Acta Metallurgica Sinica (English Letters) ›› 2024, Vol. 37 ›› Issue (10): 1703-1720.DOI: 10.1007/s40195-024-01746-5
Previous Articles Next Articles
Wenjun Tian1, Yunxuan Zhou1,2,3(), Tao Deng1, Tao Chen2, Jun Tan1,2,3(
), Xianhua Chen1,2,3, Fusheng Pan1,2,3
Received:
2024-03-12
Revised:
2024-05-07
Accepted:
2024-05-19
Online:
2024-10-10
Published:
2024-08-07
Contact:
Yunxuan Zhou, yunxuanzhou93@gmail.com;
Jun Tan, jun.tan@cqu.edu.cn.Wenjun Tian, Yunxuan Zhou, Tao Deng, Tao Chen, Jun Tan, Xianhua Chen, Fusheng Pan. Probing the Structural Stability, Mechanical, Electronic, and Thermodynamic Properties of Mg-Y-Zn Ternary Compounds via First-Principles Calculations[J]. Acta Metallurgica Sinica (English Letters), 2024, 37(10): 1703-1720.
Add to citation manager EndNote|Ris|BibTeX
Species | Y | Mg | Zn | Total | ||||
---|---|---|---|---|---|---|---|---|
n | at.% | n | at.% | n | at.% | n | at.% | |
MgYZn2 | 4 | 25.00 | 4 | 25.00 | 8 | 50.00 | 16 | 100 |
MgY2Zn | 2 | 25.00 | 2 | 25.00 | 4 | 50.00 | 8 | 100 |
MgYZn | 3 | 33.33 | 3 | 33.33 | 3 | 33.33 | 9 | 100 |
Mg3Y2Zn4 | 8 | 22.22 | 12 | 33.33 | 16 | 44.44 | 36 | 100 |
Mg3Y2Zn3 | 6 | 25.00 | 9 | 37.50 | 9 | 25.00 | 24 | 100 |
Mg6YZn-1 | 2 | 12.50 | 12 | 75.00 | 2 | 12.50 | 16 | 100 |
Mg6YZn-2 | 2 | 12.50 | 12 | 75.00 | 2 | 12.50 | 16 | 100 |
Mg14YZn-1 | 1 | 6.25 | 14 | 87.50 | 1 | 6.25 | 16 | 100 |
Mg14YZn-2 | 2 | 6.25 | 28 | 87.50 | 2 | 6.25 | 32 | 100 |
Table 1 Number of atoms of the Mg-Y-Zn ternary compounds
Species | Y | Mg | Zn | Total | ||||
---|---|---|---|---|---|---|---|---|
n | at.% | n | at.% | n | at.% | n | at.% | |
MgYZn2 | 4 | 25.00 | 4 | 25.00 | 8 | 50.00 | 16 | 100 |
MgY2Zn | 2 | 25.00 | 2 | 25.00 | 4 | 50.00 | 8 | 100 |
MgYZn | 3 | 33.33 | 3 | 33.33 | 3 | 33.33 | 9 | 100 |
Mg3Y2Zn4 | 8 | 22.22 | 12 | 33.33 | 16 | 44.44 | 36 | 100 |
Mg3Y2Zn3 | 6 | 25.00 | 9 | 37.50 | 9 | 25.00 | 24 | 100 |
Mg6YZn-1 | 2 | 12.50 | 12 | 75.00 | 2 | 12.50 | 16 | 100 |
Mg6YZn-2 | 2 | 12.50 | 12 | 75.00 | 2 | 12.50 | 16 | 100 |
Mg14YZn-1 | 1 | 6.25 | 14 | 87.50 | 1 | 6.25 | 16 | 100 |
Mg14YZn-2 | 2 | 6.25 | 28 | 87.50 | 2 | 6.25 | 32 | 100 |
Fig. 2 Crystal structures of the Mg-Y-Zn ternary compounds: a MgYZn2, b MgY2Zn, c MgYZn, d Mg3Y2Zn4, e Mg3Y2Zn3, f Mg6YZn-1, g Mg6YZn-2, h Mg14YZn-1, and i Mg14YZn-2
Species | Structure | Space groups | Lattice constants (Å) | Angles (°) | Reference | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
a | a0 | b | b0 | c | c0 | α | β | γ | ||||
Mg | Hexagonal | P63/mmc | 3.22 | 3.17 | 5.17 | 5.14 | 90.00 | 120.00 | This work [34] | |||
Hexagonal | P63/mmc | 3.21 | 5.21 | 90.00 | 120.00 | |||||||
Y | Hexagonal | P63/mmc | 3.66 | 3.64 | 5.77 | 5.88 | 90.00 | 120.00 | This work [40] | |||
Hexagonal | P63/mmc | 3.64 | 3.65 | 5.74 | 90.00 | 120.00 | ||||||
Zn | Hexagonal | P63/mmc | 2.71 | 2.61 | 4.79 | 4.87 | 90.00 | 120.00 | This work [36] | |||
Hexagonal | P63/mmc | 2.61 | 4.87 | 90.00 | 120.00 | |||||||
MgYZn2 | Cubic | Fm-3m | 6.89 | 6.79 | 90.00 | This work | ||||||
MgY2Zn | Orthorhombic | IMMM | 12.20 | 12.24 | 12.70 | 13.08 | 17.93 | 18.15 | 90.00 | 90.00 | This work | |
MgYZn | Hexagonal | P-62 m | 7.70 | 7.50 | 4.06 | 4.17 | 90.00 | 120.00 | This work | |||
Mg3Y2Zn4 | Hexagonal | P63/mmc | 9.93 | 9.53 | 9.51 | 9.44 | 90.00 | 120.00 | This work | |||
Mg3Y2Zn3 | Trigonal | R3m | 5.13 | 4.92 | 24.41 | 24.12 | 90.00 | 120.00 | This work | |||
Mg6YZn-1 | Orthorhombic | Amm2 | 4.96 | 5.04 | 6.27 | 6.53 | 11.71 | 11.29 | 90.00 | This work | ||
Mg6YZn-2 | Orthorhombic | Amm2 | 5.01 | 5.03 | 6.11 | 6.10 | 11.92 | 12.08 | 90.00 | This work | ||
Mg14YZn-1 | Hexagonal | P-6m2 | 6.58 | 6.45 | 10.21 | 10.26 | 90.00 | 120.00 | This work | |||
Mg14YZn-2 | Orthorhombic | Amm2 | 10.218 | 10.34 | 6.322 | 6.37 | 11.69 | 11.18 | 90.00 | This work |
Table 2 Structure type, space groups, lattice constants, and angles of Mg-Y-Zn phases
Species | Structure | Space groups | Lattice constants (Å) | Angles (°) | Reference | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
a | a0 | b | b0 | c | c0 | α | β | γ | ||||
Mg | Hexagonal | P63/mmc | 3.22 | 3.17 | 5.17 | 5.14 | 90.00 | 120.00 | This work [34] | |||
Hexagonal | P63/mmc | 3.21 | 5.21 | 90.00 | 120.00 | |||||||
Y | Hexagonal | P63/mmc | 3.66 | 3.64 | 5.77 | 5.88 | 90.00 | 120.00 | This work [40] | |||
Hexagonal | P63/mmc | 3.64 | 3.65 | 5.74 | 90.00 | 120.00 | ||||||
Zn | Hexagonal | P63/mmc | 2.71 | 2.61 | 4.79 | 4.87 | 90.00 | 120.00 | This work [36] | |||
Hexagonal | P63/mmc | 2.61 | 4.87 | 90.00 | 120.00 | |||||||
MgYZn2 | Cubic | Fm-3m | 6.89 | 6.79 | 90.00 | This work | ||||||
MgY2Zn | Orthorhombic | IMMM | 12.20 | 12.24 | 12.70 | 13.08 | 17.93 | 18.15 | 90.00 | 90.00 | This work | |
MgYZn | Hexagonal | P-62 m | 7.70 | 7.50 | 4.06 | 4.17 | 90.00 | 120.00 | This work | |||
Mg3Y2Zn4 | Hexagonal | P63/mmc | 9.93 | 9.53 | 9.51 | 9.44 | 90.00 | 120.00 | This work | |||
Mg3Y2Zn3 | Trigonal | R3m | 5.13 | 4.92 | 24.41 | 24.12 | 90.00 | 120.00 | This work | |||
Mg6YZn-1 | Orthorhombic | Amm2 | 4.96 | 5.04 | 6.27 | 6.53 | 11.71 | 11.29 | 90.00 | This work | ||
Mg6YZn-2 | Orthorhombic | Amm2 | 5.01 | 5.03 | 6.11 | 6.10 | 11.92 | 12.08 | 90.00 | This work | ||
Mg14YZn-1 | Hexagonal | P-6m2 | 6.58 | 6.45 | 10.21 | 10.26 | 90.00 | 120.00 | This work | |||
Mg14YZn-2 | Orthorhombic | Amm2 | 10.218 | 10.34 | 6.322 | 6.37 | 11.69 | 11.18 | 90.00 | This work |
Species | Etot | E-Mg | E-Y | E-Zn | x-Mg | y-Y | z-Zn | Ecoh (eV/atom) |
---|---|---|---|---|---|---|---|---|
MgYZn2 | −18,351.614 | −972.239 | −188.521 | −1708.148 | 4 | 4 | 8 | − 2.712 |
MgYZn | −8633.146 | −972.239 | −188.521 | −1708.148 | 3 | 3 | 3 | − 2.936 |
Mg3Y2Zn4 | −40,596.746 | −972.239 | −188.521 | −1708.148 | 12 | 8 | 16 | − 2.537 |
Mg3Y2Zn3 | −25,318.702 | −972.239 | −188.521 | −1708.148 | 9 | 6 | 9 | − 2.671 |
Mg6YZn-1 | −15,493.850 | −972.239 | −188.521 | −1708.148 | 12 | 2 | 2 | − 2.103 |
Mg6YZn-2 | −15,493.690 | −972.239 | −188.521 | −1708.148 | 12 | 2 | 2 | − 2.093 |
Mg14YZn-1 | −15,538.612 | −972.239 | −188.521 | −1708.148 | 14 | 1 | 1 | − 1.913 |
Mg14YZn-2 | −31,077.065 | −972.239 | −188.521 | −1708.148 | 28 | 2 | 2 | − 1.908 |
Table 3 Calculated cohesive energy, Ecoh, (eV/atom) of the Mg-Y-Zn ternary compounds, the total energy, Etot, (eV) and the energy per individual atom for Mg, Y, and Zn atoms (eV), and x, y, and z represent the numbers of Mg, Y, and Zn atoms
Species | Etot | E-Mg | E-Y | E-Zn | x-Mg | y-Y | z-Zn | Ecoh (eV/atom) |
---|---|---|---|---|---|---|---|---|
MgYZn2 | −18,351.614 | −972.239 | −188.521 | −1708.148 | 4 | 4 | 8 | − 2.712 |
MgYZn | −8633.146 | −972.239 | −188.521 | −1708.148 | 3 | 3 | 3 | − 2.936 |
Mg3Y2Zn4 | −40,596.746 | −972.239 | −188.521 | −1708.148 | 12 | 8 | 16 | − 2.537 |
Mg3Y2Zn3 | −25,318.702 | −972.239 | −188.521 | −1708.148 | 9 | 6 | 9 | − 2.671 |
Mg6YZn-1 | −15,493.850 | −972.239 | −188.521 | −1708.148 | 12 | 2 | 2 | − 2.103 |
Mg6YZn-2 | −15,493.690 | −972.239 | −188.521 | −1708.148 | 12 | 2 | 2 | − 2.093 |
Mg14YZn-1 | −15,538.612 | −972.239 | −188.521 | −1708.148 | 14 | 1 | 1 | − 1.913 |
Mg14YZn-2 | −31,077.065 | −972.239 | −188.521 | −1708.148 | 28 | 2 | 2 | − 1.908 |
Fig. 3 Cohesive energy of the Mg-Y-Zn ternary compound: a a three-dimensional (3D) map and b a two-dimensional (2D) contour diagram, and the unit is eV/atom
Species | C11 | C22 | C33 | C44 | C55 | C66 | C12 | C13 | C14 | C23 |
---|---|---|---|---|---|---|---|---|---|---|
MgYZn2 | 67.33 | 51.95 | 38.66 | |||||||
MgYZn | 63.17 | 50.32 | 49.54 | 22.28 | 38.77 | |||||
Mg3Y2Zn4 | 45.33 | 65.36 | 17.88 | 9.25 | 12.54 | |||||
Mg3Y2Zn3 | 74.60 | 55.47 | 21.44 | 16.48 | 10.89 | -8.00 | ||||
Mg6YZn-1 | 64.57 | 77.12 | 42.63 | 5.92 | 19.27 | 10.62 | 7.28 | 12.92 | 18.66 | |
Mg6YZn-2 | 74.09 | 52.95 | 50.71 | 3.92 | 22.55 | 2.68 | 15.36 | 18.84 | 13.96 | |
Mg14YZn-1 | 46.60 | 47.99 | 17.93 | 28.51 | 16.97 | |||||
Mg14YZn-2 | 63.87 | 65.75 | 50.31 | 12.42 | 22.01 | 17.58 | 14.86 | 18.53 | 16.39 |
Table 4 Elastic constants (Cij) of the Mg-Y-Zn ternary compounds (GPa)
Species | C11 | C22 | C33 | C44 | C55 | C66 | C12 | C13 | C14 | C23 |
---|---|---|---|---|---|---|---|---|---|---|
MgYZn2 | 67.33 | 51.95 | 38.66 | |||||||
MgYZn | 63.17 | 50.32 | 49.54 | 22.28 | 38.77 | |||||
Mg3Y2Zn4 | 45.33 | 65.36 | 17.88 | 9.25 | 12.54 | |||||
Mg3Y2Zn3 | 74.60 | 55.47 | 21.44 | 16.48 | 10.89 | -8.00 | ||||
Mg6YZn-1 | 64.57 | 77.12 | 42.63 | 5.92 | 19.27 | 10.62 | 7.28 | 12.92 | 18.66 | |
Mg6YZn-2 | 74.09 | 52.95 | 50.71 | 3.92 | 22.55 | 2.68 | 15.36 | 18.84 | 13.96 | |
Mg14YZn-1 | 46.60 | 47.99 | 17.93 | 28.51 | 16.97 | |||||
Mg14YZn-2 | 63.87 | 65.75 | 50.31 | 12.42 | 22.01 | 17.58 | 14.86 | 18.53 | 16.39 |
Fig. 4 Mechanical properties of the Mg-Y-Zn ternary compounds: a elastic modulus, b Pugh’s ratio and poisson’s ratio, c anisotropy index, and d hardness
Species | B | G | G/B | E | σ | Hv | C12-C44 | C12-C66 | C13-C44 | C23-C44 | C12-C66 | C13-C55 | AU | AG | AB |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
MgYZn2 | 48.22 | 31.12 | 0.65 | 76.84 | 0.23 | 6.4 | −28.6 | 2.28 | 0.19 | 0.00 | |||||
MgYZn | 41.76 | 22.04 | 0.53 | 56.23 | 0.28 | 4.0 | −27.7 | −11.2 | 4.64 | 0.32 | 0.00 | ||||
Mg3Y2Zn4 | 24.52 | 18.74 | 0.76 | 44.80 | 0.20 | 5.4 | −8.6 | −5.4 | 0.11 | 0.01 | 0.02 | ||||
Mg3Y2Zn3 | 30.82 | 24.12 | 0.78 | 54.48 | 0.19 | 6.6 | −10.5 | −4.9 | 0.62 | 0.06 | 0.00 | ||||
Mg6YZn-1 | 28.54 | 14.55 | 0.51 | 37.30 | 0.28 | 2.9 | 12.8 | −3.3 | −6.4 | 1.93 | 0.16 | 0.02 | |||
Mg6YZn-2 | 29.96 | 10.49 | 0.35 | 28.18 | 0.34 | 1.5 | 10.1 | 12.7 | −3.8 | 6.14 | 0.38 | 0.02 | |||
Mg14YZn-1 | 23.96 | 13.51 | 0.56 | 34.12 | 0.26 | 3.0 | 10.6 | −0.9 | 4.17 | 0.26 | 0.24 | ||||
Mg14YZn-2 | 30.91 | 18.53 | 0.60 | 46.34 | 0.25 | 4.1 | 4.0 | −2.7 | −3.5 | 0.31 | 0.03 | 0.00 |
Table 5 Calculated bulk modulus (B), shear modulus (G), Young’s modulus (E), Pugh’s ratio (G/B), Poisson’s ratio (σ), hardness (Hv), Cauchy pressure (Pc), anisotropy index (AU) and percent anisotropy (AG and AB) of the Mg-Y-Zn ternary compounds
Species | B | G | G/B | E | σ | Hv | C12-C44 | C12-C66 | C13-C44 | C23-C44 | C12-C66 | C13-C55 | AU | AG | AB |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
MgYZn2 | 48.22 | 31.12 | 0.65 | 76.84 | 0.23 | 6.4 | −28.6 | 2.28 | 0.19 | 0.00 | |||||
MgYZn | 41.76 | 22.04 | 0.53 | 56.23 | 0.28 | 4.0 | −27.7 | −11.2 | 4.64 | 0.32 | 0.00 | ||||
Mg3Y2Zn4 | 24.52 | 18.74 | 0.76 | 44.80 | 0.20 | 5.4 | −8.6 | −5.4 | 0.11 | 0.01 | 0.02 | ||||
Mg3Y2Zn3 | 30.82 | 24.12 | 0.78 | 54.48 | 0.19 | 6.6 | −10.5 | −4.9 | 0.62 | 0.06 | 0.00 | ||||
Mg6YZn-1 | 28.54 | 14.55 | 0.51 | 37.30 | 0.28 | 2.9 | 12.8 | −3.3 | −6.4 | 1.93 | 0.16 | 0.02 | |||
Mg6YZn-2 | 29.96 | 10.49 | 0.35 | 28.18 | 0.34 | 1.5 | 10.1 | 12.7 | −3.8 | 6.14 | 0.38 | 0.02 | |||
Mg14YZn-1 | 23.96 | 13.51 | 0.56 | 34.12 | 0.26 | 3.0 | 10.6 | −0.9 | 4.17 | 0.26 | 0.24 | ||||
Mg14YZn-2 | 30.91 | 18.53 | 0.60 | 46.34 | 0.25 | 4.1 | 4.0 | −2.7 | −3.5 | 0.31 | 0.03 | 0.00 |
Fig. 5 3D surface topographies of Young’s modulus for the Mg-Y-Zn ternary compounds: a MgYZn2, b MgYZn, c Mg3Y2Zn4, d Mg3Y2Zn3, e Mg6YZn-1, f Mg6YZn-2, g Mg14YZn-1, and h Mg14YZn-2
Fig. 6 3D surface topographies of shear modulus for the Mg-Y-Zn ternary compounds: a MgYZn2, b MgYZn, c Mg3Y2Zn4, d Mg3Y2Zn3, e Mg6YZn-1, f Mg6YZn-2, g Mg14YZn-1, and h Mg14YZn-2
Fig. 7 3D surface topographies of linear compressibility for the Mg-Y-Zn ternary compounds: a MgYZn2, b MgYZn, c Mg3Y2Zn4, d Mg3Y2Zn3, e Mg6YZn-1, f Mg6YZn-2, g Mg14YZn-1, and h Mg14YZn-2
Fig. 8 2D projection contours of Young’s modulus for the Mg-Y-Zn ternary compounds: a MgYZn2, b MgYZn, c Mg3Y2Zn4, d Mg3Y2Zn3, e Mg6YZn-1, f Mg6YZn-2, g Mg14YZn-1, and h Mg14YZn-2
Fig. 10 Differential charge density map of the Mg-Y-Zn ternary compounds in (110) plane: a MgYZn2, b MgYZn, c Mg3Y2Zn4, d Mg3Y2Zn3, e Mg6YZn-1, f Mg6YZn-2, g Mg14YZn-1, and h Mg14YZn-2
Fig. 11 Mean bond population and average bond length of the Mg-Y-Zn ternary compounds: a MgYZn2, b MgYZn, c Mg3Y2Zn4, d Mg3Y2Zn3, e Mg6YZn-1, f Mg6YZn-2, g Mg14YZn-1, h Mg14YZn-2, and i weighted average bond length
Species | ρ (g/cm3) | Vl (km/s) | Vt (km/s) | Vm (km/s) | γa | θD (K) |
---|---|---|---|---|---|---|
MgYZn2 | 4.95 | 4.26 | 2.51 | 2.78 | 1.43 | 302.61 |
MgYZn | 4.27 | 4.08 | 2.27 | 2.53 | 1.63 | 264.44 |
Mg3Y2Zn4 | 4.19 | 3.44 | 2.12 | 2.33 | 1.27 | 258.71 |
Mg3Y2Zn3 | 4.00 | 3.97 | 2.46 | 2.71 | 1.25 | 282.91 |
Mg6YZn-1 | 2.56 | 4.33 | 2.38 | 2.66 | 1.67 | 273.14 |
Mg6YZn-2 | 2.61 | 4.10 | 2.01 | 2.25 | 2.08 | 233.03 |
Mg14YZn-1 | 2.17 | 4.40 | 2.50 | 2.78 | 1.56 | 287.95 |
Mg14YZn-2 | 2.17 | 5.06 | 2.92 | 3.24 | 1.50 | 336.62 |
Table 6 Density (ρ), phonon velocities (νl, νt, and νm), Debye temperature (θD), and Gruneisen constant (γa) of the Mg-Y-Zn ternary compounds
Species | ρ (g/cm3) | Vl (km/s) | Vt (km/s) | Vm (km/s) | γa | θD (K) |
---|---|---|---|---|---|---|
MgYZn2 | 4.95 | 4.26 | 2.51 | 2.78 | 1.43 | 302.61 |
MgYZn | 4.27 | 4.08 | 2.27 | 2.53 | 1.63 | 264.44 |
Mg3Y2Zn4 | 4.19 | 3.44 | 2.12 | 2.33 | 1.27 | 258.71 |
Mg3Y2Zn3 | 4.00 | 3.97 | 2.46 | 2.71 | 1.25 | 282.91 |
Mg6YZn-1 | 2.56 | 4.33 | 2.38 | 2.66 | 1.67 | 273.14 |
Mg6YZn-2 | 2.61 | 4.10 | 2.01 | 2.25 | 2.08 | 233.03 |
Mg14YZn-1 | 2.17 | 4.40 | 2.50 | 2.78 | 1.56 | 287.95 |
Mg14YZn-2 | 2.17 | 5.06 | 2.92 | 3.24 | 1.50 | 336.62 |
Species | Clarke’s model (W·m−1·K−1) | Cahill’s model (W·m−1·K−1) | ||
---|---|---|---|---|
Ma (10-23) | kmin | n (1028) | kmin | |
MgYZn2 | 10.13 | 0.89 | 4.89 | 0.69 |
MgYZn | 9.89 | 0.75 | 4.32 | 0.59 |
Mg3Y2Zn4 | 9.45 | 0.69 | 4.43 | 0.53 |
Mg3Y2Zn3 | 9.28 | 0.78 | 4.31 | 0.61 |
Mg6YZn-1 | 6.23 | 0.77 | 4.11 | 0.60 |
Mg6YZn-2 | 6.23 | 0.67 | 4.19 | 0.54 |
Mg14YZn-1 | 5.13 | 0.81 | 4.23 | 0.63 |
Mg14YZn-2 | 5.13 | 0.94 | 4.24 | 0.74 |
Table 7 Minimum thermal conductivity (kmin) of the Mg-Y-Zn ternary compounds
Species | Clarke’s model (W·m−1·K−1) | Cahill’s model (W·m−1·K−1) | ||
---|---|---|---|---|
Ma (10-23) | kmin | n (1028) | kmin | |
MgYZn2 | 10.13 | 0.89 | 4.89 | 0.69 |
MgYZn | 9.89 | 0.75 | 4.32 | 0.59 |
Mg3Y2Zn4 | 9.45 | 0.69 | 4.43 | 0.53 |
Mg3Y2Zn3 | 9.28 | 0.78 | 4.31 | 0.61 |
Mg6YZn-1 | 6.23 | 0.77 | 4.11 | 0.60 |
Mg6YZn-2 | 6.23 | 0.67 | 4.19 | 0.54 |
Mg14YZn-1 | 5.13 | 0.81 | 4.23 | 0.63 |
Mg14YZn-2 | 5.13 | 0.94 | 4.24 | 0.74 |
[1] | Y.Q. Li, F. Li, F.W. Kang, H.Q. Du, Z.Y. Chen, J. Alloys Compd. 953, 170080 (2023) |
[2] | J. Tan, F. Wang, B. Jiang, F. Pan, Chin. J. Nat. 45, 93 (2023) |
[3] | C. Ran, M. Ding, X. Li, L. Fan, H. Lv, X. Wang, L. Shen, J. Wang, J. Tan, J. Mater. Res. Technol. 29, 1756 (2024) |
[4] | A. Abedini, R. Shamskhani, A.A. Ebrahimi Valmoozi, S.S. Seyyed Afghahi, J. Power. Sources 581,233405 (2023) |
[5] | S. Kandemir, J. Bohlen, H. Dieringa, J. Magnes. Alloy. 11, 2518 (2023) |
[6] | Z. Gu, Y. Zhou, Q. Dong, G. He, H. Cui, J. Tan, X. Chen, B. Jiang, F. Pan, Jürgen Eckert. Mater. Sci. Eng. 855, 143901 (2022) |
[7] | Z. Ding, Y. Li, H. Yang, Y. Lu, J. Tan, J. Li, Q. Li, Y. Chen, L.L. Shaw, F, Pan, J. Magnes. Alloy. 10, 2946 (2022) |
[8] | G. He, Y. Zhou, Z. Gu, Q. Dong, Y. Lin, J. Tan, X. Chen, B. Jiang, F. Pan, Mater. Sci. Eng. A 885, 145664 (2023) |
[9] | F.O. Edoziuno, P.O. Emereje, B.U. Odoni, R.O. Akaluzia, N.C. Chukwurah, J. Alloys Metall. Syst. 4, 100033 (2023) |
[10] | A. Sheikhani, R. Roumina, R. Mahmudi, J. Mater. Res. Technol. 18, 4089 (2022) |
[11] | Q. Wei, L. Yuan, X. Ma, M. Zheng, D. Shan, B. Guo, Mater. Sci. Eng. A 831, 142144 (2022) |
[12] | M. Yang, F. Pan, Mater. Sci. Eng. A 525, 112 (2009) |
[13] | J. Wang, S. Gao, L. Zhao, H. Liang, Y. Hu, F. Pan, Trans. Nonferrous Met. Soc. China 20, s366 (2010) |
[14] | J. Hao, J. Zhang, H. Wang, W. Cheng, Y. Bai, J. Mater. Res. Technol. 19, 1650 (2022) |
[15] | Q. Chen, J. Lin, D. Shu, C. Hu, Z. Zhao, F. Kang, S. Huang, B. Yuan, Mater. Sci. Eng. A 554, 129 (2012) |
[16] | I. Stulikova, B. Smola, Mater. Charact. 61, 952 (2010) |
[17] | J. Lin, P. Fu, Y. Wang, H. Liu, Y. Zheng, L. Peng, W. Ding, Mater. Sci. Eng. A 866, 144688 (2023) |
[18] | Q. Liao, W. Hu, R. Chen, Q. Le, J. Mater. Res. Technol. 27, 48 (2023) |
[19] | J.A. Liu, S.J. Liu, B. Wang, W.B. Sun, X.J. Liu, Z.W. Han, J. Magnes. Alloy. 12, 227 (2023) |
[20] | B.L. Mordike, J. Mater. Process. Technol. 117, 391 (2001) |
[21] | P. Gunde, A. Schiffl, P.J. Uggowitzer, Mater. Sci. Eng. A 527, 7074 (2010) |
[22] | Y. Zhou, X. Chong, Y. Lin, G. Wang, Y. Jiang, Vacuum 222,113081 (2024) |
[23] | H. Wang, Y. Zhou, Q. Dong, X. Chen, J. Tan, J. Mater. Res. Technol. 19, 2848 (2022) |
[24] | L. Zhang, S. Ma, W. Wang, Z. Yang, H. Ye, J. Mater. Sci. Technol. 35, 2058 (2019) |
[25] | R. Tanaka, K. Yuge, Intermetallics 72,25 (2016) |
[26] | Y. Zhou, W. Tian, Q. Dong, H. Wang, J. Tan, X. Chen, K. Zheng, F. Pan, Acta Metall. Sin. -Engl. Lett. 37, 537 (2024) |
[27] | K. Zhang, C. Wang, S. Liu, K. Guan, M. Li, L. Zhang, H. Wang, Corros. Sci. 220, 111254 (2023) |
[28] | X. Li, B. Yang, S. Li, H. Xie, X. Wang, H. Zhong, H. Shen, J. Tang, Results Phys. 48, 106443 (2023) |
[29] | Y. Zhou, H. Wang, Q. Dong, J. Tan, X. Chen, B. Jiang, F. Pan, J. Eckert, Mater. Today Commun. 33, 104612 (2022) |
[30] | P. Mishra, P. Kumar, L. Neelakantan, I. Adlakha, Comput. Mater. Sci. 214, 111667 (2022) |
[31] | O.G. Adeleye, B.I. Adetunji, O.I. Olusola, A.N. Njah, Comput. Theor. Chem. 36, e00820 (2023) |
[32] | M. Chen, W. Qin, Y. Hu, Y. Wang, Y. Jiang, X. Zhou, S. Peng, Y. Fu, Acta Metall. Sin. -Engl. Lett. 34, 514 (2021) |
[33] | J. Li, X. Zhao, D. Wang, F. Meng, Acta Metall. Sin. -Engl. Lett. 26, 675 (2013) |
[34] | W.B. Guo, W.S. Bian, H.T. Xue, X.M. Zhang, J. Magnes. Alloy. 10, 1663 (2022) |
[35] | D.S. Evans, G.V. Raynor, J. Nucl. Mater. 2, 209 (1960) |
[36] | J. Nuss, U. Wedig, A. Kirfel, M. Jansen, Z. Anorg, Allg. Chem. 636, 309 (2010) |
[37] | S. Lu, J. Zhang, H. Wu, Y. Wang, Y. Jiang, Acta Metall. Sin. -Engl. Lett. 35, 1925 (2022) |
[38] | C. Zhang, Y.J. Wan, W.J. Zou, X. Shang, Y.B. Zhang, Comput. Theor. Chem. 1201, 113293 (2021) |
[39] | H. Wang, Y. Zhou, L. Dai, X. Mi, C. Sun, Q. Dong, L. Wu, J. Tan, A. Tang, J. Mater. Res. Technol. 27, 3362 (2023) |
[40] | D.S. Evans, G.V. Baynor, J. Nucl. Mater. 2, 209 (1960) |
[41] | Y.L. Bai, X.D. He, M.W. Li, Y. Sun, C.C. Zhu, Y.B. Li, Solid State Sci. 12, 144 (2010) |
[42] | X.C. He, J.H. Pi, Y.M. Dai, X.Q. Li, Acta Metall. Sin. -Engl. Lett. 26, 285 (2013) |
[43] | X.Y. Chong, Y.H. Jiang, R. Zhou, J. Feng, J. Alloys Compd. 610, 684 (2014) |
[44] | Y.X. Zhou, M.Y. Hu, P. Yan, X.L. Shi, X.Y. Chong, J. Feng, RSC Adv. 8, 41575 (2018) |
[45] | Y. Tang, Q. Le, B. Wu, Z. Nong, L. Zhang, J. Zhu, Vacuum 192,110416 (2021) |
[46] | Y. Zhou, Y. Lin, F. Zhang, Y.H. Jiang, S.Z. Wei, L.J. Xu, X.Y. Chong, Z.L. Li, J. Feng, Ceram. Int. 48, 5107 (2022) |
[47] | Y.Y. Wu, Y.H. Duan, X.Q. Wang, M.J. Peng, L. Shen, H.R. Qi, Mater. Today Commun. 33, 104651 (2022) |
[48] | Y. Wu, J. Guo, J. Hou, W. Zhang, R. Huang, X. Liu, X. Ma, Q. Zhang, Acta Metall. Sin. -Engl. Lett. 27, 87 (2014) |
[49] | H. Bai, Y. Duan, H. Qi, M. Peng, M. Li, S. Zheng, Vacuum 222,112962 (2024) |
[50] | Y. Wu, L. Ma, X. Zhou, Y. Duan, L. Shen, M. Peng, Int. J. Refract. Met. H. 109, 105985 (2022) |
[51] | Y. Li, Y. Duan, M. Peng, S. Zheng, Vacuum 218,112616 (2023) |
[52] | Y. Tian, B. Xu, Z. Zhao, Int. J. Refract. Met. H. 33, 93 (2012) |
[53] | W. Zhang, C. Wang, B. Sun, J. Gu, G. Ma, Vacuum 186,110017 (2021) |
[54] | Y. Liu, J. Xing, Y. Li, J. Tan, L. Sun, J. Yan, J. Mater. Res. 31, 3805 (2016) |
[55] | R. Gaillac, P. Pullumbi, F.X. Coudert, J. Phys. Condens. Matter 28, 275201 (2016) |
[56] | L. Chao, M. Xiaohua, W. Weiqiang, C. Tieshan, Comput. Mater. Sci. 224, 112183 (2023) |
[57] | W. Zhou, L. Liu, B. Li, Q. Song, P. Wu, J. Electron. Mater. 38, 356 (2009) |
[58] | Y.X. Zhou, Y. Lin, H.L. Wang, Q. Dong, J. Tan, J. Phys. Chem. Solids 171, 111034 (2022) |
[59] | Y. Zhang, Z.R. Liu, D.W. Yuan, Q. Shao, J.H. Chen, C.L. Wu, Z.L. Zhang, Acta Metall. Sin. -Engl. Lett. 32, 1099 (2019) |
[60] | K. Wang, D. Du, B. Chang, Y. Hong, J. Ju, S. Sun, H. Fu, Crystals 8,451 (2018) |
[61] | E. Deligoz, Y.O. Ciftci, P.T. Jochym, K. Colakoglu, Mater. Chem. Phys. 111, 29 (2008) |
[62] | M. Wang, Y. Zhou, W. Tian, J. Li, H. Chen, J. Tan, X. Chen, Vacuum 213,112140 (2023) |
[63] | X. Liu, J. Fu, Vacuum 179,109504 (2020) |
[64] | P. Li, J. Chen, L. Huang, J. Zhang, Phys. Rev. B 676, 415683 (2024) |
[65] | E. Bolen, E. Deligoz, H. Ozisik, Solid State Commun. 327, 114223 (2021) |
[66] | L. Ramirez-Montes, W. Lopez-Perez, R. Gonzalez-Hernandez, C. Pinilla, Int. J. Quantum Chem. 120, e26267 (2020) |
[67] | Y.Y. Ma, S. Yang, W.X. Dong, K.H. He, Phys. Rev. B 644, 414216 (2022) |
[68] | D.R. Clarke, C.G. Levi, Annu. Rev. Mater. Res. 33, 383 (2003) |
[69] | D.G. Cahill, S.K. Watson, R.O. Pohl, Phys. Rev. B 46, 6131 (1992) |
[1] | Zhenfei Jiang, Bo Hu, Zixin Li, Fanjin Yao, Jiaxuan Han, Dejiang Li, Xiaoqin Zeng, Wenjiang Ding. A Review of Magnesium Alloys as Structure-Function Integrated Materials [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(8): 1301-1338. |
[2] | Ze-Song Wei, Zi-You Ding, Lei Cai, Shao-Xia Ma, Dong-Qing Zhao, Lan-Yue Cui, Cheng-Bao Liu, Yuan-Sheng Yang, Yuan-Ding Huang, Rong-Chang Zeng. Exfoliation Corrosion of As-Extruded Mg-1Li-1Ca: the Influence of the Superficial Layer [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(8): 1339-1353. |
[3] | Zhaochen Yu, Kaixuan Feng, Shuyun Deng, Yang Chen, Hong Yan, Honggun Song, Chao Luo, Zhi Hu. Quasi-in-situ Observation and SKPFM Studies on Phosphate Protective Film and Surface Micro-Galvanic Corrosion in Biological Mg-3Zn-xNd Alloys [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(4): 648-664. |
[4] | Yunxuan Zhou, Wenjun Tian, Quan Dong, Hailian Wang, Jun Tan, Xianhua Chen, Kaihong Zheng, Fusheng Pan. A First-principles Study on the Adhesion Strength, Interfacial Stability, and Electronic Properties of Mg/Mg2Y Interface [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(3): 537-550. |
[5] |
Chao Wang, Xi Zhao, Yayun He, Dingxia Zheng.
Implementation of Balanced Strength and Toughness of VW93A Rare-Earth Magnesium Alloy with Regulating the Overlapping Structure of Lamellar LPSO Phase and |
[6] | Baotian Du, Zijian Yu, Kang Shi, Ke Liu, Shubo Li, Wenbo Du. Improving the Mechanical Properties of Mg-Gd-Y-Ag-Zr Alloy via Pre-Strain and Two-Stage Ageing [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(3): 456-468. |
[7] | Zhaoqun Chen, Yuxiang Lai, Linghong Liu, Ziran Liu, Jianghua Chen. Impacts of Microalloying Elements on the Hardening β"-Phase in Automotive AlMgSi Alloys [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(3): 495-506. |
[8] | Yu Zhang, Jing Bai, Ziqi Guan, Xinzeng Liang, Yansong Li, Jianglong Gu, Yudong Zhang, Claude Esling, Xiang Zhao, Liang Zuo. Phase Stability, Magnetic Properties, and Martensitic Transformation of Ni2−xMn1+x+ySn1−y Heusler Alloy with Excess Mn by First-Principles Calculations [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(3): 513-528. |
[9] | Guoqiang Xi, Xuhan Zhao, Yanlong Ma, Yu Mou, Ju Xiong, Kai Ma, Jingfeng Wang. Comparative Study on Corrosion Behavior and Mechanism of As-Cast Mg-Zn-Y and Mg-Zn-Gd Alloys [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(2): 310-322. |
[10] | Yun Zhang, Chen Jiang, Shaoheng Sun, Wei Xu, Quan Yang, Yongjun Zhang, Shiwei Tian, Xiaoge Duan, Zhe Xu, Haitao Jiang. Microstructural Evolution during Tensile Deformation in TRC-ZA21 Magnesium Alloy with Different Loading Directions and Strain Rates [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(2): 192-214. |
[11] | Yongqiao Li, Lifei Wang, Xiaohuan Pan, Qiang Zhang, Guangsheng Huang, Bin Xing, Weili Cheng, Hongxia Wang, Kwang Seon Shin. Effect of Pre-stretch Strain at High Temperatures on the Formability of AZ31 Magnesium Alloy Sheets [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(1): 48-60. |
[12] | Chunxiao Li, Hong Yan, Rongshi Chen. Microstructure and Texture Evolution of Mg-14Gd-0.5Zr Alloy during Rolling and Annealing under Different Temperatures [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(1): 61-76. |
[13] | Bao-Chang Liu, Shuai Zhang, Hong-Wei Xiong, Wen-Hao Dai, Yin-Long Ma. Effect of Al Content on the Corrosion Behavior of Extruded Dilute Mg-Al-Ca-Mn Alloy [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(1): 77-90. |
[14] | Chenchen Xiong, Jing Bai, Yansong Li, Jianglong Gu, Xinzeng Liang, Ziqi Guan, Yudong Zhang, Claude Esling, Xiang Zhao, Liang Zuo. First-Principles Investigation on Phase Stability, Elastic and Magnetic Properties of Boron Doping in Ni-Mn-Ti Alloy [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(7): 1175-1183. |
[15] | Xinzeng Liang, Jing Bai, Jianglong Gu, Ziqi Guan, Haile Yan, Yudong Zhang, Claude Esling, Xiang Zhao, Liang Zuo. Composition-Dependent of 6 M Martensite Structure and Magnetism in Cu-Alloyed Ni-Mn-In-Co by First-Principles Calculations [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(6): 1034-1042. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||