Acta Metallurgica Sinica (English Letters) ›› 2025, Vol. 38 ›› Issue (12): 2197-2216.DOI: 10.1007/s40195-025-01925-y
Previous Articles Next Articles
Yuheng Li1, You Lv1, Zehua Dong1, Wei Guo2, Xinxin Zhang1,3(
), Xiaorong Zhou3(
)
Received:2025-04-27
Revised:2025-05-28
Accepted:2025-06-06
Online:2025-12-10
Published:2025-09-19
Contact:
Xinxin Zhang, xinxinzhang@hust.edu.cn;Xiaorong Zhou, xiaorongzhou@mchesteanr.ac.uk
Yuheng Li, You Lv, Zehua Dong, Wei Guo, Xinxin Zhang, Xiaorong Zhou. Corrosion Behaviour of Wire Arc Additive Manufactured AA2024 Alloy Thin Wall Structure: The Influence of Interpass Rolling[J]. Acta Metallurgica Sinica (English Letters), 2025, 38(12): 2197-2216.
Add to citation manager EndNote|Ris|BibTeX
| Cu | Fe | Mg | Mn | Si | Zn | Ti | V | Zr | Al | |
|---|---|---|---|---|---|---|---|---|---|---|
| Chemical composition | 4.39 | 0.11 | 1.60 | 0.78 | 0.03 | 0.02 | 0.12 | 0.02 | 0.10 | Bal. |
| Nominal composition | 3.8-4.9 | ≤ 0.50 | 1.2-1.8 | 0.3-0.9 | ≤ 0.50 | ≤ 0.25 | ≤ 0.15 | ≤ 0.15 | 0.05-0.15 | Bal. |
Table 1 Chemical composition of the AA2024 alloy thin wall structure (wt%)
| Cu | Fe | Mg | Mn | Si | Zn | Ti | V | Zr | Al | |
|---|---|---|---|---|---|---|---|---|---|---|
| Chemical composition | 4.39 | 0.11 | 1.60 | 0.78 | 0.03 | 0.02 | 0.12 | 0.02 | 0.10 | Bal. |
| Nominal composition | 3.8-4.9 | ≤ 0.50 | 1.2-1.8 | 0.3-0.9 | ≤ 0.50 | ≤ 0.25 | ≤ 0.15 | ≤ 0.15 | 0.05-0.15 | Bal. |
| Parameter | Value |
|---|---|
| Wire feed speed (m/min) | 6 |
| Torch travel speed (m/min) | 0.6 |
| Torch angle (°) | 0 |
| Current (A) | 84 |
| Voltage (V) | 14.6 |
| Gas flow rate (L/min (Ar)) | 7.5 |
| Nozzle-to-work distance (mm) | 15 |
Table 2 Process parameters optimized for the WAAM process
| Parameter | Value |
|---|---|
| Wire feed speed (m/min) | 6 |
| Torch travel speed (m/min) | 0.6 |
| Torch angle (°) | 0 |
| Current (A) | 84 |
| Voltage (V) | 14.6 |
| Gas flow rate (L/min (Ar)) | 7.5 |
| Nozzle-to-work distance (mm) | 15 |
Fig. 3 Grain structure of the AA2024 alloy thin wall structure (corresponding to surface A in Fig. 1): a, b grain orientation distributions in inverse pole figure colouring and Euler’s colour; c-e grain orientation distributions in Euler’s colour for MPZ, MPB and HAZ, respectively; f-h grain-stored energy distributions in grey scale for MPZ, MPB and HAZ, respectively, with the average values inset
Fig. 4 Grain orientation distributions in IPF colouring and the corresponding distributions of misorientations higher than 1.5°: a, b MPZ; c, d MPB; e, f HAZ
Fig. 5 Representative SEM micrographs of AA2024 alloy thin wall structure after electropolishing (corresponding to surface A in Fig. 1): a general view; b-d MPZ, MPB and HAZ; e-g typical areas and corresponding EDX maps for MPZ, MPB and HAZ
Fig. 6 Representative SEM micrographs of the AA2024 alloy thin wall structure after mechanical polishing (corresponding to surface A in Fig. 1): a MPZ; b MPB; c HAZ; d framed area in c at an increased magnification
Fig. 7 TEM analysis of fine precipitates in MPB: a representative HAADF micrograph, showing a multi-phase intermetallic particle in MPB; b EDX maps of the framed area in a; c, d representative HAADF micrographs showing precipitates in arrays or as cellular structures
Fig. 9 Electrochemical analysis of distinctive areas across the thin wall structure: a OCP evolution with the immersion period; b potentiodynamic polarization curves; c, d Nyquist and Bode plots; e equivalent circuit model
| ba (mV/dec) | bc (mV/dec) | icorr (A/cm2) | Ecorr (V vs. Ag/AgCl) | |
|---|---|---|---|---|
| MPZ | 11.42 | − 135.67 | 1.41 × 10-6 | − 0.62 |
| HAZ | 20.67 | − 108.25 | 3.24 × 10-6 | − 0.65 |
| MPB | 18.65 | − 108.62 | 5.01 × 10-6 | − 0.66 |
Table 3 Fitting results of the potentiodynamic polarization curves in Fig. 9b
| ba (mV/dec) | bc (mV/dec) | icorr (A/cm2) | Ecorr (V vs. Ag/AgCl) | |
|---|---|---|---|---|
| MPZ | 11.42 | − 135.67 | 1.41 × 10-6 | − 0.62 |
| HAZ | 20.67 | − 108.25 | 3.24 × 10-6 | − 0.65 |
| MPB | 18.65 | − 108.62 | 5.01 × 10-6 | − 0.66 |
| Rs (Ω cm2) | Qcoat (Ω−1 s-n cm−2) | ncoat | Rcoat (Ω cm2) | Qdl (Ω−1 s-n cm−2) | ndl | Rct (Ω cm2) | Rp (Ω cm2) | |
|---|---|---|---|---|---|---|---|---|
| MPZ | 4.96 | 4.56 × 10-5 | 0.87 | 4512 | 3.02 × 10-4 | 0.87 | 10,303 | 14,815 |
| HAZ | 4.84 | 4.59 × 10-5 | 0.85 | 2285 | 2.91 × 10-4 | 0.76 | 7575 | 9860 |
| MPB | 2.58 | 2.27 × 10-5 | 0.77 | 160.6 | 9.45 × 10-4 | 0.65 | 2274 | 2434 |
Table 4 Fitting results of the EIS data in Fig. 9c, d
| Rs (Ω cm2) | Qcoat (Ω−1 s-n cm−2) | ncoat | Rcoat (Ω cm2) | Qdl (Ω−1 s-n cm−2) | ndl | Rct (Ω cm2) | Rp (Ω cm2) | |
|---|---|---|---|---|---|---|---|---|
| MPZ | 4.96 | 4.56 × 10-5 | 0.87 | 4512 | 3.02 × 10-4 | 0.87 | 10,303 | 14,815 |
| HAZ | 4.84 | 4.59 × 10-5 | 0.85 | 2285 | 2.91 × 10-4 | 0.76 | 7575 | 9860 |
| MPB | 2.58 | 2.27 × 10-5 | 0.77 | 160.6 | 9.45 × 10-4 | 0.65 | 2274 | 2434 |
Fig. 10 A representative optical micrograph of AA2024 alloy thin wall structure after 30 min immersion in a 3.5 wt% NaCl solution (corresponding to surface A in Fig. 1)
Fig. 11 Representative SEM micrographs of AA2024 alloy thin wall structure after 30 min immersion in a 3.5 wt% NaCl solution (corresponding to surface A in Fig. 1): a general view; b the framed area in a at an increased magnification; c the typical morphology of MPB; d the framed area in c at an increased magnification; e, f framed areas in d at increased magnifications
Fig. 12 Representative SEM micrographs of the cross section in MPB after 30 min immersion in a 3.5 wt% NaCl solution: a general view; b, c framed areas 1-2 in a at increased magnifications
Fig. 13 a A representative HAADF micrograph of a typical cross section in MPB of the AA2024 alloy thin wall structure after 30 min immersion in a 3.5 wt% NaCl solution; b, c grain orientation distribution in inverse pole figure colouring and the corresponding grain-stored energy distribution in grey scale (the brighter, the higher stored energy and vice versa); d framed area 1 in a at an increased magnification; e framed area in d at an increased magnification; f framed area 2 in a at an increased magnification; g-i framed areas 1-3 in e at increased magnifications
Fig. 14 A representative optical micrograph of AA2024 alloy thin wall structure after 12 h immersion in a 3.5 wt% NaCl solution (corresponding to surface A in Fig. 1)
Fig. 15 Representative SEM micrographs of AA2024 alloy thin wall structure after 12 h immersion in a 3.5 wt% NaCl solution (corresponding to surface A in Fig. 1): a general view; b, c framed areas 1-2 in a at increased magnifications; d another general view; e framed area in d at increased magnifications
Fig. 16 A representative optical micrograph of AA2024 alloy thin wall structure after 24 h immersion in a 3.5 wt% NaCl solution (corresponding to surface A in Fig. 1)
Fig. 17 Representative SEM micrographs of AA2024 alloy thin wall structure after 24 h immersion in a 3.5 wt% NaCl solution (corresponding to surface A in Fig. 1): a general view; b framed area in a, using a lower accelerating voltage of 1.5 kV; c a typical localized corrosion site; d, e framed areas in c at increased magnifications
Fig. 18 Schematic diagram showing the localized corrosion development of the AA2024 alloy thin wall structure during the immersion in a 3.5 wt% NaCl solution. In the diagram, the distribution of grain-stored energy is displayed in grey scale with a higher brightness representing a higher stored energy and vice versa. The magnified view exhibits the role of S phase precipitates and interdendritic intermetallics during the localized corrosion development
| [1] | J.H. Martin, B.D. Yahata, J.M. Hundley, J.A. Mayer, T.A. Schaedler, T.M. Pollock,Nature 549, 365 (2017) |
| [2] | X. Gong, T. Anderson, K. Chou, Manuf. Rev. 1, 2 (2014) |
| [3] |
S.W. Williams, F. Martina, A.C. Addison, J. Ding, G. Pardal, P. Colegrove, Mater. Sci. Technol. 32, 641 (2015)
DOI URL |
| [4] |
M. Taghizadeh, Z.H. Zhu, Acta Astronaut. 222, 403 (2024)
DOI URL |
| [5] |
Y. Lv, T. Hashimoto, X. Zhou, X. Zhang, Corros. Commun. 15, 13 (2024)
DOI URL |
| [6] | Y. Lv, X. Meng, Y. Li, Z. Dong, X. Zhang, Trans. Nonferrous Met. Soc. China 34, 2772 (2024) |
| [7] | S. Sui, S. Guo, D. Ma, C. Guo, X. Wu, Z. Zhang, C. Xu, D. Shechtman, S. Remennik, D. Safranchik, R. Lapovok, Int. J. Extreme Manuf. 5, 042009 (2023) |
| [8] | T.S. Liu, P. Chen, F. Qiu, H.Y. Yang, N.T.Y. Jin, Y. Chew, D. Wang, R. Li, Q.C. Jiang, C. Tan, Int. J. Extreme Manuf. 6, 022004 (2024) |
| [9] | C. Ling, Q. Li, Z. Zhang, Y. Yang, W. Zhou, W. Chen, Z. Dong, C. Pan, C. Shuai, Int. J. Extreme Manuf. 6, 015001 (2024) |
| [10] | Y. Li, D. Jiang, R. Zhu, C. Yang, L. Wang, L.C. Zhang, Int. J. Extreme Manuf. 7, 022002 (2025) |
| [11] | D. Li, F. Zhang, L. Cui, Y. Guo, R. Zeng, Acta Metall. Sin.-Engl. Lett. 38, 1069 (2025) |
| [12] |
R.R. Dehoff, S.S. Babu, Acta Mater. 58, 4305 (2010)
DOI URL |
| [13] |
E. Brandl, U. Heckenberger, V. Holzinger, D. Buchbinder, Mater. Des. 34, 159 (2012)
DOI URL |
| [14] | W.E. Frazier, J. Mater. Eng. Perform. 23, 1917 ( 2014) |
| [15] | K. Bartkowiak, S. Ullrich, T. Frick, M. Schmidt,Phys. Proc. 12, 393 (2011) |
| [16] | Z. Liu, Q. Zhou, X. Liang, X. Wang, G. Li, K. Vanmeensel, J. Xie, Int. J. Extreme Manuf. 6, 022002 (2024) |
| [17] | T.B. Sercombe, X. Li, Mater. Technol. 31, 77 (2016) |
| [18] |
P.A. Rometsch, Y. Zhu, X. Wu, A. Huang, Mater. Des. 219, 110779 (2022)
DOI URL |
| [19] | J. Gu, S. Yang, M. Gao, J. Bai, K. Liu, Addit. Manuf. 34, 101370 (2020) |
| [20] |
T. Hauser, R.T. Reisch, S. Seebauer, A. Parasar, T. Kamps, R. Casati, J. Volpp, A.F.H. Kaplan, J. Manuf. Process. 69, 378 (2021)
DOI URL |
| [21] | B. Cong, X. Cai, Z. Qi, B. Qi, Y. Zhang, R. Zhang, W. Guo, Z. Zhou, Y. Yin, X. Bu, Addit. Manuf. 51, 102617 (2022) |
| [22] | X. Fang, L. Zhang, G. Chen, K. Huang, F. Xue, L. Wang, J. Zhao, B. Lu, Mater. Sci. Eng. A 800, 140168 (2021) |
| [23] |
J. Cui, X. Guo, S. Hao, X. Guo, R. Xu, Mater. Lett. 350, 134913 (2023)
DOI URL |
| [24] | C. Xue, Y. Zhang, P. Mao, C. Liu, Y. Guo, F. Qian, C. Zhang, K. Liu, M. Zhang, S. Tang, J. Wang, Addit. Manuf. 43, 102019 (2021) |
| [25] | D.A. Marques, J.P. Oliveira, A.C. Baptista,Metals 13, 641 (2023) |
| [26] | K.E.K. Vimal, M. Naveen Srinivas, S. Rajak,Mater. Today Proc. 41, 1139 (2021) |
| [27] |
X. Zhang, Y. Lv, S. Tan, Z. Dong, X. Zhou, Corros. Sci. 186, 109453 (2021)
DOI URL |
| [28] | T. Hauser, R.T. Reisch, P.P. Breese, B.S. Lutz, M. Pantano, Y. Nalam, K. Bela, T. Kamps, J. Volpp, A.F.H. Kaplan, Addit. Manuf. 41, 101993 (2021) |
| [29] | Y. Guo, Q. Han, J. Hu, X. Yang, P. Mao, J. Wang, S. Sun, Z. He, J. Lu, C. Liu, Acta Metall. Sin.-Engl. Lett. 35, 475 (2022) |
| [30] |
J. Donoghue, A.A. Antonysamy, F. Martina, P.A. Colegrove, S.W. Williams, P.B. Prangnell, Mater. Charact. 114, 103 (2016)
DOI URL |
| [31] | J. Hu, T. Sun, F. Cao, Y. Shen, Z. Yang, C. Guo, Acta Metall. Sin.-Engl. Lett. 37, 793 (2024) |
| [32] |
S.M. Gaytan, L.E. Murr, F. Medina, E. Martinez, M.I. Lopez, R.B. Wicker, Mater. Technol. 24, 180 (2009)
DOI URL |
| [33] | S.A. Kurkin, V.I. Anufriev, Weld. Prod. 31, 52 (1984) |
| [34] |
P.A. Colegrove, H.E. Coules, J. Fairman, F. Martina, T. Kashoob, H. Mamash, L.D. Cozzolino, J. Mater. Process. Technol. 213, 1782 (2013)
DOI URL |
| [35] | P. Colegrove, J. Ding, M. Benke, H. Coules, Math. Modell. Weld Phenom. 10, 691 (2012) |
| [36] |
X. Zhang, Y. Lv, X. Zhou, T. Hashimoto, Y. Ma, J. Alloys Compd. 898, 162872 (2022)
DOI URL |
| [37] |
X. Zhang, X. Zhou, T. Hashimoto, B. Liu, C. Luo, Z. Sun, Z. Tang, F. Lu, Y. Ma, Corros. Sci. 132, 1 (2018)
DOI URL |
| [38] |
X. Zhang, X. Zhou, T. Hashimoto, J. Lindsay, O. Ciuca, C. Luo, Z. Sun, X. Zhang, Z. Tang, Corros. Sci. 116, 14 (2017)
DOI URL |
| [39] | R. Revilla, J. Liang, S. Godet, I. De Graeve, J. Electrochem. Soc. 164, 2 (2016) |
| [40] | M. Cabrini, S. Lorenzi, T. Pastore, S. Pellegrini, E.P. Ambrosio, F. Calignano, D. Manfredi, M. Pavese, P. Fino, Electrochim. Acta 206, 346 (2016) |
| [41] |
M. Cabrini, S. Lorenzi, T. Pastore, S. Pellegrini, M. Pavese, P. Fino, E.P. Ambrosio, F. Calignano, D. Manfredi, Surf. Interface Anal. 48, 818 (2016)
DOI URL |
| [42] | A. Leon, A. Shirizly, E. Aghion,Metals 6, 148 (2016) |
| [43] |
X. Zhang, Y. Jiao, Y. Yu, B. Liu, T. Hashimoto, H. Liu, Z. Dong, Corros. Sci. 155, 1 (2019)
DOI URL |
| [44] |
X. Zhang, X. Zhou, J.O. Nilsson, Z. Dong, C. Cai, Corros. Sci. 144, 163 (2018)
DOI URL |
| [45] |
M. Li, A. Seyeux, F. Wiame, P. Marcus, J. Światowska, Corros. Sci. 176, 109040 (2020)
DOI URL |
| [46] |
X. Zhang, X. Zhou, T. Hashimoto, J. Lindsay, O. CillCa, C. Luo, Z. Sun, X. Zhang, Z. Tang, Corros. Sci. 116, 14 (2017)
DOI URL |
| [47] |
X. Zhang, X. Zhou, Y. Ma, G.E. Thompson, C. Luo, Z. Sun, X. Zhang, Z. Tang, Surf. Interface Anal. 48, 745 (2016)
DOI URL |
| [48] |
C. Trinidad, J. Światowska, S. Zanna, A. Seyeux, D. Mercier, R. Viroulaud, P. Marcus, Appl. Surf. Sci. 560, 149991 (2021)
DOI URL |
| [49] |
K.E. Knipling, D.C. Dunand, D.N. Seidman, Z. Metallkd. 97, 246 (2006)
DOI URL |
| [50] |
X. Zhang, Y. Lv, B. Liu, X. Zhou, T. Zhang, Y. Gao, Z. Dong, J. Wang, J.O. Nilsson, Corros. Commun. 3, 71 (2021)
DOI URL |
| [51] |
Y.J. Li, L. Arnberg, Acta Mater. 51, 3415 (2003)
DOI URL |
| [52] | D.L. Gilmore, E.A. Starke, Metall. Mater. Trans. A 28, 1399 (1997) |
| [53] |
X. Zhang, B. Liu, X. Zhou, J. Wang, T. Hashimoto, C. Luo, Z. Sun, Z. Tang, F. Lu, Corros. Sci. 135, 177 (2018)
DOI URL |
| [54] |
X. Zhou, C. Luo, Y. Ma, T. Hashimoto, G.E. Thompson, A.E. Hughes, P. Skeldon, Surf. Interface Anal. 45, 1543 (2013)
DOI URL |
| [55] |
S.C. Wang, M.J. Starink, Int. Mater. Rev. 50, 193 (2005)
DOI URL |
| [56] |
X. Zhou, C. Luo, T. Hashimoto, A.E. Hughes, G.E. Thompson, Corros. Sci. 58, 299 (2012)
DOI URL |
| [57] |
A. Boag, R.J. Taylor, T.H. Muster, N. Goodman, D. McCulloch, C. Ryan, B. Rout, D. Jamieson, A.E. Hughes, Corros. Sci. 52, 90 (2010)
DOI URL |
| [58] |
P.C. King, I.S. Cole, P.A. Corrigan, A.E. Hughes, T.H. Muster, Corros. Sci. 53, 1086 (2011)
DOI URL |
| [59] |
T. Hashimoto, X. Zhang, X. Zhou, P. Skeldon, S.J. Haigh, G.E. Thompson, Corros. Sci. 103, 157 (2016)
DOI URL |
| [60] |
X. Zhang, T. Hashimoto, J. Lindsay, X. Zhou, Corros. Sci. 108, 85 (2016)
DOI URL |
| [61] |
X. Zhang, X. Zhou, T. Hashimoto, B. Liu, Mater. Charact. 130, 230 (2017)
DOI URL |
| [62] | T. Hashimoto, X. Zhou, P. Skeldon, G.E. Thompson, Electrochim. Acta 179, 394 (2015) |
| [63] | S. Garcia-Vergara, F. Colin, P. Skeldon, G.E. Thompson, P. Bailey, T.C.Q. Noakes, H. Habazaki, K. Shimizu, J. Electrochem. Soc.151, B16 (2004) |
| [64] |
R.G. Buchheit, M.A. Martinez, L.P. Montes, J. Electrochem. Soc. 147, 119 (2000)
DOI URL |
| [65] |
R.G. Buchheit, R.P. Grant, P.F. Hlava, B. Mckenzie, G.L. Zender, J. Electrochem. Soc. 144, 2621 (1997)
DOI |
| [66] | M.B. Vukmirovic, N. Dimitrov, K. Sieradzki, J. Electrochem. Soc.149, B428 (2002) |
| [67] |
I. Yarita, R.L. Mallett, E.H. Lee, Steel Res. 56, 255 (1985)
DOI URL |
| [68] |
G. Sha, R.K.W. Marceau, X. Gao, B.C. Muddle, S.P. Ringer, Acta Mater. 59, 1659 (2011)
DOI URL |
| [69] | B. Gault, F. de Geuser, L. Bourgeois, B.M. Gabble, S.P. Ringer, B.C. Muddle,Ultramicroscopy 111, 683 (2011) |
| [70] |
C. Luo, X. Zhou, G.E. Thompson, A.E. Hughes, Corros. Sci. 61, 35 (2012)
DOI URL |
| [71] | X. Zhang, B. Liu, X. Zhou, J. Wang, C. Luo, Z. Sun, Z. Tang, F. Lu,Corrosion 73, 988 (2017) |
| [72] |
C.M. MacRae, A.E. Hughes, J.S. Laird, A.M. Glenn, N.C. Wilson, A. Torpy, M.A. Gibson, X.R. Zhou, N. Birbilis, G.E. Thompson, Microsc. Microanal. 24, 325 (2018)
DOI PMID |
| [73] |
C. Blanc, A. Freulon, M.C. Lafont, Y. Kihn, G. Mankowski, Corros. Sci. 48, 3838 (2006)
DOI URL |
| [74] | R.G. Buchheit, R.K. Boger, M.C. Carroll, R.M. Leard, C. Paglia, J.L. Searles,JOM 53, 29 (2001) |
| [1] | Dongchao Li, Fen Zhang, Lanyue Cui, Yueling Guo, Rongchang Zeng. Accelerated Corrosion Rate of Wire Arc Additive Manufacturing of AZ91D Magnesium Alloy: The Formation of Nano-scaled AlMn Phase [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(7): 1069-1082. |
| [2] | Yan-Long Ma, Hui-Bin Xu, Zhao-Yuan Liang, Lei Liu. Corrosion Resistance of Friction Stir Welded Al-Cu-Li Alloy AA2099-T8 [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(1): 127-134. |
| [3] | Helmuth Sarmiento Klapper, Natalia S. Zadorozne, Raul B. Rebak. Localized Corrosion Characteristics of Nickel Alloys: A Review [J]. Acta Metallurgica Sinica (English Letters), 2017, 30(4): 296-305. |
| [4] | Ajit Mishra. Performance of Corrosion-Resistant Alloys in Concentrated Acids [J]. Acta Metallurgica Sinica (English Letters), 2017, 30(4): 306-318. |
| [5] | J.Q. Zhang. CORROSION MONITORING OF LY12 IN SODIUM CHLORIDE SOLUTION WITH ELECTROCHEMICAL NOISE TECHNIQUE [J]. Acta Metallurgica Sinica (English Letters), 2001, 14(2): 91-96 . |
| [6] | LIU Dacheng CAO Chunan WANG Fuhui LOU Hanyi ZHA NG Lixin Institute of Corrosion and Protection of Metals,Academia Sinica,Shenyang,China[Originally published in ACTA METALL SIN (CHINESE EDN) 24 (5) 1988 pp B369—B371,received 28 September 1987;in revised form 16 December 1987]. LOCALIZED CORROSION OF MICROCRYSTALS OF 1Crl8Ni9Ti STAINLESS STEEL [J]. Acta Metallurgica Sinica (English Letters), 1989, 2(8): 143-145. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
WeChat
