]$ | 27.8 | 292 | 10.22 × 20.07 × 33.00 | 5 × 3 × 1 | 0.352 |
Fig. 3 Segregation energy profiles of solutes Zn, Al, Ag, Ca, and Gd segregated at various sites of: a $( {12\bar{3}0})[0001]$/21.8°-A STGB, b $( {12\bar{3}0})[0001]$/21.8°-T STGB, c $(13\bar{4}0)[0001]$/32.3° STGB, d $(23\bar{5}0)[0001]$/13.2°-A STGB, e $(23\bar{5}0)[0001]$/13.2°-T STGB, f $( {15\bar{6}0} )\left[ {0001} \right]$/42.1° STGB
Fig. 4 Schematic illustrations for the solute-induced structural transformation behavior of $( {13\bar{4}0})[0001]$/32.3° STGB. a, c Initial structure with solute Zn occupying site 9 and site 8; b, d relaxed structure with Zn atom substitution; e, g initial structure with solute Ca occupying site 8 and site 6; f, h relaxed structure with Ca atom substitution. The gray and purple balls represent Zn and Ca atoms, respectively
Fig. 7 a Schematic illustration of $( {25\bar{7}0})[0001]$/27.8° STGB and GB features: b V and c V × SBL distribution of this STGB. Segregation energy profiles for solutes: d Zn and e Ca segregated at 20 candidate sites of $( {25\bar{7}0} )[0001]$/27.8° STGB
Fig. 8 Grain boundary features: a V and b V × SBL distribution of the six studied STGBs. The number of potential segregation sites per unit area characterized by: c large V and d small V × SBL of the six STGBs
Fig. 9 a, b Segregation energy, c, d strengthening energy, e, f grain boundary energy of group IA, IIA, IIIA, IVA, VA solutes, 3d TMs (Cu and Zn), and all 4d TMs at $(13\bar{4}0)[0001]$/32.3° STGB. Solutes are placed at their most energetically favorable segregation sites
Fig. 10 GB segregation energy of 26 solutes at the $(13\bar{4}0)[0001]$/32.3° STGB and its mechanical (pink columns) and chemical (green columns) contributions
Fig. 11 GB strengthening energy of 26 solutes at the $(13\bar{4}0)[0001]$/32.3° STGB and its mechanical (pink columns) and chemical (green columns) contributions
Fig. 12 Relationships between strengthening energy and a, b -ICOHP values and c, d Δ-ICOHPF values for: a, c solutes occupying site 2, b, d solutes occupying site 3
Fig. 13 Strengthening maps consisting of the GB segregation energy and strengthening energy for the studied 26 solutes. The solutes are classified into three groups according to their effect on GB cohesion: cohesion enhancer (blue triangle), cohesion embrittler (red circle), and no effect (purple pentagon)
| [1] | L. Dong, F. Wang, H. Wu, M. Gao, P. Bai, S. Wang, G. Wu, J. Gao, X. Zhou, X. Mao, Acta Metall. Sin.-Engl. Lett. 36, 1925 ( 2023) |
| [2] | C. Li, H. Yan, R. Chen, Acta Metall. Sin.-Engl. Lett. 36, 61 (2023) |
| [3] |
M.K. Bhat, P.T. Sukumar, L. Langenohl, J.P. Best, G. Dehm, Acta Mater. 255, 119081 (2023)
DOI URL |
| [4] | Y. Zheng, X. Hu, H. Jiang, L. Rong, Acta Metall. Sin.-Engl. Lett. 37, 2163 ( 2024) |
| [5] | W. Huang, J. Chen, Z. Jiang, X. Xiong, W. Qiu, J. Chen, X. Ren, L. Lu, Acta Metall. Sin.-Engl. Lett. 36, 426 (2022) |
| [6] |
Z.Y. Meng, C. Wang, Z.M. Hua, M. Zha, H.Y. Wang, Mater. Res. Lett. 10, 797 (2022)
DOI URL |
| [7] |
M. Bian, Y. Matsuoka, X. Huang, Y. Ishiguro, Y. Tsukada, T. Koyama, Y. Chino, Acta Mater. 254, 118958 (2023)
DOI URL |
| [8] | Z. Jiang, D. Shi, J. Zhang, T. Li, L. Lu, Acta Metall. Sin.-Engl. Lett. 36, 179 (2023) |
| [9] |
R. Pei, Y. Zou, M. Zubair, D. Wei, T. Al-Samman, Acta Mater. 233, 117990 (2022)
DOI URL |
| [10] |
B. Kim, C.H. Hong, J.C. Kim, S.Y. Lee, S.M. Baek, H.Y. Jeong, S.S. Park, Scr. Mater. 187, 24 (2020)
DOI URL |
| [11] | H. Zhang, H.L. Hao, G.Y. Fu, B.S. Liu, R.G. Li, R.Z. Wu, H.C. Pan, Acta Metall. Sin.-Engl. Lett. 36, 335 (2022) |
| [12] | J.F. Nie, Y.M. Zhu, J.Z. Liu, X.Y. Fang,Science 340, 957 (2013) |
| [13] |
R. Mahjoub, K.J. Laws, N. Stanford, M. Ferry, Acta Mater. 158, 257 (2018)
DOI URL |
| [14] |
C. He, Z. Li, H. Chen, N. Wilson, J. Nie, Nat. Commun. 12, 722 (2021)
DOI |
| [15] |
H.R. Peng, W.T. Huo, W. Zhang, Y. Tang, S. Zhang, L.K. Huang, H.Y. Hou, Z.G. Ding, F. Liu, Acta Mater. 251, 118899 (2023)
DOI URL |
| [16] |
G. Zhang, G. Chen, C. Panwisawas, X. Teng, Y. Ma, R. An, Y. Huang, J. Cao, X. Leng, Acta Mater. 261, 119387 (2023)
DOI URL |
| [17] |
A.T. AlMotasem, T. Huminiuc, T. Polcar, Acta Mater. 211, 116868 (2021)
DOI URL |
| [18] |
Z. Huang, F. Chen, Q. Shen, L. Zhang, T.J. Rupert, Acta Mater. 166, 113 (2019)
DOI URL |
| [19] |
Z.F. Huang, F. Chen, Q. Shen, L.M. Zhang, T.J. Rupert, Acta Mater. 148, 110 (2018)
DOI URL |
| [20] |
D. Zhao, Y. Li, Acta Mater. 168, 52 (2019)
DOI URL |
| [21] |
D. Zhao, O.M. Løvvik, K. Marthinsen, Y. Li, Acta Mater. 145, 235 (2018)
DOI URL |
| [22] |
A. Kumar, J. Wang, C.N. Tomé, Acta Mater. 85, 144 (2015)
DOI URL |
| [23] |
Z.R. Zeng, Y.M. Zhu, S.W. Xu, M.Z. Bian, C.H.J. Davies, N. Birbilis, J.F. Nie, Acta Mater. 105, 479 (2016)
DOI URL |
| [24] |
D. Guan, X. Liu, J. Gao, L. Ma, B.P. Wynne, W.M. Rainforth, Sci. Rep. 9, 7152 (2019)
DOI |
| [25] | J. Tang, Y. Wang, Y. Jiang, J. Yao, H. Zhang, Acta Metall. Sin.-Engl. Lett. 35, 1572 (2022) |
| [26] |
P. Lejček, M. Šob, V. Paidar, Prog. Mater. Sci. 87, 83 (2017)
DOI URL |
| [27] |
C. Lei, H. Xue, F. Tang, X. Luo, J. Mater. Res. Technol. 21, 3274 (2022)
DOI URL |
| [28] |
F. Wang, X. Zhang, C. Zhang, X. Zhou, H. Wu, L. Dong, Y. Zhu, S. Wang, J. Gao, H. Zhao, Y. Huang, H. Lu, A. Guo, X. Mao, J. Mater. Res. Technol. 33, 9439 (2024)
DOI URL |
| [29] |
J. Wang, M. Enomoto, C. Shang, Acta Mater. 219, 117260 (2021)
DOI URL |
| [30] |
H. Somekawa, T. Tsuru, Scr. Mater. 130, 114 (2017)
DOI URL |
| [31] |
R. Tran, Z. Xu, N. Zhou, B. Radhakrishnan, J. Luo, S.P. Ong, Acta Mater. 117, 91 (2016)
DOI URL |
| [32] | Z.R. Zeng, M.Z. Bian, S.W. Xu, C.H.J. Davies, N. Birbilis, J.F. Nie, Mater. Sci. Eng. A 674, 459 (2016) |
| [33] |
T. Hase, T. Ohtagaki, M. Yamaguchi, N. Ikeo, T. Mukai, Acta Mater. 104, 283 (2016)
DOI URL |
| [34] |
T. Tsuru, H. Somekawa, D.C. Chrzan, Acta Mater. 151, 78 (2018)
DOI URL |
| [35] | Y.C. Wang, H.Q. Ye, Philos. Mag. A 75, 261 (1997) |
| [36] |
X.Y. Liu, J.B. Adams, Acta Mater. 46, 3467 (1998)
DOI URL |
| [37] | S. Plimpton, J. Comput. Phys. 117, 1 (1995) |
| [38] |
A.P. Thompson, H.M. Aktulga, R. Berger, D.S. Bolintineanu, W.M. Brown, P.S. Crozier, P.J. in ’t Veld, A. Kohlmeyer, S.G. Moore, T.D. Nguyen, R. Shan, M.J. Stevens, J. Tranchida, C. Trott, S.J. Plimpton, Comput. Phys. Commun. 271, 108171 (2022)
DOI URL |
| [39] |
A. Stukowski, Modell. Simul. Mater. Sci. Eng. 18, 015012 (2010)
DOI URL |
| [40] |
K. Momma, F. Izumi, J. Appl. Crystallogr. 41, 653 (2008)
DOI URL |
| [41] |
C.D. Barrett, A. Imandoust, H. El Kadiri, Scr. Mater. 146, 46 (2018)
DOI URL |
| [42] |
X. Zhou, P. Mathews, B. Berkels, W. Delis, S. Saood, A. Shamseldeen Ali Alhassan, P. Keuter, J.M. Schneider, S. Korte-Kerzel, S. Sandlobes-Haut, D. Raabe, J. Neugebauer, G. Dehm, T. Hickel, C. Scheu, S. Zhang, Adv. Mater. 37, 2402191 (2024)
DOI URL |
| [43] | V. Devulapalli, E. Chen, T. Brink, T. Frolov, C.H. Liebscher,Science 386, 420 (2024) |
| [44] |
L. Huber, J. Rottler, M. Militzer, Acta Mater. 80, 194 (2014)
DOI URL |
| [45] |
H.L. Mai, X.Y. Cui, D. Scheiber, L. Romaner, S.P. Ringer, Acta Mater. 231, 117902 (2022)
DOI URL |
| [46] | P.E. Blöchl, Phys. Rev. B 50, 17953 (1994) |
| [47] | G. Kresse, D. Joubert, Phys. Rev. B 59, 1758 (1999) |
| [48] | G. Kresse, J. Furthmüller, Phys. Rev. B 54, 11169 (1996) |
| [49] |
G. Kresse, J. Furthmüller, Comput. Mater. Sci. 6, 15 (1996)
DOI URL |
| [50] |
J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)
DOI PMID |
| [51] | H.J. Monkhorst, J.D. Pack, Phys. Rev. B 13, 5188 (1976) |
| [52] |
Z.F. Huang, J.F. Nie, Acta Mater. 214, 117009 (2021)
DOI URL |
| [53] |
G.B. Walker, M. Marezio, Acta Metall. 7, 769 (1959)
DOI URL |
| [54] |
S. Maintz, V.L. Deringer, A.L. Tchougreeff, R. Dronskowski, J. Comput. Chem. 37, 1030 (2016)
DOI URL |
| [55] |
S. Maintz, V.L. Deringer, A.L. Tchougreeff, R. Dronskowski, J. Comput. Chem. 34, 2557 (2013)
DOI URL |
| [56] | V.L. Deringer, A.L. Tchougreeff, R. Dronskowski, J. Phys. Chem. A 115, 5461 (2011) |
| [57] | J.R. Rice, J.S. Wang, Mater. Sci. Eng. A 107, 23 (1989) |
| [58] |
S. Zhang, O.Y. Kontsevoi, A.J. Freeman, G.B. Olson, Acta Mater. 59, 6155 (2011)
DOI URL |
| [59] |
X. Zhou, D. Marchand, D.L. McDowell, T. Zhu, J. Song, Phys. Rev. Lett. 116, 075502 (2016)
DOI URL |
| [60] | Y.A. Du, L. Ismer, J. Rogal, T. Hickel, J. Neugebauer, R. Drautz, Phys. Rev. B 84, 144121 (2011) |
| [61] |
B. Zhang, J. Su, M. Wang, Z. Liu, Z. Yang, M. Militzer, H. Chen, Acta Mater. 208, 116744 (2021)
DOI URL |
| [62] |
X. Wu, Y.W. You, X.S. Kong, J.L. Chen, G.N. Luo, G.H. Lu, C.S. Liu, Z. Wang, Acta Mater. 120, 315 (2016)
DOI URL |
| [63] |
J. Wang, R. Janisch, G.K.H. Madsen, R. Drautz, Acta Mater. 115, 259 (2016)
DOI URL |
| [64] |
L. Pauling, J. Am. Chem. Soc. 69, 542 (1947)
DOI URL |
| [65] | J.G. Speight, Lange’s Handbook of Chemistry, sixteenth ed., (McGraw-Hill, New York, 2004), p. 1.151-1.156 |
| [66] |
H. Somekawa, T. Inoue, K. Tsuzaki, Philos. Mag. 93, 4582 (2013)
DOI URL |
| [67] |
M. Bian, I. Nakatsugawa, Y. Matsuoka, X. Huang, Y. Tsukada, T. Koyama, Y. Chino, Acta Mater. 241, 118393 (2022)
DOI URL |
| [1] | Zhenfei Jiang, Bo Hu, Zixin Li, Fanjin Yao, Jiaxuan Han, Dejiang Li, Xiaoqin Zeng, Wenjiang Ding. A Review of Magnesium Alloys as Structure-Function Integrated Materials [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(8): 1301-1338. |
| [2] | Ze-Song Wei, Zi-You Ding, Lei Cai, Shao-Xia Ma, Dong-Qing Zhao, Lan-Yue Cui, Cheng-Bao Liu, Yuan-Sheng Yang, Yuan-Ding Huang, Rong-Chang Zeng. Exfoliation Corrosion of As-Extruded Mg-1Li-1Ca: the Influence of the Superficial Layer [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(8): 1339-1353. |
| [3] | Zhaochen Yu, Kaixuan Feng, Shuyun Deng, Yang Chen, Hong Yan, Honggun Song, Chao Luo, Zhi Hu. Quasi-in-situ Observation and SKPFM Studies on Phosphate Protective Film and Surface Micro-Galvanic Corrosion in Biological Mg-3Zn-xNd Alloys [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(4): 648-664. |
| [4] | Yunxuan Zhou, Wenjun Tian, Quan Dong, Hailian Wang, Jun Tan, Xianhua Chen, Kaihong Zheng, Fusheng Pan. A First-principles Study on the Adhesion Strength, Interfacial Stability, and Electronic Properties of Mg/Mg2Y Interface [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(3): 537-550. |
| [5] | Wenjun Tian, Yunxuan Zhou, Tao Deng, Tao Chen, Jun Tan, Xianhua Chen, Fusheng Pan. Probing the Structural Stability, Mechanical, Electronic, and Thermodynamic Properties of Mg-Y-Zn Ternary Compounds via First-Principles Calculations [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(10): 1703-1720. |
| [6] |
Chao Wang, Xi Zhao, Yayun He, Dingxia Zheng.
Implementation of Balanced Strength and Toughness of VW93A Rare-Earth Magnesium Alloy with Regulating the Overlapping Structure of Lamellar LPSO Phase and |
| [7] | X. J. Guan, Z. P. Jia, M. A. Nozzari Varkani, X. W. Li. Effect of Grain Boundary Engineering on the Work Hardening Behavior of AL6XN Super-Austenitic Stainless Steel [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(4): 681-693. |
| [8] | Baotian Du, Zijian Yu, Kang Shi, Ke Liu, Shubo Li, Wenbo Du. Improving the Mechanical Properties of Mg-Gd-Y-Ag-Zr Alloy via Pre-Strain and Two-Stage Ageing [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(3): 456-468. |
| [9] | Zhaoqun Chen, Yuxiang Lai, Linghong Liu, Ziran Liu, Jianghua Chen. Impacts of Microalloying Elements on the Hardening β"-Phase in Automotive AlMgSi Alloys [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(3): 495-506. |
| [10] | Yu Zhang, Jing Bai, Ziqi Guan, Xinzeng Liang, Yansong Li, Jianglong Gu, Yudong Zhang, Claude Esling, Xiang Zhao, Liang Zuo. Phase Stability, Magnetic Properties, and Martensitic Transformation of Ni2−xMn1+x+ySn1−y Heusler Alloy with Excess Mn by First-Principles Calculations [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(3): 513-528. |
| [11] | Zhen Jiang, Dongfeng Shi, Jin Zhang, Tianming Li, Liwei Lu. Effect of Zn and Y Additions on Grain Boundary Movement of Mg Binary Alloys During Static Recrystallization [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(2): 179-191. |
| [12] | Yun Zhang, Chen Jiang, Shaoheng Sun, Wei Xu, Quan Yang, Yongjun Zhang, Shiwei Tian, Xiaoge Duan, Zhe Xu, Haitao Jiang. Microstructural Evolution during Tensile Deformation in TRC-ZA21 Magnesium Alloy with Different Loading Directions and Strain Rates [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(2): 192-214. |
| [13] | Guoqiang Xi, Xuhan Zhao, Yanlong Ma, Yu Mou, Ju Xiong, Kai Ma, Jingfeng Wang. Comparative Study on Corrosion Behavior and Mechanism of As-Cast Mg-Zn-Y and Mg-Zn-Gd Alloys [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(2): 310-322. |
| [14] | Yan-Di Jia, Shuo Cao, Ying-Jie Ma, Sen-Sen Huang, Feng-Ying Qin, Shao-Qiang Li, Wei Xiang, Qian Wang, Qing-Miao Hu, Bo Li, Jia-Feng Lei, Jing Xie, Xiang-Hong Liu, Rui Yang. Latent Heat of TB18 Titanium Alloy during β to α Phase Transition by DSC and First-Principles Methods [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(11): 1844-1856. |
| [15] | Yongqiao Li, Lifei Wang, Xiaohuan Pan, Qiang Zhang, Guangsheng Huang, Bin Xing, Weili Cheng, Hongxia Wang, Kwang Seon Shin. Effect of Pre-stretch Strain at High Temperatures on the Formability of AZ31 Magnesium Alloy Sheets [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(1): 48-60. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
WeChat
