Acta Metallurgica Sinica (English Letters) ›› 2023, Vol. 36 ›› Issue (3): 513-528.DOI: 10.1007/s40195-022-01468-6
Yu Zhang1, Jing Bai1,2(), Ziqi Guan1, Xinzeng Liang1, Yansong Li1,2, Jianglong Gu3(
), Yudong Zhang4, Claude Esling4, Xiang Zhao1, Liang Zuo1
Received:
2022-05-23
Revised:
2022-07-14
Accepted:
2022-08-09
Online:
2023-03-10
Published:
2022-09-28
Contact:
Jing Bai,Yu Zhang, Jing Bai, Ziqi Guan, Xinzeng Liang, Yansong Li, Jianglong Gu, Yudong Zhang, Claude Esling, Xiang Zhao, Liang Zuo. Phase Stability, Magnetic Properties, and Martensitic Transformation of Ni2−xMn1+x+ySn1−y Heusler Alloy with Excess Mn by First-Principles Calculations[J]. Acta Metallurgica Sinica (English Letters), 2023, 36(3): 513-528.
Add to citation manager EndNote|Ris|BibTeX
Fig. 1 Crystal structures of a L21-type austenite for Ni2MnSn alloy, b XA-type austenite for Mn2NiSn alloy, c L21-C, d L21-D austenite for Ni1.5Mn1.5Sn (x = 0.5, y = 0) alloy
Fig. 2 a-d Four possible configurations of Ni1.75Mn1.5Sn0.75 (x, y = 0.25) alloy and formation energy Ef. Among them, a, b, c, and d display direct (D), indirect (ID), and mixed (Mix1 and Mix 2) site occupation, respectively. e Schematic diagram of atomic spin directions in FM, FIM1, FIM2, and FIM3 states
Fig. 3 Ni1.75Mn1.75Sn0.5 (x = 0.25, y = 0.5) alloy based on possible configurations of the two structures: XA and L21 types, and formation energies of different magnetic states
Fig. 4 Ef of austenite with possible site occupation and magnetic configuration in Ni2?xMn1+x+ySn1?y systems: a x = 0; b y = 0; c x = 0.25; d x = 0.5; and e x = 0.75. Ef = 0 meV/atom is marked with a dashed line. f A diagram of relationship between formation energy and Mn content. Red line represents linear fit to data points
Fig. 5 Lattice parameters of austenite versus composition for Ni2?xMn1+x+ySn1?y systems in all possible magnetic states: a x = 0, b y = 0, c x = 0.25, d x = 0.5, e x = 0.75. Experimental and theoretical data are quoted from references [18,26,50,51].
Interatomic distance (Å) | Ni2Mn1.5Sn0.5 | Ni1.5Mn1.5Sn | Ni1.75Mn1.75Sn0.5 | ||||
---|---|---|---|---|---|---|---|
FM | FIM | FM | FIM | FIM1 | FIM2 | FIM3 | |
MnMn-Ni | 2.521 | 2.525 | 2.623 | 2.635 | 2.518 | 2.522 | 2.515 |
MnMn-Sn | 2.975 | 2.964 | 3.028 | 3.043 | 2.994 | 2.998 | 2.952 |
MnMn-MnMn | 4.207 | 4.192 | 4.309 | 4.307 | 4.167 | 4.214 | 4.176 |
MnSn-Ni | 2.521 | 2.525 | - | - | 2.539 | 2.524 | 2.513 |
MnSn-Sn | 4.207 | 4.192 | - | - | 4.292 | 4.249 | 4.167 |
MnSn-MnMn | 2.975 | 2.964 | - | - | 3.139 | 2.993 | 2.952 |
MnSn-MnSn | 5.950 | 5.929 | - | - | 5.939 | 5.958 | 5.911 |
MnNi-Ni | - | - | 3.028 | 3.043 | 2.972 | 2.981 | 2.956 |
MnNi-Sn | - | - | 2.639 | 2.689 | 2.683 | 2.739 | 2.657 |
MnNi-MnMn | - | - | 2.644 | 2.631 | 2.523 | 2.474 | 2.480 |
MnNi-MnNi | - | - | 3.028 | 3.043 | - | - | - |
MnNi-MnSn | - | - | - | - | 2.598 | 2.477 | 2.452 |
Table 1 Interatomic distance of possible magnetic configurations (FM, FIM, FIM1, FIM2, and FIM3) for austenite of Ni2Mn1.5Sn0.5 (x = 0, y = 0.5), Ni1.5Mn1.5Sn (x = 0.5, y = 0), and Ni1.75Mn1.75Sn0.5 (x = 0.25, y = 0.5) alloys.
Interatomic distance (Å) | Ni2Mn1.5Sn0.5 | Ni1.5Mn1.5Sn | Ni1.75Mn1.75Sn0.5 | ||||
---|---|---|---|---|---|---|---|
FM | FIM | FM | FIM | FIM1 | FIM2 | FIM3 | |
MnMn-Ni | 2.521 | 2.525 | 2.623 | 2.635 | 2.518 | 2.522 | 2.515 |
MnMn-Sn | 2.975 | 2.964 | 3.028 | 3.043 | 2.994 | 2.998 | 2.952 |
MnMn-MnMn | 4.207 | 4.192 | 4.309 | 4.307 | 4.167 | 4.214 | 4.176 |
MnSn-Ni | 2.521 | 2.525 | - | - | 2.539 | 2.524 | 2.513 |
MnSn-Sn | 4.207 | 4.192 | - | - | 4.292 | 4.249 | 4.167 |
MnSn-MnMn | 2.975 | 2.964 | - | - | 3.139 | 2.993 | 2.952 |
MnSn-MnSn | 5.950 | 5.929 | - | - | 5.939 | 5.958 | 5.911 |
MnNi-Ni | - | - | 3.028 | 3.043 | 2.972 | 2.981 | 2.956 |
MnNi-Sn | - | - | 2.639 | 2.689 | 2.683 | 2.739 | 2.657 |
MnNi-MnMn | - | - | 2.644 | 2.631 | 2.523 | 2.474 | 2.480 |
MnNi-MnNi | - | - | 3.028 | 3.043 | - | - | - |
MnNi-MnSn | - | - | - | - | 2.598 | 2.477 | 2.452 |
Fig. 6 Variation of lattice parameter a of austenite with x-y of Ni2?xMn1+x+ySn1?y system (The same color means y is unchanged, and the same shape means x is unchanged.)
Fig. 9 Variation of total energy (E-Ec/a=1) with tetragonality c/a ratio in Ni2?xMn1+x+ySn1?y systems: a x = 0, b y = 0, c x = 0.25, d x = 0.5, y = 0.25, 0.5 and x = 0.75, y = 0.25. Ec/a=1 is total energy of austenite with the most stable configuration of each alloy
Fig. 10 a Variation of total energy (E-Ec/a=1) with tetragonality c/a ratio in Ni1.75Mn1.75Sn0.5 (x = 0.25, y = 0.5) alloy with different site occupations and magnetic configurations (Ec/a=1 is the energy of austenite with D + FIM2 configuration), b crystal structures of L10 martensite for Ni2MnSn, c formation energy of austenite and NM martensite with most stable magnetic states for Ni2?xMn1+x+ySn1?y (x = 0, 0.25 and y = 0.5, 0.75) alloys
Interatomic distance (Å) | Ni-MnMn-a | Ni-MnMn-b | MnNi-Sn | MnNi-MnMn-a | MnNi-MnMn-b |
---|---|---|---|---|---|
x = 0, y = 0.25 | 2.572 | 2.572 | - | - | - |
x = 0, y = 0.5 | 2.525 | 2.525 | - | - | - |
x = 0, y = 0.75 | 2.560 | 2.484 | - | - | - |
y = 0, x = 0.25 | - | - | 2.670 | 2.618 | 2.618 |
y = 0, x = 0.5 | - | - | 2.689 | 2.631 | 2.631 |
y = 0, x = 0.75 | - | - | 2.712 | 2.638 | 2.638 |
x = 0.25, y = 0.25 | - | - | - | 2.541 | 2.541 |
x = 0.25, y = 0.5 | - | - | - | 2.474 | 2.474 |
x = 0.25, y = 0.75 | - | - | - | 2.608 | 2.408 |
x = 0.5, y = 0.25 | - | - | - | 2.533 | 2.536 |
x = 0.5, y = 0.5 | - | - | - | 2.472 | 2.472 |
x = 0.5, y = 0.75 | - | - | - | 2.618 | 2.392 |
x = 0.75, y = 0.25 | - | - | - | 2.538 | 2.538 |
x = 0.75, y = 0.5 | - | - | - | 2.473 | 2.473 |
x = 0.75, y = 0.75 | - | - | - | 2.612 | 2.379 |
Table 2 Distance between different atoms of austenite in Ni2?xMn1+x+ySn1?y system
Interatomic distance (Å) | Ni-MnMn-a | Ni-MnMn-b | MnNi-Sn | MnNi-MnMn-a | MnNi-MnMn-b |
---|---|---|---|---|---|
x = 0, y = 0.25 | 2.572 | 2.572 | - | - | - |
x = 0, y = 0.5 | 2.525 | 2.525 | - | - | - |
x = 0, y = 0.75 | 2.560 | 2.484 | - | - | - |
y = 0, x = 0.25 | - | - | 2.670 | 2.618 | 2.618 |
y = 0, x = 0.5 | - | - | 2.689 | 2.631 | 2.631 |
y = 0, x = 0.75 | - | - | 2.712 | 2.638 | 2.638 |
x = 0.25, y = 0.25 | - | - | - | 2.541 | 2.541 |
x = 0.25, y = 0.5 | - | - | - | 2.474 | 2.474 |
x = 0.25, y = 0.75 | - | - | - | 2.608 | 2.408 |
x = 0.5, y = 0.25 | - | - | - | 2.533 | 2.536 |
x = 0.5, y = 0.5 | - | - | - | 2.472 | 2.472 |
x = 0.5, y = 0.75 | - | - | - | 2.618 | 2.392 |
x = 0.75, y = 0.25 | - | - | - | 2.538 | 2.538 |
x = 0.75, y = 0.5 | - | - | - | 2.473 | 2.473 |
x = 0.75, y = 0.75 | - | - | - | 2.612 | 2.379 |
Fig. 12 DOS near (EF) of austenite with the lowest energy configuration in Ni2?xMn1+x+ySn1?y systems: a x = 0, b y = 0, c x = 0.25, d x = 0.5, e x = 0.75. Zero energy is regarded as EF and indicated by a vertical black dashed line. The enlarged view of the gray-white boxed area near EF is shown in the illustration
[1] | Y. Sutou, Y. Imano, N. Koeda, T. Omori, R. Kainuma, K. Ishida, K. Oikawa, Appl. Phys. Lett. 85, 4358 (2004) |
[2] | J.A. Monroe, I. Karaman, B. Basaran, W. Ito, R.Y. Umetsu, R. Kainuma, K. Koyama, Y.I. Chumlyakov, Acta. Mater. 60, 6883 (2012) |
[3] | S.Y. Yu, L. Ma, G.D. Liu, Z.H. Liu, J.L. Chen, Z.X. Cao, G.H. Wu, B. Zhang, X.X. Zhang, Appl. Phys. Lett. 90, 242501 (2007) |
[4] | Z.B. Li, S.Y. Dong, Z.Z. Li, B. Yang, F. Liu, C.F. Sánchez-Valdés, J.L. Sánchez Llamazares, Y.D. Zhang, C. Esling, X. Zhao, L. Zuo, Scr. Mater. 159, 113 (2019) |
[5] | X.Z. Liang, J. Bai, J.L. Wang, S.F. Shi, H.L. Yan, J.L. Gu, Y.D. Zhang, C. Esling, X. Zhao, L. Zuo, J. Alloy. Compd. 804, 111 (2019) |
[6] | R. Kainuma, Y. Imano, W. Ito, H. Morito, Y. Sutou, K. Oikawa, A. Fujita, K. Ishida, S. Okamoto, O. Kitakami, T. Kanomata, Appl. Phys. Lett. 88, 192513 (2006) |
[7] | Z. Li, C. Jing, H.L. Zhang, Y.F. Qiao, S.X. Cao, J.C. Zhang, L. Sun, J. Appl. Phys. 106, 083908 (2009) |
[8] | R. Kainuma, Y. Imano, W. Ito, Y. Sutou, H. Morito, S. Okamoto, O. Kitakami, K. Oikawa, A. Fujita, T. Kanomata, K. Ishida, Nature 439, 957 (2006) |
[9] | T. Krenke, E. Duman, M. Acet, E.F. Wassermann, X. Moya, L. Mañosa, A. Planes, Nat. Mater. 4, 450 (2005) |
[10] | Y. Shen, W. Sun, Z.Y. Wei, Q. Shen, Y.F. Zhang, J. Liu, Scr. Mater. 163, 14 (2019) |
[11] | Y. Li, W. Sun, D.W. Zhao, H. Xu, J. Liu, Scr. Mater. 130, 278 (2017) |
[12] | W. Wen, J. Liu, B.F. Lu, Y. Li, A. Yan, Scr. Mater. 114, 1 (2016) |
[13] | Z.B. Li, W. Hu, F.H. Chen, M.G. Zhang, Z.Z. Li, B. Yang, X. Zhao, L. Zuo, J. Magn. Magn. Mater. 452, 249 (2018) |
[14] | H.X. Zheng, W. Wang, S.C. Xue, Q.J. Zhai, J. Frenzel, Z.P. Luo, Acta Mater. 61, 4648 (2013) |
[15] | P. Czaja, M.J. Szczerba, R. Chulist, M. Bałanda, J. Przewoźnik, Y.I. Chumlyakov, N. Schell, C.Z. Kapusta, W. Maziarz, Acta Mater. 118, 213 (2016) |
[16] | L. Mañosa, X. Moya, A. Planes, S. Aksoy, M. Acet, E. Wassermann, T. Krenke, Mater. Sci. Forum. 583, 111 (2008) |
[17] | L. Sun, W.M. Huang, Met. Sci. Heat. Treat. 51, 573 (2009) |
[18] | T. Krenke, M. Acet, E.F. Wassermann, X. Moya, L. Mañosa, A. Planes, Phys. Rev. B 72, 014412 (2005) |
[19] | T. Kanomata, K. Fukushima, H. Nishihara, R. Kainuma, W. Itoh, K. Oikawa, K. Ishida, K.U. Neumann, K.R.A. Ziebeck, Mater. Sci. Forum. 583, 119 (2008) |
[20] | A. Planes, Physics 3, 36 (2010) |
[21] | M. Ye, A. Kimura, Y. Miura, M. Shirai, Y.T. Cui, K. Shimada, H. Namatame, M. Taniguchi, S. Ueda, K. Kobayashi, R. Kainuma, T. Shishido, K. Fukushima, T. Kanomata, Phys. Rev. Lett. 104, 176401 (2010) |
[22] | Z.B. Li, Y.W. Jiang, Z.Z. Li, C.F. Sánchez-Valdés, J.L. Sánchez Llamazares, B. Yang, Y.D. Zhang, C. Esling, X. Zhao, L. Zuo, IUCr J. 5, 54 (2018) |
[23] | V.K. Sharma, M.K. Chattopadhyay, R. Kumar, T. Ganguli, P. Tiwari, S.B. Roy, J. Phys. Condens. Mat. 19, 496207 (2007) |
[24] | N.H. Dan, N.H. Duc, N.H. Yen, P.T. Thanh, L.V. Bau, N.M. An, D.T.K. Anh, N.A. Bang, N.T. Mai, P.K. Anh, T.D. Thanh, T.L. Phan, S.C. Yu, J. Magn. Magn. Mater. 374, 372 (2015) |
[25] | R. Caballero-Flores, L. González-Legarreta, W.O. Rosa, T. Sánchez, V.M. Prida, L. Escoda, J.J. Suñol, A.B. Batdalov, A.M. Aliev, V.V. Koledov, V.G. Shavrov, B. Hernando, J. Alloys. Compd 629, 332 (2015) |
[26] | X. Wang, J.X. Shang, F.H. Wang, C.B. Jiang, H.B. Xu, J. Magn. Magn. Mater. 335, 173 (2014) |
[27] | S. Ghosh, S. Ghosh, Phys. Rev. B 101, 024109 (2020) |
[28] | Z.D. Han, D.H. Wang, C.L. Zhang, H.C. Xuan, B.X. Gu, Y.W. Du, Appl. Phys. Lett. 90, 042507 (2007) |
[29] | S.E. Muthu, N.V.R. Rao, M.M. Raja, D.M.R. Kumar, D.M. Radheep, S. Arumugam, J. Phys. D. Appl. Phys. 43, 425002 (2010) |
[30] | G.Y. Zhang, Z.B. Li, J.J. Yang, B. Yang, D.H. Wang, Y.D. Zhang, C. Esling, L. Hou, X. Li, X. Zhao, L. Zuo, Appl. Phys. Lett. 116, 023902 (2020) |
[31] | V.V. Sokolovskiy, V.D. Buchelnikov, M.A. Zagrebin, P. Entel, S. Sahoo, M. Ogura, Phys. Rev. B 86, 134418 (2012) |
[32] | V.D. Buchelnikov, M.A. Zagrebin, V.V. Sokolovskiy, J. Magn. Magn. Mater. 459, 78 (2018) |
[33] | V.D. Buchelnikov, V.V. Sokolovskiy, O.N. Miroshkina, M.A. Zagrebin, J. Nokelainen, A. Pulkkinen, B. Barbiellini, E. Lähderanta, Phys. Rev. B 99, 014426 (2019) |
[34] | V. Sokolovskiy, M. Zagrebin, V.D. Buchelnikov, J. Magn. Magn. Mater. 476, 546 (2019) |
[35] | J. Hafner, Acta Mater. 48, 71 (2000) |
[36] | G. Kresse, D. Joubert, Phys. Rev. B 59, 1758 (1999) |
[37] | P.E. Blöchl, Phys. Rev. B 50, 17953 (1994) |
[38] | G. Kern, G. Kresse, J. Hafner, Phys. Rev. B 59, 8551 (1999) |
[39] | J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996) |
[40] | H.J. Monkhorst, J.D. Pack, Phys. Rev. B 13, 5188 (1976) |
[41] | J. Chen, Y. Li, J.X. Shang, H.B. Xu, J. Phys. Condens. Mat. 21, 045506 (2009) |
[42] | J. Bai, N. Xu, J.M. Raulot, Y.D. Zhang, C. Esling, X. Zhao, L. Zuo, J. Appl. Phys. 113, 174901 (2013) |
[43] | P.R. Alonso, G.H. Rubiolo, Phys. Rev. B 62, 237 (2000) |
[44] | J.M. Raulot, C. Domain, J.F. Guillemoles, Phys. Rev. B 71, 035203 (2005) |
[45] | J. Bai, J.L. Wang, S.F. Shi, J.M. Raulot, Y.D. Zhang, C. Esling, X. Zhao, L. Zuo, J. Magn. Magn. Mater 473, 360 (2019) |
[46] | C.M. Li, H.B. Luo, Q.M. Hu, R. Yang, B. Johansson, L. Vitos, Phys. Rev. B 82, 024201 (2010) |
[47] | G.Y. Zhang, D. Li, C. Liu, Z.B. Li, B. Yang, H.L. Yan, X. Zhao, L. Zuo, Scr. Mater. 201, 113947 (2021) |
[48] | W.J. Shi, F.H. Chen, J. Liu, H.C. Xuan, R. Zhang, Q.M. Zhang, Y. Jiang, M.G. Zhang, Solid. State. Commun. 308, 113821 (2020) |
[49] | S. Singh, S. Pal, C. Biswas, J. Alloy. Compd. 616, 110 (2014) |
[50] | P.J. Brown, A.P. Gandy, K. Ishida, R. Kainuma, T. Kanomata, K.U. Neumann, K. Oikawa, B. Ouladdiaf, K.R.A. Ziebeck, J. Phys. Condens. Mat. 18, 2249 (2006) |
[51] | T. Fichtner, G. Kreiner, S. Chadov, G.H. Fecher, W. Schnelle, A. Hoser, C. Felser, Intermetallics 57, 101 (2015) |
[52] | C.M. Li, S.J. Yang, J.P. Zhou, Chin. Phys. B 31, 056105 (2022) |
[53] | S.V. Malik, E.T. Dias, A.K. Nigam, K.R. Priolkar, J. Phys. D: Appl. Phys. 55, 165002 (2022) |
[54] | Z. Muthui, R. Musembi, J. Mwabora, A. Kashyap, J. Magn. Magn. Mater. 442, 343 (2017) |
[55] | S. Paul, S. Ghosh, J. Phys. Condens. Mat. 23, 206003 (2011) |
[56] | X.Z. Liang, J. Bai, Z.Q. Guan, J.L. Gu, H.L. Yan, Y.D. Zhang, C. Esling, X. Zhao, L. Zuo, J. Mater. Sci. Technol. 83, 90 (2021) |
[57] | V. Sánchez-Alarcos, J.I. Pérez-Landazábal, V. Recarte, I. Lucia, J. Velez, J.A. Rodrıguez-Velamazan, Acta. Mater. 61, 4676 (2013) |
[58] | C.H. Huang, Y. Wang, Z. Tang, X.Q. Liao, S. Yang, X.P. Song, J. Alloy. Compd. 630, 244 (2015) |
[59] | C. Seguí, J. Pons, E. Cesari, Acta Mater. 55, 1649 (2007) |
[60] | R. Coll, J. Saurina, L. Escoda, J.J. Suñol, J. Therm. Anal. Calorim. 134, 1277 (2018) |
[1] | Zhaoqun Chen, Yuxiang Lai, Linghong Liu, Ziran Liu, Jianghua Chen. Impacts of Microalloying Elements on the Hardening β"-Phase in Automotive AlMgSi Alloys [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(3): 495-506. |
[2] | Zuohua Wang, Haidong Sun, Peng Wang, Ning Liu, Pinwen Zhu, Dongli Yu, Hongwang Zhang. {112} 〈111〉 Twins or Twinned Variants Induced by Martensitic Transformation? [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(1): 133-140. |
[3] | Chenchen Xiong, Jing Bai, Yansong Li, Jianglong Gu, Xinzeng Liang, Ziqi Guan, Yudong Zhang, Claude Esling, Xiang Zhao, Liang Zuo. First-Principles Investigation on Phase Stability, Elastic and Magnetic Properties of Boron Doping in Ni-Mn-Ti Alloy [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(7): 1175-1183. |
[4] | Xinzeng Liang, Jing Bai, Jianglong Gu, Ziqi Guan, Haile Yan, Yudong Zhang, Claude Esling, Xiang Zhao, Liang Zuo. Composition-Dependent of 6 M Martensite Structure and Magnetism in Cu-Alloyed Ni-Mn-In-Co by First-Principles Calculations [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(6): 1034-1042. |
[5] | Jian-Bin Zhan, Yan-Jin Lu, Jin-Xin Lin. On the Martensitic Transformation Temperatures and Mechanical Properties of NiTi Alloy Manufactured by Selective Laser Melting: Effect of Remelting [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(9): 1223-1233. |
[6] | Zhihui Li, Jinxing Yang, Jiemin Wang, Jixin Chen, Hao Zhang, Cong Cui, Xiaohui Wang, Zhonghai Ji, Yongheng Zhang, Meishuan Li. Raman Spectroscopy of Layered Compound YbB2C2 [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(7): 1021-1027. |
[7] | Linxu Li, Xiufang Gong, Changshuai Wang, Yunsheng Wu, Hongyao Yu, Haijun Su, Lanzhang Zhou. Correlation Between Phase Stability and Tensile Properties of the Ni-Based Superalloy MAR-M247 [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(6): 872-884. |
[8] | Miao Chen, Wu Qin, Yixuan Hu, Yiren Wang, Yong Jiang, Xiaosong Zhou, Shuming Peng, Yibei Fu. Prediction on Phase Stabilities of the Zr-H System from the First-Principles [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(4): 514-522. |
[9] | Hui Xiao, Yu Liu, Kai Wang, Zhipeng Wang, Te Hu, Touwen Fan, Li Ma, Pingying Tang. Effects of Mn Content on Mechanical Properties of FeCoCrNiMnx (0≤x≤0.3) High-Entropy Alloys: A First-Principles Study [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(4): 455-464. |
[10] | Yixing Wan, Jinyong Mo, Xin Wang, Zhibin Zhang, Baolong Shen, Xiubing Liang. Mechanical Properties and Phase Stability of WTaMoNbTi Refractory High-Entropy Alloy at Elevated Temperatures [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(11): 1585-1590. |
[11] | Yongfei Juan, Jiao Zhang, Yongbing Dai, Qing Dong, Yanfeng Han. Designing Rules of Laser-Clad High-Entropy Alloy Coatings with Simple Solid Solution Phases [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(8): 1064-1076. |
[12] | Fushi Jiang, Chang Pang, Zhaoyang Zheng, Qing Wang, Jijun Zhao, Chuang Dong. First-Principles Calculations for Stable β-Ti-Mo Alloys Using Cluster-Plus-Glue-Atom Model [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(7): 968-974. |
[13] | Le Zhang, Wei Wang, fei Xiao, Shahzad M. Babar, Yiyin Shan, Ke Yang. Ultra-thin Laminated Metal Composites with Ultra-high Strength and Excellent Soft Magnetic Properties [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(3): 385-390. |
[14] | Yao-Xiang Geng, Hong-Yu Ding, Dong-Peng Wang, Zhi-Jie Zhang, Hong-Bo Ju, Li-Hua Yu, Jun-Hua Xu. Formation and Structural Evolution of Fe72.5B15.6Si7.8Nb1.7Zr1.7Cu0.7 Nanocrystalline Alloy [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(2): 313-318. |
[15] | Pengfei Gao, Weijian Chen, Feng Li, Beijia Ning, Zhengzhi Zhao. Quasi-Situ Characterization of Deformation in Low-Carbon Steel with Equiaxed and Lamellar Microstructure Treated by the Quenching and Partitioning Process [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(12): 1657-1665. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||