Acta Metallurgica Sinica (English Letters) ›› 2023, Vol. 36 ›› Issue (11): 1844-1856.DOI: 10.1007/s40195-023-01589-6
Previous Articles Next Articles
Yan-Di Jia1,2, Shuo Cao1,2, Ying-Jie Ma1,2(), Sen-Sen Huang2, Feng-Ying Qin3, Shao-Qiang Li4, Wei Xiang5, Qian Wang2, Qing-Miao Hu2, Bo Li3, Jia-Feng Lei1,2, Jing Xie5, Xiang-Hong Liu4, Rui Yang1,2
Received:
2023-03-17
Revised:
2023-05-17
Accepted:
2023-06-28
Online:
2023-11-10
Published:
2023-09-15
Contact:
Ying-Jie Ma, yjma@imr.ac.cn
Yan-Di Jia, Shuo Cao, Ying-Jie Ma, Sen-Sen Huang, Feng-Ying Qin, Shao-Qiang Li, Wei Xiang, Qian Wang, Qing-Miao Hu, Bo Li, Jia-Feng Lei, Jing Xie, Xiang-Hong Liu, Rui Yang. Latent Heat of TB18 Titanium Alloy during β to α Phase Transition by DSC and First-Principles Methods[J]. Acta Metallurgica Sinica (English Letters), 2023, 36(11): 1844-1856.
Add to citation manager EndNote|Ris|BibTeX
Ti | Al | Mo | V | Cr | Fe | Nb |
---|---|---|---|---|---|---|
Bal. | 2.67 | 4.02 | 5.35 | 4.91 | 0.046 | 1.32 |
Table 1 Quantitative measurements of element concentrations in as-quenched TB18 sample (wt%)
Ti | Al | Mo | V | Cr | Fe | Nb |
---|---|---|---|---|---|---|
Bal. | 2.67 | 4.02 | 5.35 | 4.91 | 0.046 | 1.32 |
Fig. 2 DSC and derivative (DDSC) curves of TB18 alloy showing the starting temperature and the finishing temperature of β → α phase transition with different heating rates. The latent heat (${\text{|}{{Q}}}_{\text{latent1}}\text{|}$ and ${\text{|}{{Q}}}_{\text{latent2}}\text{|}$) is calculated from the stating temperature to the finishing temperature: a from 40 ℃ to 900 ℃ at 10 ℃/min, b from 300 ℃ to 700 ℃ at 1 ℃/min
Fig. 3 Calculated α-transformed fraction as a function of the temperature using Eq. (1) during temperature range of phase transition for different heating rates. $ \xi _{\alpha } - T $ curve reflects the ratio of α-transformed fraction heating to a certain temperature during phase transition to that of the whole temperature range of phase transition
Fig. 4 Microstructures of TB18 alloy after continuous heating with different rates: a from 40 ℃ to 900 ℃ at 10 ℃/min showing the spot-like α precipitates in β matrix, b from 40 ℃ to 700 ℃ at 10 ℃/min showing the intragranular α, grain boundary α and precipitation zone form in β matrix, c from 40 ℃ to 300 ℃ at 10 ℃/min firstly and 300 ℃ to 700 ℃ at 1 ℃/min showing the short rod-like α distributes uniformly in β matrix
Fig. 5 a, b DSC curves of TB18 alloy and sapphire standard sample (α-Al2O3) with different heating rates, c, d specific heat capacity curves of TB18 alloy obtained by sapphire standard sample method and difference method with different heating rates, a, c from 40 ℃ to 900 ℃ at 10 ℃/min, b, d from 300 to 700 °C at 1 ℃/min
Heating rate (℃/min) | Heating range (℃) | Phase transition range (℃) | |||||
---|---|---|---|---|---|---|---|
Sapphire standard sample method | Difference method | Sapphire standard sample method | Difference method | ||||
10 | 40-900 | 480-592 | 2.659 | 121.598 | 115.120 | 2.19% | 2.31% |
1 | 300-700 | 423-482 | 8.577 | 19.190 | 25.692 | 44.70% | 33.38% |
Table 2 Calculation results of TB18 alloy based on DSC curves
Heating rate (℃/min) | Heating range (℃) | Phase transition range (℃) | |||||
---|---|---|---|---|---|---|---|
Sapphire standard sample method | Difference method | Sapphire standard sample method | Difference method | ||||
10 | 40-900 | 480-592 | 2.659 | 121.598 | 115.120 | 2.19% | 2.31% |
1 | 300-700 | 423-482 | 8.577 | 19.190 | 25.692 | 44.70% | 33.38% |
Structure | Energy (Ry/atom) | c/a | Lattice parameter ( | ||||||
---|---|---|---|---|---|---|---|---|---|
α | − 1847.88168 | 1.62 | 2.90 | 195.10 | 74.98 | 65.28 | 204.80 | 30.94 | 60.06 |
β | − 1847.87838 | 3.22 | 125.49 | 99.41 | 61.75 |
Table 3 Lattice parameters and elastic moduli of α and β in TB18 alloy
Structure | Energy (Ry/atom) | c/a | Lattice parameter ( | ||||||
---|---|---|---|---|---|---|---|---|---|
α | − 1847.88168 | 1.62 | 2.90 | 195.10 | 74.98 | 65.28 | 204.80 | 30.94 | 60.06 |
β | − 1847.87838 | 3.22 | 125.49 | 99.41 | 61.75 |
Heating rate (℃/min) | Starting temperature of phase transition (℃) | Final temperature of phase transition (℃) | Temperature change (℃) | ||
---|---|---|---|---|---|
10 | 480 | 592 | + 112 | + 57.60 | − 89.37 (100% undergo β to α phase transition) |
1 | 423 | 482 | + 59 | + 30.52 |
Table 4 Endothermic heat (${{Q}}_{\text{endo}}$) and the latent heat of phase transition (${{Q}}_{\text{latent}}$) of TB18 alloy with the heating rates of 10 ℃/min and 1 ℃/min
Heating rate (℃/min) | Starting temperature of phase transition (℃) | Final temperature of phase transition (℃) | Temperature change (℃) | ||
---|---|---|---|---|---|
10 | 480 | 592 | + 112 | + 57.60 | − 89.37 (100% undergo β to α phase transition) |
1 | 423 | 482 | + 59 | + 30.52 |
Fig. 7 a Latent heat of phase transition(${{Q}}_{\text{latent}}$) as a function of α phase volume fraction, b the ratio of latent heat of phase transition ($|{{Q}}_{\text{latent}}|$) to endothermic heat (${{Q}}_{\text{endo}}$) as a function of α phase volume fraction
Fig. 8 Optical microscopy (OM) images showing the βt and precipitation free zone and TEM images showing the precipitation of α in βt zone with the final temperature of 450 ℃ (before phase transition), 550 ℃ (during phase transition) and 700 ℃ (after phase transition) at 10 ℃/min. The volume fraction of βt (f1), α in βt zone (f2), α (f) and α (fT) during heating are calculated
Fig. 9 OM images showing the βt and precipitation free zone and SEM images showing the precipitation of α in βt zone with the final temperature of 400 ℃ (before phase transition), 450 ℃ (during phase transition) at 1 ℃/min. Especially, α is distributed uniformly from the intra grain to the grain boundary with the final temperature of 700 ℃ (after phase transition) at 1 ℃/min. The volume fraction of βt (f1), α in βt zone (f2), α (f) and α (fT) during heating are calculated
Fig. 10 Magnification image of elliptical area in Fig. 7b showing the ratio of the latent heat of phase transition ($|{{Q}}_{\text{latent}}|$) to the endothermic heat (${{Q}}_{\text{endo}}$) calculated by α phase volume fraction
Heating rate (℃/min) | Phase transition range (℃) | |||
---|---|---|---|---|
DSC calculation | First-principles calculation | |||
Sapphire standard sample method | Difference method | |||
10 | 480-592 | 2.19% | 2.31% | 5.46% (heating to 700 ℃) |
1 | 423-482 | 44.70% | 33.38% | 23.83% (heating to 550 ℃) |
Table 5 Comparative analysis of DSC and first-principles calculation results heating to the temperature after phase transition with different heating rates in TB18 alloy
Heating rate (℃/min) | Phase transition range (℃) | |||
---|---|---|---|---|
DSC calculation | First-principles calculation | |||
Sapphire standard sample method | Difference method | |||
10 | 480-592 | 2.19% | 2.31% | 5.46% (heating to 700 ℃) |
1 | 423-482 | 44.70% | 33.38% | 23.83% (heating to 550 ℃) |
[1] |
D. Banerjee, J.C. Williams, Acta Mater. 61, 844 (2013)
DOI URL |
[2] | Q.Y. Zhao, Q.Y. Sun, S.W. Xin, Y.H. Chen, C. Wu, H. Wang, J.W. Xu, M.P. Wan, W.D. Zeng, Y.Q. Zhao, Mater. Sci. Eng. A 845, 1 (2022) |
[3] |
R.R. Boyer, Mater. Sci. Eng. A 213, 103 (1996)
DOI URL |
[4] |
C. Li, J. Chen, W. Li, J.J. He, W. Qiu, Y.J. Ren, J.L. Chen, J.H. Chen, J. Alloys Compd. 627, 222 (2015)
DOI URL |
[5] | C. Qiu, Q. Liu, Addit. Manuf. 30, 100893 (2019) |
[6] |
F. Haftlang, A. Zarei-Hanzaki, H.R. Abedi, Mater. Sci. Eng. C 109, 110561 (2020)
DOI URL |
[7] |
H. Zhang, J.Y. Zhang, J.P. Hou, D.D. Zhang, Y.H. Yue, G. Liu, J. Sun, Acta Mater. 241, 118411 (2022)
DOI URL |
[8] |
D. Qiu, R. Shi, D. Zhang, W. Lu, Y. Wang, Acta Mater. 88, 218 (2015)
DOI URL |
[9] |
S. Balachandran, A. Kashiwar, A. Choudhury, D. Banerjee, R.P. Shi, Y.Z. Wang, Acta Mater. 106, 374 (2016)
DOI URL |
[10] |
G.R. Bak, J.W. Won, H.J. Choe, C.H. Park, Y.T. Hyun, J. Mater. Res. Technol. 8, 2887 (2019)
DOI URL |
[11] |
X.X. Gao, W.D. Zeng, S.F. Zhang, Q.J. Wang, Acta Mater. 122, 298 (2017)
DOI URL |
[12] |
R. Dąbrowski, Arch. Metall. Mater. 56, 703 (2011)
DOI URL |
[13] |
S.S. Huang, J.H. Zhang, Y.J. Ma, S.L. Zhang, S.S. Youssef, M. Qi, H. Wang, J.K. Qiu, D.S. Xu, J.F. Lei, R. Yang, J. Alloys Compd. 791, 575 (2019)
DOI URL |
[14] | S.S. Huang, Y.J. Ma, S.L. Zhang, M. Qi, J.F. Lei, Y.P. Zong, R. Yang, Acta Metall. Sin. 55, 741 (2019) |
[15] |
N. Kherrouba, D. Carron, M. Bouabdallah, R. Badji, J. Mater. Eng. Perform. 28, 6921 (2019)
DOI |
[16] |
M. Behera, S. Raju, B. Jeyaganesh, R. Mythili, S. Saroja, Int. J. Thermophys. 31, 2246 (2010)
DOI URL |
[17] |
M.H. Lee, J.R. Chen, M. Das, T.F. Hsieh, C.M. Shu, J. Therm. Anal. Calorim. 122, 1143 (2015)
DOI URL |
[18] |
M. Behera, S. Raju, R. Mythili, S. Saroja, J. Therm. Anal. Calorim. 124, 1217 (2016)
DOI URL |
[19] |
V. Anbarasan, B. Jeya Ganesh, S. Raju, S. Murugesan, E. Mohandas, U. Kamachi Mudali, G. Manivasagam, J. Alloys Compd. 463, 160 (2008).
DOI URL |
[20] |
S. Malinov, P. Markovsky, W. Sha, Z. Guo, J. Alloys Compd. 314, 181 (2001)
DOI URL |
[21] | S. Malinov, Acta Metall. Sin. -Engl. Lett. 37, 4445 (2001) |
[22] |
H.L. Wu, Z.C. Sun, J. Cao, Z.K. Yin, Mater. Des. 191, 108598 (2020)
DOI URL |
[23] |
H. Yu, W. Li, S.S. Li, H.B. Zou, T.G. Zhai, L.G. Liu, Crystals 10, 229 (2020)
DOI URL |
[24] |
M. Charpentier, A. Hazotte, D. Daloz, Mater. Sci. Eng. A 491, 321 (2008)
DOI URL |
[25] |
S. Malinov, Z. Guo, W. Sha, A. Wilson, Metall. Mater. Trans. A 32, 879 (2001)
DOI URL |
[26] |
O. Djema, M. Bouabdallah, R. Badji, A. Saadi, N. Kherrouba, A. Sahli, Mater. Chem. Phys. 240, 122073 (2020)
DOI URL |
[27] |
M. Perez, M. Dumont, D. Acevedo-Reyes, Acta Mater. 56, 2119 (2008)
DOI URL |
[28] | R. Zhang, Y. Ma, Y. Jia, S. Huang, J. Lei, J. Qiu, P. Wang, R. Yang, Chi. J. Mater. Res. 37, 161 (2023) |
[29] |
B.J. Xie, Q.N. Dai, Z.X. Yu, C.Y. Wang, B. Xu, M.Y. Sun, D.Z. Li, Mater. Lett. 327, 132980 (2022)
DOI URL |
[30] |
N. Kherrouba, M. Bouabdallah, R. Badji, D. Carron, M. Amir, Mater. Chem. Phys. 181, 462 (2016)
DOI URL |
[31] |
P. Barriobero-Vila, G. Requena, T. Buslaps, M. Alfeld, U. Boesenberg, J. Alloys Compd. 626, 330 (2015)
DOI URL |
[32] | H.J. Zhang, P. Li, X.L. Hao, D.H. Zhang, F.S. Wang, PTCA(PARTA:PHYS.TEST.) 50, 741 (2014). |
[1] | Jianan Hu, Mengmeng Yang, Wenlong Xiao, Hao Wang, Dehai Ping, Chengze Liu, Shewei Xin, Songquan Wu, Kai Zhang, Yi Yang, Lai-Chang Zhang, Aijun Huang. Formation of Face-Centered Cubic Phase in Ti35 Alloy Under In Situ Heating Transmission Electron Microscopy [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(3): 486-494. |
[2] | Zhaoqun Chen, Yuxiang Lai, Linghong Liu, Ziran Liu, Jianghua Chen. Impacts of Microalloying Elements on the Hardening β"-Phase in Automotive AlMgSi Alloys [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(3): 495-506. |
[3] | Yu Zhang, Jing Bai, Ziqi Guan, Xinzeng Liang, Yansong Li, Jianglong Gu, Yudong Zhang, Claude Esling, Xiang Zhao, Liang Zuo. Phase Stability, Magnetic Properties, and Martensitic Transformation of Ni2−xMn1+x+ySn1−y Heusler Alloy with Excess Mn by First-Principles Calculations [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(3): 513-528. |
[4] | Chenchen Xiong, Jing Bai, Yansong Li, Jianglong Gu, Xinzeng Liang, Ziqi Guan, Yudong Zhang, Claude Esling, Xiang Zhao, Liang Zuo. First-Principles Investigation on Phase Stability, Elastic and Magnetic Properties of Boron Doping in Ni-Mn-Ti Alloy [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(7): 1175-1183. |
[5] | Xinzeng Liang, Jing Bai, Jianglong Gu, Ziqi Guan, Haile Yan, Yudong Zhang, Claude Esling, Xiang Zhao, Liang Zuo. Composition-Dependent of 6 M Martensite Structure and Magnetism in Cu-Alloyed Ni-Mn-In-Co by First-Principles Calculations [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(6): 1034-1042. |
[6] | Zhihui Li, Jinxing Yang, Jiemin Wang, Jixin Chen, Hao Zhang, Cong Cui, Xiaohui Wang, Zhonghai Ji, Yongheng Zhang, Meishuan Li. Raman Spectroscopy of Layered Compound YbB2C2 [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(7): 1021-1027. |
[7] | Chongfeng Sun, Shengqi Xi, Xiaofeng Dang, Jianping Li, Yongchun Guo, Zhong Yang, Yaping Bai. Formation of Fe-19 wt%Cr-9 wt%Ni Nanocrystalline Alloy with Excellent Corrosion Resistance: Phase Transition and Microstructure [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(6): 825-833. |
[8] | Hui Xiao, Yu Liu, Kai Wang, Zhipeng Wang, Te Hu, Touwen Fan, Li Ma, Pingying Tang. Effects of Mn Content on Mechanical Properties of FeCoCrNiMnx (0≤x≤0.3) High-Entropy Alloys: A First-Principles Study [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(4): 455-464. |
[9] | Ben-Qi Xu, Hui Zhang, Dong Ma, Qun-Shuang Ma, Li-Zhai Pei. Ageing Hardening Mechanism and Corrosion Resistance in the Fe65Cr13Cu3(CoMnMoNiAlTi)19 Medium-Entropy Stainless Alloy [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(11): 1601-1608. |
[10] | Fushi Jiang, Chang Pang, Zhaoyang Zheng, Qing Wang, Jijun Zhao, Chuang Dong. First-Principles Calculations for Stable β-Ti-Mo Alloys Using Cluster-Plus-Glue-Atom Model [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(7): 968-974. |
[11] | Yong Zhang, Zi-Ran Liu, Ding-Wang Yuan, Qin Shao, Jiang-Hua Chen, Cui-Lan Wu, Zao-Li Zhang. Elastic Properties and Stacking Fault Energies of Borides, Carbides and Nitrides from First-Principles Calculations [J]. Acta Metallurgica Sinica (English Letters), 2019, 32(9): 1099-1110. |
[12] | De-Xin Ma, Fu Wang, Jian-Zheng Guo, Wen-Liang Xu. Single Crystal Castability and Undercoolability of PWA1483 Superalloy [J]. Acta Metallurgica Sinica (English Letters), 2019, 32(11): 1415-1420. |
[13] | Jia-Long Tian, Wei Wang, M. Babar Shahzad, Wei Yan, Yi-Yin Shan, Zhou-Hua Jian, Ke Yang. Corrosion Resistance of Co-containing Maraging Stainless Steel [J]. Acta Metallurgica Sinica (English Letters), 2018, 31(8): 785-797. |
[14] | Yi-Xue Wang, Mu-Fu Yan, Zhao-Bo Chen, Cheng-Song Zhang, Yuan You. Crystallographic Texture Evolution of γ′-Fe4N and Its Influences on Tribological Property of Nitrided Steel [J]. Acta Metallurgica Sinica (English Letters), 2018, 31(4): 371-379. |
[15] | R. Shashanka†, D. Chaira. Effects of Nano-Y2O3 and Sintering Parameters on the Fabrication of PM Duplex and Ferritic Stainless Steels [J]. Acta Metallurgica Sinica (English Letters), 2016, 29(1): 58-71. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||