Acta Metallurgica Sinica (English Letters) ›› 2024, Vol. 37 ›› Issue (8): 1301-1338.DOI: 10.1007/s40195-024-01706-z
Previous Articles Next Articles
Zhenfei Jiang, Bo Hu(), Zixin Li, Fanjin Yao, Jiaxuan Han, Dejiang Li(), Xiaoqin Zeng, Wenjiang Ding
Received:
2024-01-01
Revised:
2024-02-26
Accepted:
2024-03-01
Online:
2024-08-10
Published:
2024-07-10
Contact:
Bo Hu, 1969220462@sjtu.edu.cn; Dejiang Li, lidejiang@sjtu.edu.cn
Zhenfei Jiang, Bo Hu, Zixin Li, Fanjin Yao, Jiaxuan Han, Dejiang Li, Xiaoqin Zeng, Wenjiang Ding. A Review of Magnesium Alloys as Structure-Function Integrated Materials[J]. Acta Metallurgica Sinica (English Letters), 2024, 37(8): 1301-1338.
Add to citation manager EndNote|Ris|BibTeX
Shielding effectiveness (dB) | < 10 | 10-30 | 30-60 | 60-90 | > 90 |
---|---|---|---|---|---|
Evaluation | Poor | Fair | Average | Good | Excellent |
Table 1 Evaluation of shielding effectiveness
Shielding effectiveness (dB) | < 10 | 10-30 | 30-60 | 60-90 | > 90 |
---|---|---|---|---|---|
Evaluation | Poor | Fair | Average | Good | Excellent |
Fig. 3 EMI shielding effectiveness of Mg-xZn (x = 0-5) alloys in a as-cast condition and b T4 condition. c The electrical conductivity, d shielding effectiveness of binary magnesium alloys with alloying element content of approximately 1 at.% in T4 conditions [6,27]
Fig. 4 Pole figures of a unrolled AZ31, b 20% rolled AZ31, c 35% rolled AZ31, d 60% rolled AZ31, e EMI shielding effectiveness of AZ31 specimens during 30-1500 MHz range, d schematic representation of the grain orientation and microstructure of the alloy
Alloys | Processing conditions | SE (dB) (f = 900 MHz) | SE (dB) (f = 1500 MHz) | Mechanical properties | ||
---|---|---|---|---|---|---|
YS (MPa) | UTS (MPa) | EL (%) | ||||
Mg-1Al [ | As-solution | 87 | 82 | - | - | - |
Mg-3Al [ | As-solution | 72 | 72 | - | - | - |
Mg-5Al [ | As-solution | 70 | 56 | - | - | - |
Mg-4Al-3Zn [ | As-cast | 86 | 77 | - | - | - |
Mg-5Al-3Zn [ | As-cast | 81 | 71 | - | - | - |
Mg-5Al-5Zn [ | As-cast | 78 | 74 | |||
Mg-3Al-1Zn [ | 55% Hot rolled at 623 K + 723 K/0.5 h | 80 | 74 | 262 | 172 | 13.9 |
Mg-3Al-1Zn [ | 57% Hot rolled at 623K | 75 | 66 | 226 | 312 | 25.4 |
Mg-6Al-1Zn [ | Extruded at 663 K + hot rolled at 598 K | 91 | 87 | 267 | 394 | 14.8 |
Mg-6Al-1Zn [ | Cold rolled + T5 (473 K/20 h) | 72 | 69 | 222 | 350 | 14.3 |
Mg-7Al-1Zn-0.3Mn-0.6Y [ | As-cast | 103 | 77 | 182 | 143 | 7.9 |
Mg-7Al-1Zn-0.3Mn-0.9Y [ | As-cast | 104 | 88 | 195 | 157 | 8.9 |
Mg-7Al-1Zn-0.3Mn-0.9Ce [ | As-cast | 104 | 81 | 187 | 147 | 9.6 |
Mg-7Al-1Zn-0.3Mn-1.2Ce [ | As-cast | 97 | 81 | 179 | 144 | 9.5 |
Mg-7Al-1Zn-0.3Mn-0.9Y-0.3Ce [ | As-cast | 91 | 72 | 202 | 162 | 9.0 |
Mg-7Al-1Zn-0.3Mn-0.9Y-0.9Ce [ | As-cast | 103 | 87 | 216 | 170 | 10.1 |
Mg-3Al-1Zn-0.35Mn-0.6La [ | T4 (683 K/24 h) + T5 (473 K/8 h) | 85 | 83 | - | - | - |
Mg-3Al-1Zn-0.35Mn-0.9La [ | T4 (683 K/24 h) + T5 (473 K/8 h) | 87 | 84 | - | - | - |
Mg-3Al-1Zn-0.35Mn-1.2La [ | T4 (683 K/24 h) + T5 (473 K/8 h) | 86 | 83 | - | - | - |
Mg-3Al-1Zn-0.35Mn-1.5La [ | T4 (683 K/24 h) + T5 (473 K/8 h) | 84 | 82 | - | - | - |
Mg-4Al-2Sn-0.1Y [ | As-cast | 73 | 72 | - | - | - |
Mg-5.5Al-2.5Sn-0.1V [ | Extruded at 608 K | 79 | 72 | - | - | - |
Mg-6Al-2Sn-0.05Y [ | Extruded at 533 K | 63 | 47 | - | - | - |
Mg-6Al-2Sn-0.05Y [ | Extruded at 593 K | 71 | 65 | - | - | - |
Mg-6Al-2Sn-0.05Y [ | Extruded at 653 K | 70 | 58 |
Table 2 EMI shielding performance and mechanical properties of Mg-Al series alloys in literature
Alloys | Processing conditions | SE (dB) (f = 900 MHz) | SE (dB) (f = 1500 MHz) | Mechanical properties | ||
---|---|---|---|---|---|---|
YS (MPa) | UTS (MPa) | EL (%) | ||||
Mg-1Al [ | As-solution | 87 | 82 | - | - | - |
Mg-3Al [ | As-solution | 72 | 72 | - | - | - |
Mg-5Al [ | As-solution | 70 | 56 | - | - | - |
Mg-4Al-3Zn [ | As-cast | 86 | 77 | - | - | - |
Mg-5Al-3Zn [ | As-cast | 81 | 71 | - | - | - |
Mg-5Al-5Zn [ | As-cast | 78 | 74 | |||
Mg-3Al-1Zn [ | 55% Hot rolled at 623 K + 723 K/0.5 h | 80 | 74 | 262 | 172 | 13.9 |
Mg-3Al-1Zn [ | 57% Hot rolled at 623K | 75 | 66 | 226 | 312 | 25.4 |
Mg-6Al-1Zn [ | Extruded at 663 K + hot rolled at 598 K | 91 | 87 | 267 | 394 | 14.8 |
Mg-6Al-1Zn [ | Cold rolled + T5 (473 K/20 h) | 72 | 69 | 222 | 350 | 14.3 |
Mg-7Al-1Zn-0.3Mn-0.6Y [ | As-cast | 103 | 77 | 182 | 143 | 7.9 |
Mg-7Al-1Zn-0.3Mn-0.9Y [ | As-cast | 104 | 88 | 195 | 157 | 8.9 |
Mg-7Al-1Zn-0.3Mn-0.9Ce [ | As-cast | 104 | 81 | 187 | 147 | 9.6 |
Mg-7Al-1Zn-0.3Mn-1.2Ce [ | As-cast | 97 | 81 | 179 | 144 | 9.5 |
Mg-7Al-1Zn-0.3Mn-0.9Y-0.3Ce [ | As-cast | 91 | 72 | 202 | 162 | 9.0 |
Mg-7Al-1Zn-0.3Mn-0.9Y-0.9Ce [ | As-cast | 103 | 87 | 216 | 170 | 10.1 |
Mg-3Al-1Zn-0.35Mn-0.6La [ | T4 (683 K/24 h) + T5 (473 K/8 h) | 85 | 83 | - | - | - |
Mg-3Al-1Zn-0.35Mn-0.9La [ | T4 (683 K/24 h) + T5 (473 K/8 h) | 87 | 84 | - | - | - |
Mg-3Al-1Zn-0.35Mn-1.2La [ | T4 (683 K/24 h) + T5 (473 K/8 h) | 86 | 83 | - | - | - |
Mg-3Al-1Zn-0.35Mn-1.5La [ | T4 (683 K/24 h) + T5 (473 K/8 h) | 84 | 82 | - | - | - |
Mg-4Al-2Sn-0.1Y [ | As-cast | 73 | 72 | - | - | - |
Mg-5.5Al-2.5Sn-0.1V [ | Extruded at 608 K | 79 | 72 | - | - | - |
Mg-6Al-2Sn-0.05Y [ | Extruded at 533 K | 63 | 47 | - | - | - |
Mg-6Al-2Sn-0.05Y [ | Extruded at 593 K | 71 | 65 | - | - | - |
Mg-6Al-2Sn-0.05Y [ | Extruded at 653 K | 70 | 58 |
Alloys | Processing conditions | SE (dB) (f = 900 MHz) | SE (dB) (f = 1500 MHz) | Mechanical properties | ||
---|---|---|---|---|---|---|
YS (MPa) | UTS (MPa) | EL (%) | ||||
Mg-3Zn-0.5Zr [ | As-cast | 83 | 75 | - | - | - |
Mg-5Zn-0.7Zr [ | Extruded at 663 K | 85 | 66 | 246 | 318 | 9.7 |
Mg-5Zn-1Zr [ | Extruded at 663 K | 83 | 65 | 231 | 318 | 11.0 |
Mg-6Zn-0.5Zr [ | Extruded at 663 K | 58 | 54 | 231 | 302 | 11.0 |
Mg-6Zn-0.5Zr [ | 423 K/4 h aged | 66 | 64 | 241 | 303 | 20.0 |
Mg-6Zn-0.5Zr [ | 423 K/15 h aged | 72 | 70 | 269 | 316 | 20.0 |
Mg-6Zn-0.5Zr [ | 423 K/50 h aged | 75 | 65 | 285 | 313 | 19.0 |
Mg-6Zn-0.5Zr [ | Cold rolled + 423 K/15 h aged | 75 | 71 | 311 | 368 | 7.0 |
Mg-6Zn-0.5Zr [ | Cold rolled + 423 K/50 h aged | 81 | 76 | 302 | 355 | 10.0 |
Mg-6Zn-0.5Zr [ | 673 K/5 h + 403 K/20 h | 61 | 57 | 252 | 319 | 20.0 |
Mg-6Zn-0.5Zr [ | 673 K/5 h + 443 K/25 h | 65 | 62 | 294 | 327 | 21.0 |
Mg-5Zn-0.7Zr-0.5Cu [ | Extruded at 663 K | 91 | 66 | 276 | 346 | 11.4 |
Mg-5Zn-0.7Zr-1Cu [ | Extruded at 663 K | 97 | 77 | 263 | 332 | 7.8 |
Mg-5Zn-0.7Zr-1.5Cu [ | Extruded at 663 K | 99 | 77 | 258 | 311 | 8.0 |
Mg-5Zn-0.7Zr-2.5Cu [ | Extruded at 663 K | 103 | 84 | 246 | 306 | 6.7 |
Mg-6Zn-3Sn [ | Extruded at 653 K | - | 92 | 247 | 334 | 16.0 |
Mg-6Zn-3Sn-0.5Cu [ | Extruded at 653 K | - | 95 | 298 | 319 | 13.0 |
Mg-6Zn-3Sn-1Cu [ | Extruded at 653 K | - | 102 | 294 | 311 | 14.0 |
Mg-6Zn-3Sn-0.5Cu [ | Extruded at 653 K + T5(453 K/6 h) | 111 | 105 | 358 | 368 | 7.0 |
Mg-3Zn-0.5Zr-1Sm [ | As-cast | 86 | 81 | - | - | - |
Mg-3Zn-0.5Zr-2Sm [ | As-cast | 96 | 80 | - | - | - |
Mg-3Zn-1Y [ | As-cast | 80 | 67 | - | - | - |
Mg-3Zn-3Y [ | As-cast | 76 | 70 | - | - | - |
Mg-2Zn-4Y [ | As-cast | 77 | 73 | - | - | - |
Mg-4Zn-8Y [ | As-cast | 66 | 60 | - | - | - |
Mg-5Zn-1Zr-0.5Y [ | Extruded at 663 K | 83 | 66 | 258 | 334 | 12.0 |
Mg-5Zn-1Zr-1Y [ | Extruded at 663 K | 89 | 76 | 265 | 321 | 8.0 |
Mg-5Zn-1Zr-2Y [ | Extruded at 663 K | 96 | 79 | 176 | 270 | 7.0 |
Mg-5Zn-1Ce-0.5Zr-0.5Y [ | Extruded at 663 K | 81 | 70 | 313 | 356 | 12.1 |
Mg-5Zn-1Ce-0.5Zr-1Y [ | Extruded at 663 K | 94 | 76 | 304 | 341 | 11.2 |
Mg-5Zn-1Ce-0.5Zr-2Y [ | Extruded at 663 K | 94 | 79 | 305 | 333 | 10.6 |
Mg-6Zn-0.5Zr-0.5Ce [ | Extruded at 663 K | 63 | 53 | 242 | 324 | 14.0 |
Mg-6Zn-0.5Zr-1Ce [ | Extruded at 663 K | 72 | 71 | 249 | 316 | 15.0 |
Mg-6Zn-0.5Zr-2Ce [ | Extruded at 663 K | 67 | 61 | 239 | 304 | 11.0 |
Mg-6Zn-0.5Ce-0.4Zr-0.2Y [ | Extruded at 663 K | 86 | 67 | 322 | 378 | 8.6 |
Mg-6Zn-0.5Ce-0.4Zr-0.5Y [ | Extruded at 663 K | 88 | 75 | 327 | 369 | 7.3 |
Mg-6Zn-0.5Ce-0.4Zr-1Y [ | Extruded at 663 K | 91 | 85 | 315 | 362 | 8.7 |
Mg-6Zn-0.5Ce-0.4Zr-1.5Y [ | Extruded at 663 K | 93 | 86 | 298 | 345 | 4.2 |
Mg-6Zn-1Y-0.5Zr [ | 453 K/20 h | ~ 71 | 62 | 359 | 400 | 4.8 |
Mg-6Zn-1Y-0.5Zr-0.5Nd [ | 453 K/20 h | ~ 79 | 73 | 386 | 421 | 9.8 |
Mg-6Zn-1Y-0.5Zr-1Nd [ | 453 K/20 h | ~ 84 | 78 | 385 | 415 | 7.0 |
Mg-6Zn-1Nd-0.5Zr [ | 453 K/20 h | - | 68 | 351 | 381 | 9.0 |
Mg-6Zn-1Nd-0.5Zr-0.5Y [ | 453 K/20 h | - | 78 | 365 | 392 | 6.6 |
Mg-6Zn-1Nd-0.5Zr-1.5Y [ | 453 K/20 h | - | 85 | 350 | 372 | 6.1 |
Table 3 EMI shielding performance and mechanical properties of Mg-Zn series alloys in literature
Alloys | Processing conditions | SE (dB) (f = 900 MHz) | SE (dB) (f = 1500 MHz) | Mechanical properties | ||
---|---|---|---|---|---|---|
YS (MPa) | UTS (MPa) | EL (%) | ||||
Mg-3Zn-0.5Zr [ | As-cast | 83 | 75 | - | - | - |
Mg-5Zn-0.7Zr [ | Extruded at 663 K | 85 | 66 | 246 | 318 | 9.7 |
Mg-5Zn-1Zr [ | Extruded at 663 K | 83 | 65 | 231 | 318 | 11.0 |
Mg-6Zn-0.5Zr [ | Extruded at 663 K | 58 | 54 | 231 | 302 | 11.0 |
Mg-6Zn-0.5Zr [ | 423 K/4 h aged | 66 | 64 | 241 | 303 | 20.0 |
Mg-6Zn-0.5Zr [ | 423 K/15 h aged | 72 | 70 | 269 | 316 | 20.0 |
Mg-6Zn-0.5Zr [ | 423 K/50 h aged | 75 | 65 | 285 | 313 | 19.0 |
Mg-6Zn-0.5Zr [ | Cold rolled + 423 K/15 h aged | 75 | 71 | 311 | 368 | 7.0 |
Mg-6Zn-0.5Zr [ | Cold rolled + 423 K/50 h aged | 81 | 76 | 302 | 355 | 10.0 |
Mg-6Zn-0.5Zr [ | 673 K/5 h + 403 K/20 h | 61 | 57 | 252 | 319 | 20.0 |
Mg-6Zn-0.5Zr [ | 673 K/5 h + 443 K/25 h | 65 | 62 | 294 | 327 | 21.0 |
Mg-5Zn-0.7Zr-0.5Cu [ | Extruded at 663 K | 91 | 66 | 276 | 346 | 11.4 |
Mg-5Zn-0.7Zr-1Cu [ | Extruded at 663 K | 97 | 77 | 263 | 332 | 7.8 |
Mg-5Zn-0.7Zr-1.5Cu [ | Extruded at 663 K | 99 | 77 | 258 | 311 | 8.0 |
Mg-5Zn-0.7Zr-2.5Cu [ | Extruded at 663 K | 103 | 84 | 246 | 306 | 6.7 |
Mg-6Zn-3Sn [ | Extruded at 653 K | - | 92 | 247 | 334 | 16.0 |
Mg-6Zn-3Sn-0.5Cu [ | Extruded at 653 K | - | 95 | 298 | 319 | 13.0 |
Mg-6Zn-3Sn-1Cu [ | Extruded at 653 K | - | 102 | 294 | 311 | 14.0 |
Mg-6Zn-3Sn-0.5Cu [ | Extruded at 653 K + T5(453 K/6 h) | 111 | 105 | 358 | 368 | 7.0 |
Mg-3Zn-0.5Zr-1Sm [ | As-cast | 86 | 81 | - | - | - |
Mg-3Zn-0.5Zr-2Sm [ | As-cast | 96 | 80 | - | - | - |
Mg-3Zn-1Y [ | As-cast | 80 | 67 | - | - | - |
Mg-3Zn-3Y [ | As-cast | 76 | 70 | - | - | - |
Mg-2Zn-4Y [ | As-cast | 77 | 73 | - | - | - |
Mg-4Zn-8Y [ | As-cast | 66 | 60 | - | - | - |
Mg-5Zn-1Zr-0.5Y [ | Extruded at 663 K | 83 | 66 | 258 | 334 | 12.0 |
Mg-5Zn-1Zr-1Y [ | Extruded at 663 K | 89 | 76 | 265 | 321 | 8.0 |
Mg-5Zn-1Zr-2Y [ | Extruded at 663 K | 96 | 79 | 176 | 270 | 7.0 |
Mg-5Zn-1Ce-0.5Zr-0.5Y [ | Extruded at 663 K | 81 | 70 | 313 | 356 | 12.1 |
Mg-5Zn-1Ce-0.5Zr-1Y [ | Extruded at 663 K | 94 | 76 | 304 | 341 | 11.2 |
Mg-5Zn-1Ce-0.5Zr-2Y [ | Extruded at 663 K | 94 | 79 | 305 | 333 | 10.6 |
Mg-6Zn-0.5Zr-0.5Ce [ | Extruded at 663 K | 63 | 53 | 242 | 324 | 14.0 |
Mg-6Zn-0.5Zr-1Ce [ | Extruded at 663 K | 72 | 71 | 249 | 316 | 15.0 |
Mg-6Zn-0.5Zr-2Ce [ | Extruded at 663 K | 67 | 61 | 239 | 304 | 11.0 |
Mg-6Zn-0.5Ce-0.4Zr-0.2Y [ | Extruded at 663 K | 86 | 67 | 322 | 378 | 8.6 |
Mg-6Zn-0.5Ce-0.4Zr-0.5Y [ | Extruded at 663 K | 88 | 75 | 327 | 369 | 7.3 |
Mg-6Zn-0.5Ce-0.4Zr-1Y [ | Extruded at 663 K | 91 | 85 | 315 | 362 | 8.7 |
Mg-6Zn-0.5Ce-0.4Zr-1.5Y [ | Extruded at 663 K | 93 | 86 | 298 | 345 | 4.2 |
Mg-6Zn-1Y-0.5Zr [ | 453 K/20 h | ~ 71 | 62 | 359 | 400 | 4.8 |
Mg-6Zn-1Y-0.5Zr-0.5Nd [ | 453 K/20 h | ~ 79 | 73 | 386 | 421 | 9.8 |
Mg-6Zn-1Y-0.5Zr-1Nd [ | 453 K/20 h | ~ 84 | 78 | 385 | 415 | 7.0 |
Mg-6Zn-1Nd-0.5Zr [ | 453 K/20 h | - | 68 | 351 | 381 | 9.0 |
Mg-6Zn-1Nd-0.5Zr-0.5Y [ | 453 K/20 h | - | 78 | 365 | 392 | 6.6 |
Mg-6Zn-1Nd-0.5Zr-1.5Y [ | 453 K/20 h | - | 85 | 350 | 372 | 6.1 |
Fig. 6 a Mechanical properties of the extruded, peak-aged and over-aged Mg-6Zn-3Sn-0.5Cu alloys, b shielding properties of the extruded, peak-aged and over-aged Mg-6Zn-3Sn-0.5Cu alloys, c schematic diagram of reflection attenuation, absorption attenuation and multiple reflection attenuation, d schematic diagram of multiple reflection attenuation of different secondary phases for electromagnetic waves [62]
Fig. 7 a EMI shielding properties of the extruded Mg-5Zn-xY-1Ce-0.5Zr alloys, b the engineering stress-strain curves of extruded and aged Mg-5Zn-xY-1Ce-0.5Zr alloys [64]
Fig. 8 a Three-dimensional optical micrographs of each pass, b tensile properties, c shielding effectiveness curves, d multilayer interface electromagnetic shielding mechanism of duplex-phase Mg-9Li-3Al-1Zn alloy processed by accumulative roll bonding (ARB), respectively [70]
Alloys | Processing conditions | SE (dB) (f = 900 MHz) | SE (dB) (f = 1500 MHz) | Mechanical properties | ||
---|---|---|---|---|---|---|
YS (MPa) | UTS (MPa) | EL (%) | ||||
Mg-4Y-0.6Zr [ | As-extruded | 95 | 81 | 153 | 231 | 29.1 |
Mg-4Y-0.6Zr-1Nd [ | As-extruded | 84 | 71 | 216 | 274 | 24.2 |
Mg-4Y-0.6Zr-4Nd [ | As-extruded | 90 | 68 | 214 | 266 | 6.3 |
Mg-4Y-0.6Zr-4Nd [ | Extruded + 798 K/8 h + 483K/20 h | 81 | 63 | 177 | 322 | 7.2 |
Mg-4Y-0.6Zr-4Nd [ | Extruded + 798 K/8 h + 483K/40 h | 79 | 59 | 178 | 305 | 6.4 |
Mg-13Gd-4Y-2Zn-0.5Zr [ | As-cast | 89 | 80 | - | - | - |
Mg-13Gd-4Y-2Zn-0.5Zr [ | Extruded in 80% | 102 | 93 | 310 | 380 | 10.8 |
Mg-13Gd-4Y-2Zn-0.5Zr [ | Extruded + 498 K/24 h | 99 | 96 | 289 | 381 | 10.1 |
Mg-13Gd-4Y-2Zn-0.5Zr [ | Extruded + 498 K/48 h | 99 | 94 | 291 | 347 | 8.1 |
Mg-5Gd-2Zn [ | As-cast | 100 | 80 | 99 | 68 | 3.5 |
Mg-5Gd-3Zn [ | 43% Hot rolled + 673K/1 h | 97 | 75 | 140 | 250 | 12.5 |
Mg-5Gd-1Cu [ | As-cast | 91 | 70 | 117 | 140 | 4.4 |
Mg-5Gd-2Cu [ | As-cast | 95 | 70 | 103 | 128 | 3.1 |
Mg-12Gd-3Y [ | As-cast | - | 63 | - | - | - |
Mg-12Gd-3Y-1Nd [ | 63% Hot rolled + 498 K/36 h | - | 83 | - | - | - |
Mg-12Gd-3Y-1.5Nd [ | 63% Hot rolled + 498 K/36 h | - | 85 | - | - | - |
Mg-12Gd-3Y-2Nd [ | 63% Hot rolled + 498 K/36 h | - | 88 | - | - | - |
Mg-12Gd-3Y-1.5Sn [ | Extruded + 83 K/10 h | 102 | 81 | - | 415 | 5.0 |
Table 4 EMI shielding performance and mechanical properties of Mg-RE series alloys in literature
Alloys | Processing conditions | SE (dB) (f = 900 MHz) | SE (dB) (f = 1500 MHz) | Mechanical properties | ||
---|---|---|---|---|---|---|
YS (MPa) | UTS (MPa) | EL (%) | ||||
Mg-4Y-0.6Zr [ | As-extruded | 95 | 81 | 153 | 231 | 29.1 |
Mg-4Y-0.6Zr-1Nd [ | As-extruded | 84 | 71 | 216 | 274 | 24.2 |
Mg-4Y-0.6Zr-4Nd [ | As-extruded | 90 | 68 | 214 | 266 | 6.3 |
Mg-4Y-0.6Zr-4Nd [ | Extruded + 798 K/8 h + 483K/20 h | 81 | 63 | 177 | 322 | 7.2 |
Mg-4Y-0.6Zr-4Nd [ | Extruded + 798 K/8 h + 483K/40 h | 79 | 59 | 178 | 305 | 6.4 |
Mg-13Gd-4Y-2Zn-0.5Zr [ | As-cast | 89 | 80 | - | - | - |
Mg-13Gd-4Y-2Zn-0.5Zr [ | Extruded in 80% | 102 | 93 | 310 | 380 | 10.8 |
Mg-13Gd-4Y-2Zn-0.5Zr [ | Extruded + 498 K/24 h | 99 | 96 | 289 | 381 | 10.1 |
Mg-13Gd-4Y-2Zn-0.5Zr [ | Extruded + 498 K/48 h | 99 | 94 | 291 | 347 | 8.1 |
Mg-5Gd-2Zn [ | As-cast | 100 | 80 | 99 | 68 | 3.5 |
Mg-5Gd-3Zn [ | 43% Hot rolled + 673K/1 h | 97 | 75 | 140 | 250 | 12.5 |
Mg-5Gd-1Cu [ | As-cast | 91 | 70 | 117 | 140 | 4.4 |
Mg-5Gd-2Cu [ | As-cast | 95 | 70 | 103 | 128 | 3.1 |
Mg-12Gd-3Y [ | As-cast | - | 63 | - | - | - |
Mg-12Gd-3Y-1Nd [ | 63% Hot rolled + 498 K/36 h | - | 83 | - | - | - |
Mg-12Gd-3Y-1.5Nd [ | 63% Hot rolled + 498 K/36 h | - | 85 | - | - | - |
Mg-12Gd-3Y-2Nd [ | 63% Hot rolled + 498 K/36 h | - | 88 | - | - | - |
Mg-12Gd-3Y-1.5Sn [ | Extruded + 83 K/10 h | 102 | 81 | - | 415 | 5.0 |
Fig. 9 a Tensile behavior of Mg-13Gd-4Y-2Zn-0.5Zr alloy at room temperature for various aging times at 225 °C, b EMI shielding performance curves of Mg-13Gd-4Y-2Zn-0.5Zr magnesium alloy in the as-extruded and aged condition [75]
Fig. 11 a Room temperature damping curves related to strain amplitude, b temperature dependence of damping capacity of the as-extruded WZL522 and WZLA5220 alloys [94]
Fig. 14 Damping capacity of the Mg-4Li-3Al-0.3Mn alloys at room temperature: a tan φ-ε curves of both as-cast and extruded alloys, damping-strain amplitude relationships at different frequencies of the b as-cast, c as-extruded alloys [104]
Alloys | Processing conditions | Q−1 | Strain amplitude range | Mechanical property | ||
---|---|---|---|---|---|---|
YS (MPa) | UTS (MPa) | EL (%) | ||||
Mg-4.7Y-2.6Zn [ | Extruded at 573 K | 0.005-0.018 | 10-4-10-3 | 270 | 335 | 11.0 |
Mg-4.7Y-2.6Zn [ | Extruded at 633 K | 0.004-0.016 | 10-4-10-3 | 325 | 415 | 6.5 |
Mg-12.8Y-7Zn [ | Extruded at 573 K | 0.003-0.016 | 10-4-10-3 | 327 | 430 | 3.5 |
Mg-3.16Y-1.85Zn-0.37Zr [ | Extruded at 693 K | 0.002-0.023 | 10-5-10-3 | 211 | 300 | 28.0 |
Mg-4Y-2Er-2Zn-0.6Zr [ | Extrusion + 788 K/2 h + Rolled | 0.006-0.014 | 10-5-10-3 | 340 | 362 | 7.8 |
Mg-5Y-2Zn-2Li [ | Extruded at 673 K | 0.001-0.011 | 10-3-10-1 | 198 | 228 | 8.0 |
Mg-5Y-2Zn-2Li-0.5Al [ | Extruded at 673 K | 0.002-0.011 | 10-3-10-1 | 229 | 312 | 10.9 |
Mg-8Li-6Y-2Zn [ | As-cast | 0.006-0.016 | 10-5-10-3 | 96 | 140 | 27.0 |
Mg-8Li-6Y-2Zn [ | Heat-treated (773 K/6 h) | 0.007-0.015 | 10-5-10-3 | 115 | 157 | 40.0 |
Mg-8Li-6Y-2Zn [ | Heat-treated (773 K/6 h) + hot rolled (573 K) | 0.018-0.027 | 10-5-10-3 | 183 | 210 | 27.0 |
Mg-7Gd-3Y-1Nd-0.5Zn-0.5Zr [ | Extrusion + T5 (498 K/28 h) | 0.006-0.026 | 10-5-10-3 | 346 | 415 | 5.0 |
Mg-7Gd-3Y-1Nd-1Zn-0.5Zr [ | Extrusion + T5 (498 K/46 h) | 0.003-0.036 | 10-5-10-3 | 356 | 400 | 7.0 |
Mg-7Gd-3Y-1Nd-2Zn-0.5Zr [ | Extrusion + T5 (498 K/46 h) | 0.004-0.035 | 10-5-10-3 | 346 | 390 | 9.5 |
Mg-1.5Gd-1Zn [ | Extruded at 573 K | 0.001-0.017 | 10-5-10-3 | 314 | 316 | 21.0 |
Mg-1.5Gd-1Zn [ | Extruded at 633 K | 0.002-0.020 | 10-5-10-3 | 211 | 256 | 31.0 |
Mg-1.5Gd-1Zn [ | Extruded at 693 K | 0.002-0.023 | 10-5-10-3 | 145 | 245 | 33.0 |
Mg-1.5Gd-1Zn [ | Extruded at 753 K | 0.001-0.022 | 10-5-10-3 | 130 | 240 | 29.6 |
Mg-10Gd [ | Extruded at 693 K | 0.002-0.030 | 10-5-10-3 | 127 | 207 | 20.9 |
Mg-10Gd [ | Aged (473 K/48 h) | 0.002-0.025 | 10-5-10-3 | 238 | 333 | 4.0 |
Mg-1.5Gd [ | Extruded at 633 K | 0.002-0.030 | 10-5-10-3 | 135 | 195 | 42.0 |
Mg-1.5Gd [ | Extruded at 693 K | 0.001-0.050 | 10-5-10-3 | 84 | 186 | 49.3 |
Mg-1.5Gd [ | Extruded at 753 K | 0.000-0.086 | 10-5-10-3 | 87 | 185 | 40.2 |
Mg-4Er-4Gd-1Zn [ | Extruded at 693 K | 0.003-0.04 | 10-4-10-3 | 253 | 358 | 20.0 |
Table 5 Damping capacity (Q−1) and mechanical properties of Mg-RE alloys
Alloys | Processing conditions | Q−1 | Strain amplitude range | Mechanical property | ||
---|---|---|---|---|---|---|
YS (MPa) | UTS (MPa) | EL (%) | ||||
Mg-4.7Y-2.6Zn [ | Extruded at 573 K | 0.005-0.018 | 10-4-10-3 | 270 | 335 | 11.0 |
Mg-4.7Y-2.6Zn [ | Extruded at 633 K | 0.004-0.016 | 10-4-10-3 | 325 | 415 | 6.5 |
Mg-12.8Y-7Zn [ | Extruded at 573 K | 0.003-0.016 | 10-4-10-3 | 327 | 430 | 3.5 |
Mg-3.16Y-1.85Zn-0.37Zr [ | Extruded at 693 K | 0.002-0.023 | 10-5-10-3 | 211 | 300 | 28.0 |
Mg-4Y-2Er-2Zn-0.6Zr [ | Extrusion + 788 K/2 h + Rolled | 0.006-0.014 | 10-5-10-3 | 340 | 362 | 7.8 |
Mg-5Y-2Zn-2Li [ | Extruded at 673 K | 0.001-0.011 | 10-3-10-1 | 198 | 228 | 8.0 |
Mg-5Y-2Zn-2Li-0.5Al [ | Extruded at 673 K | 0.002-0.011 | 10-3-10-1 | 229 | 312 | 10.9 |
Mg-8Li-6Y-2Zn [ | As-cast | 0.006-0.016 | 10-5-10-3 | 96 | 140 | 27.0 |
Mg-8Li-6Y-2Zn [ | Heat-treated (773 K/6 h) | 0.007-0.015 | 10-5-10-3 | 115 | 157 | 40.0 |
Mg-8Li-6Y-2Zn [ | Heat-treated (773 K/6 h) + hot rolled (573 K) | 0.018-0.027 | 10-5-10-3 | 183 | 210 | 27.0 |
Mg-7Gd-3Y-1Nd-0.5Zn-0.5Zr [ | Extrusion + T5 (498 K/28 h) | 0.006-0.026 | 10-5-10-3 | 346 | 415 | 5.0 |
Mg-7Gd-3Y-1Nd-1Zn-0.5Zr [ | Extrusion + T5 (498 K/46 h) | 0.003-0.036 | 10-5-10-3 | 356 | 400 | 7.0 |
Mg-7Gd-3Y-1Nd-2Zn-0.5Zr [ | Extrusion + T5 (498 K/46 h) | 0.004-0.035 | 10-5-10-3 | 346 | 390 | 9.5 |
Mg-1.5Gd-1Zn [ | Extruded at 573 K | 0.001-0.017 | 10-5-10-3 | 314 | 316 | 21.0 |
Mg-1.5Gd-1Zn [ | Extruded at 633 K | 0.002-0.020 | 10-5-10-3 | 211 | 256 | 31.0 |
Mg-1.5Gd-1Zn [ | Extruded at 693 K | 0.002-0.023 | 10-5-10-3 | 145 | 245 | 33.0 |
Mg-1.5Gd-1Zn [ | Extruded at 753 K | 0.001-0.022 | 10-5-10-3 | 130 | 240 | 29.6 |
Mg-10Gd [ | Extruded at 693 K | 0.002-0.030 | 10-5-10-3 | 127 | 207 | 20.9 |
Mg-10Gd [ | Aged (473 K/48 h) | 0.002-0.025 | 10-5-10-3 | 238 | 333 | 4.0 |
Mg-1.5Gd [ | Extruded at 633 K | 0.002-0.030 | 10-5-10-3 | 135 | 195 | 42.0 |
Mg-1.5Gd [ | Extruded at 693 K | 0.001-0.050 | 10-5-10-3 | 84 | 186 | 49.3 |
Mg-1.5Gd [ | Extruded at 753 K | 0.000-0.086 | 10-5-10-3 | 87 | 185 | 40.2 |
Mg-4Er-4Gd-1Zn [ | Extruded at 693 K | 0.003-0.04 | 10-4-10-3 | 253 | 358 | 20.0 |
Alloys | Processing conditions | Q−1 | Strain amplitude range | Mechanical property | ||
---|---|---|---|---|---|---|
YS (MPa) | UTS (MPa) | (EL) % | ||||
Mg-1Mn [ | Extruded at 493 K + 10% cold-rolling | 0.011-0.036 | 10-5-10-3 | 147 | 203 | 26.7 |
Mg-1Mn [ | Extruded at 493 K + 20% cold-rolling | 0.012-0.037 | 10-5-10-3 | 156 | 206 | 49.8 |
Mg-1Mn [ | Extruded at 493 K + 30% cold-rolling | 0.016-0.038 | 10-5-10-3 | 160 | 209 | 25.6 |
Mg-1Mn [ | Extruded at 493 K + 40% cold-rolling | 0.020-0.040 | 10-5-10-3 | 156 | 200 | 24.4 |
Mg-1Mn [ | Extruded at 438 K | 0.015-0.047 | 10-5-10-3 | 133 | 176 | 53.8 |
Mg-1Mn [ | Extruded at 453 K | 0.012-0.044 | 10-5-10-3 | 160 | 191 | 35.2 |
Mg-1Mn [ | Extruded at 493 K | 0.013-0.042 | 10-5-10-3 | 169 | 196 | 32.4 |
Mg-1Mn [ | Extruded at 573 K | 0.005-0.036 | 10-5-10-3 | 152 | 204 | 21.9 |
Mg-1Ga [ | Solid solution treatment | 0.002-0.140 | 10-5-10-3 | 39 | 177 | 15.5 |
Mg-2Ga [ | Solid solution treatment | 0.002-0.100 | 10-5-10-3 | 53 | 195 | 20.0 |
Mg-3Ga [ | Solid solution treatment | 0.003-0.060 | 10-5-10-3 | 65 | 210 | 21.5 |
Mg-5Ga [ | Solid solution treatment | 0.003-0.050 | 10-5-10-3 | 88 | 252 | 24.0 |
Mg-4Li-3Al-0.3Mn [ | As-cast | 0.003-0.028 | 10-5-10-3 | 88 | 119 | 2.1 |
Mg-4Li-3Al-0.3Mn [ | Extruded at 573 K | 0.004-0.022 | 10-5-10-3 | 248 | 323 | 14.3 |
Mg-8Li-4Zn-1Mn [ | As-cast | 0.007-0.033 | 10-5-10-3 | 123 | 170 | 29.3 |
Mg-8Li-4Zn-1Mn [ | Extruded at 473 K | 0.007-0.031 | 10-5-10-3 | 156 | 208 | 32.3 |
Mg-6Zn-0.6Zr [ | Hot rolling at 573 K | 0.002-0.012 | 10-5-10-3 | 284 | 335 | 18.0 |
Mg-6Zn-0.6Zr [ | Hot rolling + annealed (573 K/1 h) | 0.003-0.014 | 10-5-10-3 | 278 | 333 | 17.0 |
Mg-6Zn-0.6Zr [ | Hot rolling + annealed (613 K/1 h) | 0.002-0.018 | 10-5-10-3 | 268 | 333 | 19.0 |
Mg-6Zn-0.6Zr [ | Hot rolling + annealed (653 K/1 h) | 0.001-0.014 | 10-5-10-3 | 237 | 316 | 18.0 |
Table 6 Damping capacity (Q−1) and mechanical properties of some RE-free Mg alloys
Alloys | Processing conditions | Q−1 | Strain amplitude range | Mechanical property | ||
---|---|---|---|---|---|---|
YS (MPa) | UTS (MPa) | (EL) % | ||||
Mg-1Mn [ | Extruded at 493 K + 10% cold-rolling | 0.011-0.036 | 10-5-10-3 | 147 | 203 | 26.7 |
Mg-1Mn [ | Extruded at 493 K + 20% cold-rolling | 0.012-0.037 | 10-5-10-3 | 156 | 206 | 49.8 |
Mg-1Mn [ | Extruded at 493 K + 30% cold-rolling | 0.016-0.038 | 10-5-10-3 | 160 | 209 | 25.6 |
Mg-1Mn [ | Extruded at 493 K + 40% cold-rolling | 0.020-0.040 | 10-5-10-3 | 156 | 200 | 24.4 |
Mg-1Mn [ | Extruded at 438 K | 0.015-0.047 | 10-5-10-3 | 133 | 176 | 53.8 |
Mg-1Mn [ | Extruded at 453 K | 0.012-0.044 | 10-5-10-3 | 160 | 191 | 35.2 |
Mg-1Mn [ | Extruded at 493 K | 0.013-0.042 | 10-5-10-3 | 169 | 196 | 32.4 |
Mg-1Mn [ | Extruded at 573 K | 0.005-0.036 | 10-5-10-3 | 152 | 204 | 21.9 |
Mg-1Ga [ | Solid solution treatment | 0.002-0.140 | 10-5-10-3 | 39 | 177 | 15.5 |
Mg-2Ga [ | Solid solution treatment | 0.002-0.100 | 10-5-10-3 | 53 | 195 | 20.0 |
Mg-3Ga [ | Solid solution treatment | 0.003-0.060 | 10-5-10-3 | 65 | 210 | 21.5 |
Mg-5Ga [ | Solid solution treatment | 0.003-0.050 | 10-5-10-3 | 88 | 252 | 24.0 |
Mg-4Li-3Al-0.3Mn [ | As-cast | 0.003-0.028 | 10-5-10-3 | 88 | 119 | 2.1 |
Mg-4Li-3Al-0.3Mn [ | Extruded at 573 K | 0.004-0.022 | 10-5-10-3 | 248 | 323 | 14.3 |
Mg-8Li-4Zn-1Mn [ | As-cast | 0.007-0.033 | 10-5-10-3 | 123 | 170 | 29.3 |
Mg-8Li-4Zn-1Mn [ | Extruded at 473 K | 0.007-0.031 | 10-5-10-3 | 156 | 208 | 32.3 |
Mg-6Zn-0.6Zr [ | Hot rolling at 573 K | 0.002-0.012 | 10-5-10-3 | 284 | 335 | 18.0 |
Mg-6Zn-0.6Zr [ | Hot rolling + annealed (573 K/1 h) | 0.003-0.014 | 10-5-10-3 | 278 | 333 | 17.0 |
Mg-6Zn-0.6Zr [ | Hot rolling + annealed (613 K/1 h) | 0.002-0.018 | 10-5-10-3 | 268 | 333 | 19.0 |
Mg-6Zn-0.6Zr [ | Hot rolling + annealed (653 K/1 h) | 0.001-0.014 | 10-5-10-3 | 237 | 316 | 18.0 |
Fig. 18 Microstructures of the Mg-9Gd-3Y-2Zn-0.5Zr specimens (WQ: water-quenched, FC: furnace-cooled, AC: air-cooled, annealed) with intergranular LPSO blocks and intragranular lamellae, and aged specimen (WQ-T6: 813 K/20 min) with LPSO blocks and nanoscale precipitates [130]
Fig. 19 a Schematic diagram of microstructure of alloy with unrecrystallized grain during damping testing. b Mechanical and damping properties of the Mg-Mn alloys in comparison with typical commercial and experimental [127]
Fig. 22 The thermal conductivity of solution-treated Mg-RE alloys. a Alloying elements in the form of solute atoms, b alloying elements in the form of secondary phases [151]
Materials | Processing conditions | Thermal conductivity (W m−1 K−1) | Mechanical property | ||
---|---|---|---|---|---|
YS (MPa) | UTS (MPa) | EL (%) | |||
Pure Mg [ | - | 157.3 | - | - | - |
Mg-4Zn-1Mn [ | As-cast | 118.1 | - | - | - |
Mg-4Zn-1Mn [ | T4 (643 K/12 h) | 127.6 | - | - | - |
Mg-4Zn-1Mn [ | T6 (643 K/12 h + 423 K/10 h) | 130.4 | - | - | - |
Mg-5Zn-1Mn [ | As-cast | 98.3 | - | - | - |
Mg-5Zn-1Mn [ | T4 (643 K/12 h) + extruded at 623 K | 106.0 | 177 | 291 | 19.3 |
Mg-5Zn-1Mn [ | T4 (643 K/12 h) + extruded at 623 K + T6 (448 K/36 h) | - | 268 | 321 | 14.8 |
Mg-6Zn [ | As-cast | 114.3 | - | - | - |
Mg-6Zn [ | T4 (633 K/48 h) | 108.7 | - | - | - |
Mg-6Zn [ | T6 (633 K/48 h + 433 K/60 h) | 115.9 | 94 | - | - |
Mg-6Zn-1Cu [ | As-cast | 121.3 | - | - | - |
Mg-6Zn-1Cu [ | T4 (633 K/48 h) | 128.9 | 94 | - | - |
Mg-3Al-1Zn [ | As-extruded | 96.4 | - | - | - |
Mg-9Al-1Zn [ | As-cast | 51.2 | - | - | - |
Mg-9Al-1Zn [ | Extruded + T4 (688 K/5 h) | 47.3 | - | - | - |
Mg-9Al-1Zn [ | As-extruded | 46.9 | - | - | - |
Mg-9Al-1Zn [ | Extruded + T6 (688 K/5h + 473 K/8 h) | 47.9 | - | - | - |
Mg-0.1Mn [ | T4 (773 K, 24 h) + extruded at 623 K | 142.1 | - | - | - |
Mg-0.5Mn [ | T4 (773 K, 24 h) + extruded at 623 K | 132.2 | - | - | - |
Mg-1.5Mn [ | T4 (773 K, 24 h) + extruded at 623 K | 124.7 | - | - | - |
Mg-4Y-2Zn [ | As-cast | 82.8 | - | - | - |
Mg-12Gd [ | T6 (798 K, 24 h + 498 K, 24 h) | 56.9 | 98.5 | - | - |
Mg-2Gd-2Nd-2Y-1Ho-1Er-0.5Zn-0.4Zr [ | As-cast | 55.0 | 111 | 183 | 8.1 |
Mg-2Gd-2Nd-2Y-1Ho-1Er-0.5Zn-0.4Zr [ | T4 (793 K, 16 h) | 44.1 | 132 | 208 | 10.3 |
Table 7 Thermal conductivity and mechanical properties of conventional magnesium alloys
Materials | Processing conditions | Thermal conductivity (W m−1 K−1) | Mechanical property | ||
---|---|---|---|---|---|
YS (MPa) | UTS (MPa) | EL (%) | |||
Pure Mg [ | - | 157.3 | - | - | - |
Mg-4Zn-1Mn [ | As-cast | 118.1 | - | - | - |
Mg-4Zn-1Mn [ | T4 (643 K/12 h) | 127.6 | - | - | - |
Mg-4Zn-1Mn [ | T6 (643 K/12 h + 423 K/10 h) | 130.4 | - | - | - |
Mg-5Zn-1Mn [ | As-cast | 98.3 | - | - | - |
Mg-5Zn-1Mn [ | T4 (643 K/12 h) + extruded at 623 K | 106.0 | 177 | 291 | 19.3 |
Mg-5Zn-1Mn [ | T4 (643 K/12 h) + extruded at 623 K + T6 (448 K/36 h) | - | 268 | 321 | 14.8 |
Mg-6Zn [ | As-cast | 114.3 | - | - | - |
Mg-6Zn [ | T4 (633 K/48 h) | 108.7 | - | - | - |
Mg-6Zn [ | T6 (633 K/48 h + 433 K/60 h) | 115.9 | 94 | - | - |
Mg-6Zn-1Cu [ | As-cast | 121.3 | - | - | - |
Mg-6Zn-1Cu [ | T4 (633 K/48 h) | 128.9 | 94 | - | - |
Mg-3Al-1Zn [ | As-extruded | 96.4 | - | - | - |
Mg-9Al-1Zn [ | As-cast | 51.2 | - | - | - |
Mg-9Al-1Zn [ | Extruded + T4 (688 K/5 h) | 47.3 | - | - | - |
Mg-9Al-1Zn [ | As-extruded | 46.9 | - | - | - |
Mg-9Al-1Zn [ | Extruded + T6 (688 K/5h + 473 K/8 h) | 47.9 | - | - | - |
Mg-0.1Mn [ | T4 (773 K, 24 h) + extruded at 623 K | 142.1 | - | - | - |
Mg-0.5Mn [ | T4 (773 K, 24 h) + extruded at 623 K | 132.2 | - | - | - |
Mg-1.5Mn [ | T4 (773 K, 24 h) + extruded at 623 K | 124.7 | - | - | - |
Mg-4Y-2Zn [ | As-cast | 82.8 | - | - | - |
Mg-12Gd [ | T6 (798 K, 24 h + 498 K, 24 h) | 56.9 | 98.5 | - | - |
Mg-2Gd-2Nd-2Y-1Ho-1Er-0.5Zn-0.4Zr [ | As-cast | 55.0 | 111 | 183 | 8.1 |
Mg-2Gd-2Nd-2Y-1Ho-1Er-0.5Zn-0.4Zr [ | T4 (793 K, 16 h) | 44.1 | 132 | 208 | 10.3 |
[1] | G. Wu, C. Wang, M. Sun, W. Ding, J. Magnes. Alloy. 9, 1 (2021) |
[2] |
E. Karakulak, J. Magnes. Alloy. 7, 355 (2019)
DOI |
[3] | L. Ren, L. Fan, M. Zhou, Y. Guo, Y. Zhang, C.J. Boehlert, G. Quan, Int. J. Light Mater. Manuf. 1, 81 (2018) |
[4] | C. Liu, X. Chen, D. Tolnai, Y. Hu, W. Zhang, Y. Zhang, F. Pan, J. Mater. Sci. Technol. 144, 70 (2023) |
[5] | Z. Zeng, N. Stanford, C. Davies, J.F. Nie, N. Birbilis, Int. Mater. Rev. 64, 27 (2019) |
[6] | Z. Luo, X.H. Chen, K. Song, C.Q. Liu, Y. Dai, D. Zhao, F.S. Pan, Acta Metall. Sin. -Engl. Lett. 32, 817 (2019) |
[7] | J. Wang, R. Wu, J. Feng, J. Zhang, L. Hou, M. Liu, Trans. Nonferrous Met. Soc. China 32, 1385 (2022) |
[8] | T. Xu, Y. Yang, X. Peng, J. Song, F. Pan, J. Magnes. Alloy. 7, 536 (2021) |
[9] | L.B. Tong, J.H. Chu, D.N. Zou, Q. Sun, S. Kamado, H.G. Brokmeier, M.Y. Zheng, Acta Metall. Sin. -Engl. Lett. 34, 265 (2021) |
[10] | Y. Cui, J. Li, Y. Li, Y. Koizumi, A. Chiba, Mater. Sci. Eng. A 708, 104 (2017) |
[11] | F. Yao, D. Li, Z. Li, B. Hu, Y. Huang, X. Zeng, Mater. Lett. 15, 134224 (2023) |
[12] | V.E. Bazhenov, A.V. Koltygin, M.C. Sung, S.H. Park, Yu.V. Tselovalnik, A.A. Stepashkin, A.A. Rizhsky, M.V. Belov, V.D. Belov, K.V. Malyutin, J. Magnes. Alloy. 9, 1567 (2021) |
[13] | Z. Li, B. Hu, D. Li, W. Zhang, X. Zeng, Z. Lin, C. Jin, Mater. Sci. Eng. A 861, 144336 (2022) |
[14] | W. Wang, P. Han, P. Peng, T. Zhang, Q. Liu, S.N. Yuan, L.Y. Huang, H.L. Yu, K. Qiao, K.S. Wang, Acta Metall. Sin. -Engl. Lett. 33, 43 (2020) |
[15] | C.J.V. Klemperer, D. Maharaj, Compos. Struct. 91, 467 (2009) |
[16] | J. Wang, Y. Yuan, T. Chen, L. Wu, X. Chen, B. Jiang, J. Wang, F. Pan, J. Magnes. Alloy. 10, 1786 (2022) |
[17] | B. Song, J. She, N. Guo, R. Qiu, H. Pan, L. Chai, C. Yang, S. Guo, R. Xin, Materials 12, 2507 (2019) |
[18] | L. Gao, R.S. Chen, E.H. Han, J. Alloy. Compd. 481, 379 (2009) |
[19] | R. Pandey, S. Tekumalla, M. Gupta, J. Mater. Sci. Mater. Electron. 29, 9728 (2018) |
[20] | S. Geetha, K.K. Satheesh Kumar, C.R.K. Rao, M. Vijayan, D.C. Trivedi, J. Appl. Polym. 112, 2073 (2009) |
[21] | S. Celozzi, R. Araneo, P. Burghignoli, G. Lovat, Electromagnetic Shielding: Theory and Applications (Wiley, Hoboken, 2023) |
[22] | L. Liu, X. Chen, J. Wang, L. Qiao, S. Gao, K. Song, C. Zhao, X. Liu, D. Zhao, F. Pan, J. Mater. Sci. Technol. 35, 1074 (2019) |
[23] | C.R. Paul, Introduction to Electromagnetic Compatibility, 2nd edn. (Wiley, Hoboken, 2006) |
[24] | R.B. Schulz, V.C. Plantz, D.R. Brush, IEEE Trans. Electromagn. Compat. 30, 187 (1988) |
[25] | R. Pandey, S. Tekumalla, M. Gupta, Compos. B Eng. 163, 150 (2019) |
[26] | X. Chen, L. Liu, J. Liu, F. Pan, Mater. Des. 65, 360 (2015) |
[27] | K. Song, F. Pan, X. Chen, A. Tang, H. Pan, S. Luo, Mater. Res. Innov. 18, S4 (2014) |
[28] | K. Song, Study on Electromagnetic Shielding Properties of Magnesium Alloys (Chongqing University,Chongqing, 2015) |
[29] | R. Pandey, S. Tekumalla, M. Gupta, J. Mater. Sci.-Mater. Electron. 29, 9728 (2018) |
[30] | N. Tahreen, D.F. Zhang, F.S. Pan, X.Q. Jiang, D.Y. Li, D.L. Chen, Mater. Des. 87, 245 (2015) |
[31] | K. Song, F.S. Pan, X.H. Chen, Z.H. Zhang, A.T. Tang, J. She, Z.W. Yu, H.C. Pan, X.Y. Xu, Mater. Lett. 157, 73 (2015) |
[32] | J. Zhang, K. Liu, D. Fang, X. Qiu, P. Yu, D. Tang, J. Meng, J. Alloy. Compd. 480, 810 (2009) |
[33] | Q. Yang, T. Zheng, D. Zhang, X. Liu, J. Fan, X. Qiu, X. Niu, J. Meng, J. Alloy. Compd. 572, 129 (2013) |
[34] | G.Y. Yuan, Z.L. Liu, Q.D. Wang, W.J. Ding, Mater. Lett. 56, 53 (2002) |
[35] | Q. Yang, K. Guan, F. Bu, Y. Zhang, X. Qiu, T. Zheng, X. Liu, J. Meng, Mater. Charact. 113, 180 (2016) |
[36] | Z. Zhang, Influence of Deformation and Heat Treatment on the Electromagnetic Shielding Performance of AZ Series Magnesium Alloys (Chongqing University, Chongqing, 2013) |
[37] | C. Zhao, Z. Li, J. Shi, X. Chen, T. Tu, Z. Luo, R. Cheng, A. Atrens, F. Pan, J. Magnes. Alloy. 7, 672 (2019) |
[38] | G. Zhang, S. Qin, L. Yan, X. Zhang, Mater. Charact. 174, 111042 (2021) |
[39] | S. Gao, X. Chen, F. Pan, K. Song, C. Zhao, L. Liu, X. Liu, D. Zhao, Sci. Rep. 8, 1625 (2018) |
[40] | Z.C. Xu, The Study On Microstructure and Electromagnetic Shielding Properties of Mg-Zn-Y Alloys (Kunming University of Science and Technology, Kunming, 2018) |
[41] | X. Chen, Y. Geng, F. Pan, Rare Metal Mater. Eng. 45, 13 (2016) |
[42] | N. Balasubramani, G. Wang, M.A. Easton, D.H. StJohn, M.S. Dargusch, J. Magnes. Alloy. 9, 829 (2021) |
[43] | Z. Gui, F. Wang, J. Zhang, D. Chen, Z. Kang, J. Magnes. Alloy. 10, 239 (2021) |
[44] | M. Lotfpour, C. Dehghanian, M. Emamy, A. Bahmani, M. Malekan, A. Saadati, M. Taghizadeh, M. Shokouhimehr, J. Magnes. Alloy. 9, 2078 (2021) |
[45] | M.Y. Zhan, W.W. Zhang, D.T. Zhang, Trans. Nonferrous Met. Soc. China 21,991 (2011) |
[46] | L. Cao, C. Wang, Z. Chen, J. Zhang, Trans. Nonferrous Met. Soc. China 31,2597 (2021) |
[47] | J. Wei, Q. Wang, L. Zhang, D. Yin, B. Ye, H. Jiang, W. Ding, Mater. Lett. 246, 125 (2019) |
[48] | Q. Wang, S. Chen, B. Jiang, Z. Jin, L. Zhao, J. He, D. Zhang, G. Huang, F. Pan, J. Magnes. Alloy. 9, 3576 (2022) |
[49] | F. Gao, Study on the preparation and organization of Mg-Al-Zn alloy used for electromagnetic shielding performance (Xi’an Technological University, Xi’an, 2016) |
[50] | S. Guo, Effect of Rare Earth La on Corrosion and Electromagnetic Shielding Property of AZ31 Magnesium Alloy (Inner Mongolia University of Science & Technology, Hohhot, 2016) |
[51] | Y. Luo, H. Huang, Hot Work. Technol. 44, 105 (2015) |
[52] | X.H. Li, H.Y. Yang, Light Alloy Fabric. Technol. 44, 44 (2016) |
[53] | Y.L. Wang, Hot Work. Technol. 44, 47 (2015) |
[54] | Q. Yu, S. Lyu, G. Zhu, G. Shen, L. Tian, M. Chen, Mater. Today Commun. 39, 108674 (2024) |
[55] | J.D. Robson, C. Paa-Rai, Acta Mater. 95, 10 (2015) |
[56] | H. Pan, F. Pan, J. Peng, J. Gou, A. Tang, L. Wu, H. Dong, J. Alloy. Compd. 578, 493 (2013) |
[57] | C. Yang, F. Pan, X. Chen, N. Luo, Acta Metall. Sin. -Engl. Lett. 123, 400 (2017) |
[58] | X. Chen, L. Liu, F. Pan, J. Mao, X. Xu, T. Yan, Mater. Sci. Eng. B Adv. 197, 67 (2015) |
[59] | L. Liu, X. Chen, F. Pan, A. Tang, X. Wang, J. Liu, S. Gao, Mater. Sci. Eng. A 669, 259 (2016) |
[60] | X. Chen, L. Liu, F. Pan, L. Qiao, Mater. Res. Innov. 18, S4 (2014) |
[61] | Y. Liu, Study on the Structure Control, Mechanical Properties and Electromagnetic Shielding Properties of Mg-Zn-Sn-Cu Alloy, (General Research Institute for Nonferrous Metals,2022) |
[62] | Y. Liu, M.L. Ma, X. Li, Y. Li, G. Shi, J. Yuan, K. Zhang, Front. Mater. 8, 778833 (2021) |
[63] | L. Liu, X. Chen, H. Wang, F. Pan, J. Wang, J. Mater. Eng. Perform. 27, 4722 (2018) |
[64] | L.Z. Liu, Study on Electromagnetic Shielding and Mechanical Properties of Mg-Zn-Y-Ce-Zr Magnesium Alloys (Chongqing University, Chongqing, 2018) |
[65] | Z. Wang, Study on Electromagnetic Shielding Effectiveness and Mechanical Properties of Mg-Zn-Y-Nd-Zr Magnesium Alloys (Chongqing University, Chongqing, 2021) |
[66] | S. Li, X. Yang, J. Hou, W. Du, J. Magnes. Alloy. 8, 78 (2020) |
[67] | M.G. Jiang, C. Xu, H. Yan, T. Nakata, Z.W. Chen, C.S. Lao, R.S. Chen, S. Kamado, E.H. Han, J. Magnes. Alloy. 9, 1797 (2021) |
[68] | J. Wang, D. Sun, R. Wu, C. Du, Z. Yang, J. Zhang, L. Hou, Mater. Charact. 188, 111888 (2022) |
[69] | J. Wang, R. Wu, F. Jing, J. Zhang, L. Hou, M. Liu, Trans. Nonferrous Met. Soc. China 32, 1385 (2022) |
[70] | J. Wang, L. Xu, R. Wu, J. Feng, J. Zhang, L. Hou, M. Zhang, Acta Metall. Sin. -Engl. Lett. 33, 490 (2020) |
[71] | J. Wang, R. Wu, J. Feng, J. Zhang, L. Hou, M. Zhang, Mater. Charact. 157, 109924 (2019) |
[72] | J. Wang, C. Du, R. Wu, L. Xu, J. Feng, J. Zhang, L. Hou, M. Liu, B. Liu, J. Mater. Sci. Mater. Electron. 33, 3891 (2022) |
[73] | J. Wang, L. Xu, R. Wu, D. An, Z. Wei, J. Wang, J. Feng, J. Zhang, L. Hou, M. Liu, J. Alloy. Compd. 882, 160524 (2021) |
[74] | J. Wang, S. Jin, R. Wu, L. Xu, J. Zhang, J. Feng, L. Hou, Y. Jiao, J. Mater. Sci. Mater. Electron. 31, 17249 (2020) |
[75] | X.F. Zhao, Influence of Extrusion Deformation and T5-treatment on Electromagnetic Shielding Property of Rare Earth Magnesium Alloy (North University of China, Taiyuan, 2017) |
[76] | R. Liu, Influence of Elements and Rolling on the Electromagnetic Shielding Performance of Magnesium Alloy (Harbin Institute of Technology, Harbin, 2016) |
[77] | C. Su, X. Chen, J. Li, J. Tan, J. Mater. Eng. Perform. 32, 2264 (2023) |
[78] | W. Xu, C. Su, Y. Yuan, J. Bai, X. Chen, Acta Metall. Sin. -Engl. Lett. 36, 1665 (2019) |
[79] | C. Azcoı̈tia, A. Karimi, J. Alloy Compd. 160, 310 (2000) |
[80] | Y.G. Xu, N. Li, B.L. Shen, H.X. Hua, Mater. Sci. Eng. A 163, 447 (2007) |
[81] | M. Qian, D.H. StJohn, M.T. Frost, Scr. Mater. 46, 649 (2002) |
[82] | Z.L. Liu, X.Q. Liu, S. Ping, Trans. Nonferrous Met. Soc. China 20, 2092 (2010) |
[83] | Y.W. Wu, K. Wu, K.K. Deng, K.B. Nie, X.J. Wang, X.S. Hu, M.Y. Zheng, Mater. Sci. Eng. A 527, 6816 (2010) |
[84] | N. Srikanth, X.L. Zhong, M. Gupta, Mater. Lett. 59, 3851 (2005) |
[85] | X.Q. Zhou, D.Y. Yu, X.Y. Shao, S. Wang, Compos. B Eng. 136, 460 (2016) |
[86] | A. Treviso, B. Van Genechten, D. Mundo, M. Tournour, Compos. B Eng. 78, 144 (2015) |
[87] | C.W. Bert, J. Sound Vib. 29, 129 (1973) |
[88] | A.V. Granato, K. Lücke, J. Appl. Phys. 27, 789 (1956) |
[89] | J. Zhang, R.J. Perez, E.J. Lavernia, J. Mater. Sci. 28, 835 (1993) |
[90] | P. Peguin, J. Perez, P. Gobin, AIME Met. Soc. Trans. 239, 438 (1967) |
[91] | H.B. Liu, N.N. Gong, L. Pang, Mater. Sci. Eng. A 497, 254 (2008) |
[92] | Z. Wu, J. Wang, H. Wang, S. Ma, S. Huang, S. Li, F. Pan, J. Mater. Sci. Technol. 33, 941 (2017) |
[93] | G. Wang, S. Ge, Y. Shen, H. Wang, Q. Dong, Q. Zhang, J. Gao, Y. Wang, Foundry Technol. 29, 1640 (2008) |
[94] | D. Zhao, X. Chen, W. Ci, C. Liu, F. Pan, Mater. Charact. 207, 113542 (2024) |
[95] | K. Sugimoto, K. Niiya, T. Okamoto, Trans. Japan Inst. Met. 18, 77 (1977) |
[96] | Z. Wang, J. Wang, X. Lin, T. Zhang, C. Dang, Y. Wang, W. Huang, F. Pan, J. Mater. Res. Technol. 25, 2589 (2023) |
[97] | E. Chandiran, Y. Ogawa, R. Ueji, A. Singh, H. Somekawa, Mater. Sci. Eng. A 880, 145198 (2023) |
[98] | P. Fu, H. Pan, F. Gao, Spec. Cast. Nonferrous Alloys 33, 593 (2013) |
[99] | X.S. Hu, X.D. He, M.Y. Zheng, W.U. Kun, Trans. Nonferrous Met. Soc. China 20, 444 (2010) |
[100] | C. Dang, J. Wang, J. Wang, D. Yu, W. Zheng, C. Xu, Z. Wang, L. Feng, X. Chen, F. Pan, J. Mater. Res. Technol. 25, 4330 (2023) |
[101] | J. Kwak, C.Y. Kang, H.S. Kwon, Materials Science Forum. Trans Tech Publications Ltd. 879, 1053 (2017) |
[102] | G.D. Fan, M.Y. Zheng, X.S. Hu, C. Xu, K. Wu, I.S. Golovin, Mater. Sci. Eng. A 556, 588 (2012) |
[103] | X. Gao, Hunan University, China, 2018 |
[104] | G. Zhou, Y. Yang, L. Sun, J. Liu, H. Deng, C. Wen, G. Wei, B. Jiang, X. Peng, F. Pan, J. Mater. Res. Technol. 19, 4197 (2022) |
[105] | Y.W. Wu, K. Wu, K.K. Deng, K.B. Nie, X.J. Wang, M.Y. Zheng, X.S. Hu, Mater. Des. 31, 4862 (2010) |
[106] | H. Zhang, Y. Si, Q. Liu, J. Nat. Univ. Defense Technol. 18, 54 (1996) |
[107] | Q. Liu, J. Ma, S. Luan, J. Wang, S. Yuan, L. Han, P. Jin, J. Mater. Res. Technol. 25, 7364 (2023) |
[108] | H. Watanabe, T. Mukai, K. Ishikawa, Japan Inst. Light Met. (Japan) 49, 401 (1999) |
[109] | X. Xie, T. Fan, D. Zhang, Mater. Res. Bull. 37, 113 (2002) |
[110] | A. Galiyev, R. Kaibyshev, G. Gottetein, Acta Mater. 49, 1199 (2001) |
[111] | H. Yan, X. Zhou, X. Gao, J. Chen, W. Xia, B. Su, M. Song, Mater. Charact. 172, 110826 (2021) |
[112] | K. Nishiyama, Magnesium (Japan) 5, (1982) |
[113] | Z. Liu, Hypoeutectic Mg-Ni damping alloys, Master’s thesis, Shanghai Jiao Tong University (1989) |
[114] | I.G. Ritchie, Z.L. Pan, Metall. Trans. A 22, 607 (1991) |
[115] | D. Wang, S. Liu, R. Wu, S. Zhang, Y. Wang, H. Wu, J. Zhang, L. Hou, J. Alloy. Compd. 881, 160663 (2021) |
[116] | X. Yang, Y. Jin, R. Wu, J. Wang, D. Wang, X. Ma, L. Hou, V. Serebryany, I.I. Tashlykova-Bushkevich, S.Y. Betsofen, Metals 13, 159 (2023) |
[117] | J. Wang, Y. Jin, R. Wu, D. Wang, B. Qian, J. Zhang, L. Hou, J. Alloy. Compd. 927, 167027 (2022) |
[118] | T. Cao, Y. Zhu, Y. Gao, Y. Yang, G. Zhou, X. Cui, C. Wen, B. Jiang, X. Peng, F. Pan, Int. J. Miner. Metall. Mater. 30, 949 (2023) |
[119] | C. Xu, J. Zhang, S. Liu, Y. Jing, Y. Jiao, L. Xu, L. Zhang, F. Jiang, M. Zhang, R. Wu, Mater. Des. 79, 53 (2015) |
[120] | X. Gao, S.M. He, X.Q. Zeng, L.M. Peng, W.J. Ding, J.F. Nie, Mater. Sci. Eng. A 431, 1 (2006) |
[121] | Y. Ma, C. Liu, S. Jiang, Y. Gao, Y. Wan, Z. Chen, Mater. Lett. 320, 132363 (2022) |
[122] | R. Lu, K. Yao, Y. Zhao, K. Jiao, K. Li, H. Hou, Mater. Res. Express 7, 076520 (2020) |
[123] | Y. Ma, C. Liu, Y. Huang, S. Jiang, Y. Gao, Y. Wan, Z. Chen, J. Alloy. Compd. 935, 168122 (2023) |
[124] | D. Wang, X. Ma, R. Wu, H. Wu, J. Wang, S. Zhang, J. Zhang, L. Hou, Mater. Sci. Eng. A 830, 142298 (2022) |
[125] | Y. Ma, C. Liu, S. Jiang, Y. Gao, Y. Wan, Z. Chen, Mater. Sci. Eng. A 871, 144827 (2023) |
[126] | Y. Ma, C. Liu, S. Jiang, Y. Wan, Z. Chen, Mater. Charact. 189, 111969 (2022) |
[127] | C. Dang, J. Wang, J. Wang, D. Yu, W. Zheng, C. Xu, Z. Wang, L. Feng, X. Chen, F. Pan, Vacuum 215, 112275 (2023) |
[128] | W. Huang, J. Chen, H. Yan, Q. Li, W. Xia, B. Su, W. Zhu, Trans. Nonferrous Met. Soc. China 32, 2852 (2022) |
[129] | X. Zhou, H. Yan, J. Chen, W. Xia, H. Zhu, B. Su, M. Song, J. Mater. Eng. Perform. 32, 9627 (2023) |
[130] | C. Zhao, F. Wang, J. Li, J. Zeng, S. Dong, F. Wang, L. Jin, J. Dong, Scr. Mater. 240, 115845 (2024) |
[131] | C. Dang, J. Wang, J. Wang, D. Yu, W. Zheng, Z. Wang, L. Feng, C. Xu, H. Hou, Y. Zhao, Vacuum 215, 112230 (2023) |
[132] | Z.R. Zeng, M.Z. Bian, S.W. Xu, C.H.J. Davies, N. Birbilis, J.F. Nie, Mater. Sci. Eng. A 674, 459 (2016) |
[133] | W. Huang, J. Chen, H. Yan, W. Xia, B. Su, W. Zhu, Met. Mater. Int. 26, 747 (2020) |
[134] | W. Huang, J. Chen, H. Yan, W. Xia, B. Su, H. Yin, X. Yan, J. Mater. Sci. 55, 10242 (2020) |
[135] | C. Ma, D. Zhang, W. Ding, Q. Wang, J. Mater. Sci. Lett. 20, 327 (2001) |
[136] | C. Singh, A. Gokhale, A. Varma, S.S. Singh, J. Jain, Mater. Sci. Eng. A 851, 143613 (2022) |
[137] | D. Lu, J. Li, Z. Li, Mater. Res. Express 8, 126532 (2021) |
[138] | D. Siva Prasad, C. Shoba, Trans. Indian Inst. Met. 68, 161 (2015) |
[139] | L. Li, Y. Sun, Handbook of Physical Properties of Metallic Materials (Mechanical Industry Press, Beijing, 2011) |
[140] | W. Tian, Physical Properties of Materials (Beijing University of Aeronautics and Astronautics Press, Beijing, 2004) |
[141] | Y.S. Touloukian, R.W. Powell, C.Y. Ho, Thermal Conductivity: Metallic Elements and Alloys (IFI/Plenum, New York, 1970), p. 1 |
[142] | M. Kaviany, A.M. Kanury, Appl. Mech. Rev. 55, B100 (2002) |
[143] | M. Caro, L.K. Béland, G.D. Samolyuk, R.E. Stoller, A. Caro, J. Alloy. Compd. 648, 408 (2015) |
[144] | L. Huang, S. Liu, Y. Du, C. Zhang, Calphad 62, 99 (2018) |
[145] | Y.J. Chen, P. Zhang, R.Z. Wang, Cryog. Supercond. 38, 1 (2010) |
[146] | L. Zhong, Y. Wang, H. Luo, C. Luo, J. Peng, J. Alloy. Compd. 775, 707 (2019) |
[147] | K.M.F. Shahil, A.A. Balandin, Solid State Commun. 152, 1331 (2012) |
[148] | K. Li, Y. Liu, J. Zhang, C. You, T. Tian, B. Zhang, D. Liu, A. Chen, Y. Zhang, Chemistry 80, 603 (2017) |
[149] | J. Leitner, P. Voˇnka, D. Sedmidubský, P. Svoboda, Thermochim. Acta. 7, 497 (2010) |
[150] | Y. Zhang, Y. Xi, Y. Li, H. Gao, W. Chen, W. Huang, Z. Song, D. Tang, Spec. Casting Nonferrous Alloy 35, 463 (2015) |
[151] | C. Su, D. Li, A. Luo, T. Ying, X. Zeng, J. Alloy. Compd. 747, 431 (2018) |
[152] | H. Pan, F. Pan, R. Yang, J. Peng, C. Zhao, J. She, Z. Gao, A. Tang, J. Mater. Sci. 49, 3107 (2014) |
[153] | A. Schindler, E. Salkovitz, Phys. Rev. 91, 1320 (1953) |
[154] | T. Ying, H. Chi, M. Zheng, Z. Li, C. Uher, Acta Mater. 80, 288 (2014) |
[155] | H.C. Pan, Investigations on Thermal Conductivity of Magnesium Alloys (Chongqing University, Chongqing, 2013) |
[156] | L. Zhong, Y. Wang, M. Gong, X. Zheng, J. Peng, Mater. Charact. 138, 284 (2018) |
[157] | X.T. Dai, M.L. Ma, K. Zhang, J. Mater. Eng. 48, 92 (2020) |
[158] | A.R. Eivani, H. Ahmed, J. Zhou, J. Duszczyk, Metall. Mater. Trans. A 40, 2435 (2009) |
[159] | H. Pan, F. Pan, X. Wang, J. Peng, J. Gou, J. She, A. Tang, Int. J. Thermophys. 34, 1336 (2013) |
[160] | C.Y. Su, Thermal Mechanism of Magnesium Alloys Based on Solute Atom and Secondary Phase (Shanghai Jiao Tong University, Shanghai, 2019) |
[161] | X.T. Dai, M.L. Ma, Y.J. Li, Chin. J. Nonferrrous Met. 31, 639 (2021) |
[162] | X. Li, W. Cao, Y. Bai, J. Henan Polytechnic Univ.: Nat. Sci. Ed. 29, 685 (2010) |
[163] | S.W. Choi, H.S. Cho, S. Kumai, J. Alloy. Compd. 688, 897 (2016) |
[164] | J. Zhao, J.M. Li, L.M. Zhao, Chin. J. Rare Met. 39, 97 (2015) |
[165] | C. Wang, H. Liu, Y. Chen, S. Xiao, Philos. Mag. 97, 1698 (2017) |
[166] | J. Yuan, K. Zhang, X. Zhang, X. Li, T. Li, Y. Li, M. Ma, G. Shi, J. Alloy. Compd. 578, 32 (2013) |
[167] | J.W. Yuan, T. Li, X.G. Li, Trans. Mater. Heat Treat. 33, 27 (2012) |
[168] | C. Wang, Z. Cui, H. Liu, Y. Chen, W. Ding, S. Xiao, Mater. Des. 84, 48 (2015) |
[169] |
M.A. Martinez Page, B. Weidenfeller, S. Hartmann, J. Alloy. Compd. 786, 1060 (2019)
DOI |
[170] | G. Lin, Z. Zhang, H. Wang, K. Zhou, Y. Wei, Mater. Sci. Eng. A 650, 210 (2016) |
[171] | L. Zhong, J. Peng, M. Li, Y. Wang, Y. Lu, F. Pan, J. Alloy. Compd. 661, 402 (2016) |
[172] | T. Ying, M. Zheng, Z. Li, X. Qiao, S. Xu, J. Alloy. Compd. 621, 250 (2015) |
[173] | J. Yuan, K. Zhang, T. Li, X. Li, Y. Li, M. Ma, P. Luo, G. Luo, Y. Hao, Mater. Des. 40, 257 (2012) |
[174] | C. Yang, F. Pan, X. Chen, N. Luo, B. Han, T. Zhou, Mater. Sci. Technol. 34, 138 (2018) |
[175] |
Y. Liu, X. Jia, X. Qiao, S. Xu, M. Zheng, J. Alloy. Compd. 806, 71 (2019)
DOI |
[176] | T. Ying, M. Zheng, Z. Li, X. Qiao, J. Alloy. Compd. 608, 19 (2014) |
[177] | Q. Pan, L. Zhang, R. Feng, Q. Lu, K. An, A.C. Chuang, J.D. Poplawsky, P.K. Liaw, L. Lu, Science 374, 984 (2021) |
[178] | L. Zhong, J. Peng, Y. Sun, Y. Wang, Y. Lu, F. Pan, Mater. Sci. Technol. 33, 92 (2017) |
[179] | T. Ying, Thermal Behavior of Pure Magnesium and Binaray Magnesium Alloys (Harbin Institute of Technology, Harbin, 2015) |
[180] | W. Mao, Y. Zhao, S. Wang, K. Zheng, Mater. Rev. 30, 85 (2016) |
[181] | M. Galeazzi, D.F. Bogorin, K. Prasai, Y. Uprety, D. McCammon, Rev. Sci. Instrum. 81, 076105 (2010) |
[182] | A. Rudajevová, S. Kúdela, M. Staněk, P. Lukáč, Mater. Sci. Technol. 19, 1097 (2003) |
[183] | M. Yamasaki, Y. Kawamura, Scr. Mater. 60, 264 (2009) |
[184] | W.R.G. Kemp, A.K. Sreedhar, G.K. White, Proc. Phys. Soc. 66A, 1077 (1953) |
[185] | C.Y. Ho, M.W. Ackerman, K.Y. Wu, J. Phys. Chem. Ref. Data Data 7, 959 (1978) |
[186] | M.J. Peet, H.S. Hasan, H.K.D.H. Bhadeshia, Int. J. Heat Mass Transf. 54, 2602 (2011) |
[187] | G.V. Chester, A. Thellung, Proc. Phys. Soc. 77, 1005 (1961) |
[188] | X. Li, W. Du, Feng. Lou, N. Ding, X. Du, S. Li, J. Magnes. Alloy. (2024) |
[189] | V.E. Bazhenov, A.V. Koltygin, M.C. Sung, S.H. Park, Yu.V. Tselovalnik, A.A. Stepashkin, A.A. Rizhsky, M.V. Belov, V.D. Belov, K.V. Malyutin, J. Magnes. Alloy. 9, 5 (2021) |
[190] | X. Dong, L. Feng, S. Wang, F. Wang, R. Ghasemi, G. Ji, E.A. Nyberg, S. Ji, Materialia 22, 101426 (2022) |
[191] | Y. Zhang, Z. Zhang, H. Kang, H. Nagaumi, X. Yang, Mater. Lett. 326, 132695 (2022) |
[192] | L. Feng, X. Dong, M. Xia, X. Zhu, G. Ji, H. Yang, B. Wang, E.A. Nyberg, S. Ji, J. Mater. Res. Technol. 22, 2955 (2023) |
[193] | G. Li, J. Zhang, R. Wu, Y. Feng, S. Liu, X. Wang, Y. Jiao, Q. Yang, J. Meng, J. Mater. Sci. Technol. 34, 1214 (2018) |
[194] | M. Wu, J. Chen, H. Yan, W. Xia, B. Su, Y. Deng, Y. Shen, Mater. Sci. Eng. A 861, 144322 (2022) |
[195] | J.W. Yuan, Study on Properties of Mg-Zn-Mn Alloys with High Thermal Conductivity, General Research Institute for Nonferrous Metals (2013) |
[196] | L. Ren, G. Quan, Z. Jiang, D. Yin, Rare Met. Mater. Eng. 5, 1265 (2017) |
[197] | L.P. Zhong, Research on Thermal Conductivity of Mg-RE Alloys and the Development of High Thermal Conductivity of Magnesium Alloys (Chongqing University, Chongqing, 2016) |
[198] | X. Liu, Y. Wu, Z. Liu, C. Lu, H. Xie, J. Li, Mater. Res. Express 5, 066532 (2018) |
[199] | G. Li, J. Zhang, R. Wu, Y. Feng, S. Liu, X. Wang, Y. Jiao, Q. Yang, J. Meng, J. Mater. Sci. Technol. 34, 1076 (2018) |
[200] | L. Zhou, Y.D. Huang, P.L. Mao, P.U. Kainer, Z. Liu, N. Hort, Magnes. Technol. 125, 211 (2011) |
[201] | L. Zhou, Y.D. Huang, P.L. Mao, K.U. Kainer, Z. Liu, N. Hort, Int. J. Cast Met. Res. 24, 170 (2011) |
[202] | B. Li, L. Hou, R. Wu, J. Zhang, X. Li, M. Zhang, A. Dong, B. Sun, J. Alloy. Compd. 722, 772 (2017) |
[203] | P. Chartrand, A.D. Pelton, J. Phase Equilibria 15, 591 (1994) |
[204] | G. Zhu, L. Wang, J. Wang, J. Wang, J.S. Park, X. Zeng, Acta Mater. 200, 236 (2020) |
[1] | Ze-Song Wei, Zi-You Ding, Lei Cai, Shao-Xia Ma, Dong-Qing Zhao, Lan-Yue Cui, Cheng-Bao Liu, Yuan-Sheng Yang, Yuan-Ding Huang, Rong-Chang Zeng. Exfoliation Corrosion of As-Extruded Mg-1Li-1Ca: the Influence of the Superficial Layer [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(8): 1339-1353. |
[2] | Chenglu Zou, Yan Zhao, Gang Zhu, Jianchao Pang, Shaogang Wang, Yangzhen Liu, Feng Liu, Shouxin Li, Zhefeng Zhang. Investigation of Material Properties Based on 3D Graphite Morphology for Compacted Graphite Iron [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(6): 1077-1086. |
[3] | Hulin Tang, Xiang Zhang, Chenping Zhang, Tian Zhou, Shiyue Guo, Gaopeng Xu, Rusheng Zhao, Boyoung Hur, Xuezheng Yue. Designing High-Porosity Porous Structures with Complex Geometries for Enhanced Thermal Conductivity Using Selective Laser Melting and Heat Treatment [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(5): 808-824. |
[4] | Zhaochen Yu, Kaixuan Feng, Shuyun Deng, Yang Chen, Hong Yan, Honggun Song, Chao Luo, Zhi Hu. Quasi-in-situ Observation and SKPFM Studies on Phosphate Protective Film and Surface Micro-Galvanic Corrosion in Biological Mg-3Zn-xNd Alloys [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(4): 648-664. |
[5] | Fanjing Meng, Wenbo Du, Ning Ding, Jian Sun, Xian Du, Ke Liu, Shubo Li. Synergistic Effects of Carbon Nanotube (CNT) and Reduced Graphene Oxide (RGO) on Mechanical and Thermal Properties of ZK61 Alloy [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(3): 577-585. |
[6] | Baotian Du, Zijian Yu, Kang Shi, Ke Liu, Shubo Li, Wenbo Du. Improving the Mechanical Properties of Mg-Gd-Y-Ag-Zr Alloy via Pre-Strain and Two-Stage Ageing [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(3): 456-468. |
[7] | Guoqiang Xi, Xuhan Zhao, Yanlong Ma, Yu Mou, Ju Xiong, Kai Ma, Jingfeng Wang. Comparative Study on Corrosion Behavior and Mechanism of As-Cast Mg-Zn-Y and Mg-Zn-Gd Alloys [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(2): 310-322. |
[8] | Yun Zhang, Chen Jiang, Shaoheng Sun, Wei Xu, Quan Yang, Yongjun Zhang, Shiwei Tian, Xiaoge Duan, Zhe Xu, Haitao Jiang. Microstructural Evolution during Tensile Deformation in TRC-ZA21 Magnesium Alloy with Different Loading Directions and Strain Rates [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(2): 192-214. |
[9] | Yongqiao Li, Lifei Wang, Xiaohuan Pan, Qiang Zhang, Guangsheng Huang, Bin Xing, Weili Cheng, Hongxia Wang, Kwang Seon Shin. Effect of Pre-stretch Strain at High Temperatures on the Formability of AZ31 Magnesium Alloy Sheets [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(1): 48-60. |
[10] | Z. Y. Dong, D. Wang, W. G. Wang, B. L. Xiao, Z. Y. Ma. Effect of Nanometer WC Coating on Thermal Conductivity of Diamond/6061 Composites [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(1): 118-126. |
[11] | Chunxiao Li, Hong Yan, Rongshi Chen. Microstructure and Texture Evolution of Mg-14Gd-0.5Zr Alloy during Rolling and Annealing under Different Temperatures [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(1): 61-76. |
[12] | Bao-Chang Liu, Shuai Zhang, Hong-Wei Xiong, Wen-Hao Dai, Yin-Long Ma. Effect of Al Content on the Corrosion Behavior of Extruded Dilute Mg-Al-Ca-Mn Alloy [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(1): 77-90. |
[13] | X. S. Yang, L. Zhou, K. Y. Liu, Z. Y. Liu, Q. Z. Wang, B. L. Xiao, Z. Y. Ma. Finite Element Prediction of the Thermal Conductivity of GNP/Al Composites [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(5): 825-838. |
[14] | Yanan Wang, Sansan Shuai, Chenglin Huang, Tao Jing, Chaoyue Chen, Tao Hu, Jiang Wang, Zhongming Ren. Revealing the Diversity of Dendritic Morphology Evolution During Solidification of Magnesium Alloys using Synchrotron X-ray Imaging: A Review [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(2): 177-200. |
[15] | L. B. Tong, J. H. Chu, D. N. Zou, Q. Sun, S. Kamado, H. G. Brokmeier, M. Y. Zheng. Simultaneously Enhanced Mechanical Properties and Damping Capacities of ZK60 Mg Alloys Processed by Multi-Directional Forging [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(2): 265-277. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||