Acta Metallurgica Sinica (English Letters) ›› 2025, Vol. 38 ›› Issue (12): 2165-2178.DOI: 10.1007/s40195-025-01929-8
Previous Articles Next Articles
Xiaoqing Liu1,2, Xiaoguang Qiao2, Xiaoye Qiu1, Xianke Zhang1, Chubin Yang3, Dongdong Zhang4, Xiurong Zhu1, Mingyi Zheng2(
)
Received:2025-04-29
Revised:2025-06-04
Accepted:2025-06-21
Online:2025-12-10
Published:2025-11-25
Contact:
Mingyi Zheng, zhenghe@hit.edu.cn
Xiaoqing Liu, Xiaoguang Qiao, Xiaoye Qiu, Xianke Zhang, Chubin Yang, Dongdong Zhang, Xiurong Zhu, Mingyi Zheng. Role of Grain Boundary Segregation and Nanoprecipitation on the Tensile Properties and Thermal Stability of Dilute Mg-0.7Al-0.3Ca (wt%) Alloy[J]. Acta Metallurgica Sinica (English Letters), 2025, 38(12): 2165-2178.
Add to citation manager EndNote|Ris|BibTeX
Fig. 2 a Band contrast image, b IPF map, c IPF image of as-extruded AX0703 alloy; d TEM DF image of DRXed regions in the as-extruded AX0703 alloy; e, f, g TEM BF images of non-DRXed regions in the as-extruded alloy; HRTEM images corresponding to the h phase A, i phase B in g
Fig. 3 a Elemental distribution of Mg, Ca and Al atoms in the APT tip, b the corresponding concentration depth profiles detected perpendicular to the recrystallized grain boundary ROI 1, c the corresponding concentration depth profiles detected across the interface ROI 2 of Al-Ca nanoprecipitate
Fig. 4 IPF maps of dilute AX0703 extrusion alloy under different annealing times: a 300 °C-10 min, b 300 °C-20 min, c 300 °C-30 min, d 300 °C-60 min, e 300 °C-120 min, f 300 °C-300 min, g 300 °C-600 min, h 300 °C-1200 min
Fig. 5 IPFs of the dilute AX0703 extrusion alloy under different annealing times: a 300 °C-10 min, b 300 °C-20 min, c 300 °C-30 min, d 300 °C-60 min, e 300 °C-120 min, f 300 °C-300 min, g 300 °C-600 min, h 300 °C-1200 min
Fig. 6 TEM microstructure of the dilute AX0703 extrusion alloy annealed at 300 °C-10 min and 300 °C-600 min: a TEM BF micrograph and SAED pattern of the AX0703 alloy annealed at 300 °C-10 min; b TEM BF micrograph corresponding to the yellow rectangular region in a; c HRTEM figure corresponding to the yellow rectangular region in b; d HAADF-STEM image of the AX0703 alloy annealed at 300 °C-600 min; elemental mappings of e Al and f Ca
Fig. 7 a IPF map of as-extruded Mg-1Al alloy; IPF maps of the as-extruded Mg-1Al alloy under different annealing times: b 300 °C-10 min, c 300 °C-60 min, d 300 °C-1200 min
Fig. 8 a IPF of as-extruded Mg-1Al alloy; IPFs of the as-extruded Mg-1Al alloy under different annealing times: b 300 °C-10 min, c 300 °C-60 min, d 300 °C-1200 min
Fig. 9 a Tensile engineering stress-strain curves of as-extruded and as-annealed AX0703 alloys, b plot map of engineering stress and elongation to failure for Mg-Al-Ca ternary alloys[[21,22,23,24]]
| Samples | YS (MPa) | UTS (MPa) | Elongation (%) | Grain size (μm) | |
|---|---|---|---|---|---|
| As-extruded and as-annealed AX0703 alloys | As-extruded | 376 ± 6.2 | 387 ± 7.3 | 5.3 ± 2.1 | 0.65 ± 0.1 |
| 300 °C-10 min | 356 ± 5.9 | 366 ± 5.7 | 6.9 ± 1.9 | 0.85 ± 0.1 | |
| 300 °C-20 min | 307 ± 3.7 | 311 ± 4.0 | 24.5 ± 2.3 | 1.4 ± 0.2 | |
| 300 °C-30 min | 258 ± 3.6 | 295 ± 4.1 | 27.9 ± 3.2 | 1.8 ± 0.2 | |
| 300 °C-60 min | 188 ± 3.3 | 218 ± 3.5 | 27.4 ± 3.4 | 2.5 ± 0.3 | |
| 300 °C-120 min | 156 ± 2.1 | 214 ± 3.3 | 27.4 ± 3.3 | 3.3 ± 0.4 | |
| 300 °C-300 min | 137 ± 2.2 | 194 ± 3.2 | 31.2 ± 3.9 | 4.0 ± 0.5 | |
| 300 °C-600 min | 117 ± 1.9 | 196 ± 2.2 | 33.5 ± 4.3 | 4.9 ± 0.8 | |
| 300 °C-1200 min | 100 ± 1.4 | 163 ± 1.8 | 32.9 ± 4.3 | 6.1 ± 1.1 | |
| As-extruded and as-annealed Mg-1Al alloys | As-extruded | 272 ± 4.2 | 320 ± 5.1 | 12.3 ± 1.5 | 0.7 ± 0.1 |
| 300 °C-10 min | 161 ± 3.0 | 236 ± 3.8 | 27.4 ± 3.0 | 2.6 ± 0.2 | |
| 300 °C-20 min | 152 ± 2.5 | 229 ± 3.6 | 29.7 ± 4.1 | 3.2 ± 0.3 | |
| 300 °C-30 min | 136 ± 2.0 | 211 ± 3.0 | 27.4 ± 4.1 | 3.6 ± 0.4 | |
| 300 °C-60 min | 126 ± 2.0 | 194 ± 2.9 | 21.3 ± 3.9 | 4.2 ± 0.4 | |
| 300 °C-120 min | 118 ± 1.9 | 183 ± 2.6 | 32.4 ± 4.3 | 5.3 ± 0.8 | |
| 300 °C-300 min | 107 ± 1.5 | 170 ± 2.5 | 32.6 ± 4.7 | 6.8 ± 1.0 | |
| 300 °C-600 min | 101 ± 1.5 | 167 ± 2.6 | 32.9 ± 4.6 | 8.3 ± 1.2 | |
| 300 °C-1200 min | 94 ± 1.3 | 152 ± 1.8 | 27.5 ± 4.0 | 9.5 ± 1.4 | |
Table 1 Tensile properties of as-extruded and as-annealed AX0703 and Mg-1Al alloys under the same annealing conditions
| Samples | YS (MPa) | UTS (MPa) | Elongation (%) | Grain size (μm) | |
|---|---|---|---|---|---|
| As-extruded and as-annealed AX0703 alloys | As-extruded | 376 ± 6.2 | 387 ± 7.3 | 5.3 ± 2.1 | 0.65 ± 0.1 |
| 300 °C-10 min | 356 ± 5.9 | 366 ± 5.7 | 6.9 ± 1.9 | 0.85 ± 0.1 | |
| 300 °C-20 min | 307 ± 3.7 | 311 ± 4.0 | 24.5 ± 2.3 | 1.4 ± 0.2 | |
| 300 °C-30 min | 258 ± 3.6 | 295 ± 4.1 | 27.9 ± 3.2 | 1.8 ± 0.2 | |
| 300 °C-60 min | 188 ± 3.3 | 218 ± 3.5 | 27.4 ± 3.4 | 2.5 ± 0.3 | |
| 300 °C-120 min | 156 ± 2.1 | 214 ± 3.3 | 27.4 ± 3.3 | 3.3 ± 0.4 | |
| 300 °C-300 min | 137 ± 2.2 | 194 ± 3.2 | 31.2 ± 3.9 | 4.0 ± 0.5 | |
| 300 °C-600 min | 117 ± 1.9 | 196 ± 2.2 | 33.5 ± 4.3 | 4.9 ± 0.8 | |
| 300 °C-1200 min | 100 ± 1.4 | 163 ± 1.8 | 32.9 ± 4.3 | 6.1 ± 1.1 | |
| As-extruded and as-annealed Mg-1Al alloys | As-extruded | 272 ± 4.2 | 320 ± 5.1 | 12.3 ± 1.5 | 0.7 ± 0.1 |
| 300 °C-10 min | 161 ± 3.0 | 236 ± 3.8 | 27.4 ± 3.0 | 2.6 ± 0.2 | |
| 300 °C-20 min | 152 ± 2.5 | 229 ± 3.6 | 29.7 ± 4.1 | 3.2 ± 0.3 | |
| 300 °C-30 min | 136 ± 2.0 | 211 ± 3.0 | 27.4 ± 4.1 | 3.6 ± 0.4 | |
| 300 °C-60 min | 126 ± 2.0 | 194 ± 2.9 | 21.3 ± 3.9 | 4.2 ± 0.4 | |
| 300 °C-120 min | 118 ± 1.9 | 183 ± 2.6 | 32.4 ± 4.3 | 5.3 ± 0.8 | |
| 300 °C-300 min | 107 ± 1.5 | 170 ± 2.5 | 32.6 ± 4.7 | 6.8 ± 1.0 | |
| 300 °C-600 min | 101 ± 1.5 | 167 ± 2.6 | 32.9 ± 4.6 | 8.3 ± 1.2 | |
| 300 °C-1200 min | 94 ± 1.3 | 152 ± 1.8 | 27.5 ± 4.0 | 9.5 ± 1.4 | |
| Alloy | Regions | σGB (MPa) | σdislo (MPa) | σtex (MPa) | σ0 (MPa) | σOrowan (MPa) | Predicted strength (MPa) | |
|---|---|---|---|---|---|---|---|---|
| AXM070304 | DRXed | 228 | 43 | - | 19 | 61 | 351 (86 vol.%) | 348 |
| Non-DRXed | - | 82 | 171 | 19 | 58 | 330 (14 vol.%) | ||
Table 2 Strengthening contributions from σ0, GBs, Orowan precipitations, dislocations and texture of the AX0703 extrusion alloy
| Alloy | Regions | σGB (MPa) | σdislo (MPa) | σtex (MPa) | σ0 (MPa) | σOrowan (MPa) | Predicted strength (MPa) | |
|---|---|---|---|---|---|---|---|---|
| AXM070304 | DRXed | 228 | 43 | - | 19 | 61 | 351 (86 vol.%) | 348 |
| Non-DRXed | - | 82 | 171 | 19 | 58 | 330 (14 vol.%) | ||
Fig. 10 Functional relationship between (Dn-D0n) and t of AX0703 alloy: a n = 1, b n = 2, c n = 3, d n = 4; the functional relationship between (Dn-D0n) and t of Mg-1Al alloy: e n = 1, f n = 2, g n = 3
| [1] | X. Liu, X. Zhang, J. Gao, X. Zhu, L. Xiao, C. Yang, Acta Metall. Sin.-Engl. Lett. 38, 299 (2025) |
| [2] | D. Gu, J. Peng, J. Wang, Z. Liu, F. Pan, Acta Metall. Sin.-Engl. Lett. 34, 1 (2021) |
| [3] | B.S. Cheng, D.P. Li, B.K. Xing, R.Q. Hou, P.L. Jiang, S.J. Zhu, S.K. Guan, Acta Metall. Sin.-Engl. Lett. 37, 1147 (2024) |
| [4] |
X. Liu, X. Qiao, X. Zhang, D. Zhang, L. Xiao, W. Zhong, X. Zhu, M. Zheng, J. Mater. Res. Technol. 28, 2235 (2024)
DOI URL |
| [5] | Q.Y. Liao, D.Z. Zhao, Q.C. Le, W.X. Hu, Y.C. Jiang, W.Y. Zhou, L. Ren, D.D. Li, Z.Y. Yin, Acta Metall. Sin.-Engl. Lett. 37, 1115 (2024) |
| [6] | W.J. Kim, H.G. Jeong, H.T. Jeong, Scr. Mater. 61, 1042 (2009) |
| [7] | Y. Yuan, A. Ma, X. Gou, J. Jiang, G. Arhin, D. Song, H. Liu, Mater. Sci. Eng. A 677, 128 (2016) |
| [8] | Z. Zeng, N. Stanford, C. Davies, J. Nie, N. Birbilis, Int. Mater. Rev. 10, 6 (2018) |
| [9] | X.Q. Liu, D.S. Zhao, L. Ye, Y.L. Zhuang, S.B. Gao, J.B. Wang, Mater. Sci. Eng. A 718, 467 (2018) |
| [10] | C. Xu, G.H. Fan, T. Nakata, X. Liang, Y.Q. Chi, X.G. Qiao, G.J. Cao, T.T. Zhang, M. Huang, K.S. Miao, M.Y. Zheng, Metall. Mater. Trans. A 49, 1946 ( 2018) |
| [11] | Z. Ding, W. Liu, H. Sun, S. Li, D. Zhang, Y. Zhao, E.J. Lavernia, Y. Zhu, Acta Mater. 146, 270 (2018) |
| [12] | G. Zhu, L. Wang, H. Zhou, J. Wang, Y. Shen, P. Tu, H. Zhu, W. Liu, P. Jin, X. Zeng, Int. J. Plast. 120, 178 (2019) |
| [13] | X. Liu, X. Qiao, W. Xie, R. Pei, L. Yuan, M. Zheng, Mater. Sci. Eng. A 839, 142847 (2022) |
| [14] | H.C. Pan, C.L. Yang, Y.T. Yang, Y.Q. Dai, D.S. Zhou, L.J. Chai, Q.Y. Huang, Q.S. Yang, G.W. Qin, Mater. Lett. 237, 68 (2019) |
| [15] | K. Suzuki, N. Saito, X. Huang, M. Yuasa, Y. Chino, Mater. Trans. 58, 1622 (2017) |
| [16] |
X.Q. Liu, X.G. Qiao, Z.T. Li, M.Y. Zheng, Mater. Charact. 162, 110197 (2020)
DOI URL |
| [17] | Z.T. Li, X.G. Qiao, C. Xu, S. Kamado, M.Y. Zheng, A.A. Luo, J. Alloys Compd. 792, 140 (2019) |
| [18] | X. Liu, X. Qiao, Y. Liu, R. Pei, X. Zhang, L. Yuan, Y. Chi, X. Zhu, M. Yu, M. Zheng, J. Mater. Res. Technol. 25, 1176 (2023) |
| [19] | T. Nakata, C. Xu, R. Ajima, Y. Matsumoto, K. Shimizu, T.T. Sasaki, K. Hono, S. Kamado, Mater. Sci. Eng. A 712, 18 (2018) |
| [20] | M. Cihova, R. Schaublin, L.B. Hauser, S.S.A. Gerstl, C. Simson, P.J. Uggowitzer, J.F. Loffler, Acta Mater. 158, 228 (2018) |
| [21] | M. Masoumi, H. Hu, Mater. Sci. Eng. A 528, 3592 (2011) |
| [22] | L. Zhang, K. Deng, K. Nie, F. Xu, K. Su, W. Liang, Mater. Sci. Eng. A 636, 287 (2015) |
| [23] | P. Wu, F. Xu, K. Deng, F. Han, Z. Zhang, R. Gao, Corros. Sci. 127, 289 (2017) |
| [24] | J. Jayaraj, C. Mendis, T. Ohkubo, K. Oh-ishi, K. Hono, Scr. Mater. 63, 834 (2010) |
| [25] | Y.F. Wu, S. Li, Z.G. Ding, W. Liu, Y.H. Zhao, Y.T. Zhu, Scr. Mater. 112, 104 (2016) |
| [26] | X.Q. Liu, X.G. Qiao, R.S. Pei, Y.Q. Chi, L. Yuan, M.Y. Zheng, J. Magnes. Alloy. 11, 558 (2023) |
| [27] |
Z.T. Li, X.G. Qiao, C. Xu, X.Q. Liu, S. Kamado, M.Y. Zheng, J. Alloys Compd. 836, 154689 (2020)
DOI URL |
| [28] | Q. Ren, S. Yuan, S. Luan, J. Wang, X. Li, X. Liu, Acta Metall. Sin.-Engl. Lett. 37, 996 (2024) |
| [29] | Z. Zeng, Y. Zhu, S. Xu, M. Bian, C.H.J. Davies, N. Birbilis, J. Nie, Acta Mater. 105, 491 (2016) |
| [30] | W. Pantleon, Scr. Mater. 58, 996 (2008) |
| [31] |
R. Pei, Y. Zou, D. Wei, T. Al-Samman, Acta Mater. 208, 116749 (2021)
DOI URL |
| [32] | J.D. Robson, Metall. Mater. Trans. A 45, 3209 (2014) |
| [33] | Z.R. Zeng, Y.M. Zhu, R.L. Liu, S.W. Xu, C.H.J. Davies, J.F. Nie, N. Birbilis, Acta Mater. 160, 101 (2018) |
| [34] | W. Yuan, S. Panigrahi, J. Su, R. Mishra, Scr. Mater. 65, 996 (2011) |
| [35] | P. Luo, D.T. McDonald, W. Xu, S. Palanisamy, M.S. Dargusch, K. Xia, Scr. Mater. 66, 787 (2012) |
| [36] | Z.R. Zeng, Y.M. Zhu, J.F. Nie, S.W. Xu, C.H.J. Davies, N. Birbilis, Metall. Mater. Trans. A 50, 4346 (2019) |
| [37] | X. Wang, L. Hu, K. Liu, Y. Zhang, J. Alloys Compd. 527, 196 (2012) |
| [38] |
D. Zhao, X. Ma, A. Srivastava, G. Turner, I. Karaman, K.Y. Xie, Acta Mater. 207, 116691 (2021)
DOI URL |
| [1] | Yuanyuan Feng, Jianchao Pang, Xiaoyuan Teng, Chenglu Zou, Jingjing Liang, Yuping Zhu, Shouxin Li, Jinguo Li, Zhefeng Zhang. Quasi-in-situ EBSD Study on the Microstructure and Tensile Properties of Selective Laser Melted Inconel 718 Alloy Processed by Different Heat Treatments [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(9): 1499-1512. |
| [2] | B. M. Shi, Y. T. Pang, B. H. Shan, B. B. Wang, Y. Liu, P. Xue, J. F. Zhang, Y. N. Zan, Q. Z. Wang, B. L. Xiao, Z. Y. Ma. Microstructure Evolution and Fracture Behavior of (B4C+Al2O3)/Al Friction Stir Welded Joints [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(9): 1513-1526. |
| [3] | H. Q. Dai, N. Li, L. H. Wu, J. Wang, P. Xue, F. C. Liu, D. R. Ni, B. L. Xiao, Z. Y. Ma. Low-Temperature Superplastic Deformation Behavior of Bimodal Microstructure of Friction Stir Processed Ti-6Al-4V Alloy [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(9): 1559-1569. |
| [4] | Shuyi Ren, Jiao Li, Kai Wu, Xiaoge Li, Yaqiang Wang, Jinyu Zhang, Gang Liu, Jun Sun. Thermal Stability and Mechanical Properties of Nanotwinned Ni-W Alloyed Films [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(9): 1570-1582. |
| [5] | Xinhao Li, Jieli Ma, Yiren Wang, Yong Jiang. A Novel Nano-Structured Die Steel with High Strength and High Thermal Stability [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(9): 1591-1603. |
| [6] | F. S. Li, L. H. Wu, Y. Kan, H. B. Zhao, D. R. Ni, P. Xue, B. L. Xiao, Z. Y. Ma. Microstructure Evolution and Fracture Mechanisms in Electron Beam Welded Joint of Ti-6Al-4V ELI Alloy Ultra-thick Plates [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(8): 1317-1330. |
| [7] | Haoyu Cheng, Chenyang Hou, Jianlei Zhang, Xiaodong Mao, Yuanxiang Zhang, Yanyun Zhao, Chulun Shen, Changjiang Song. An Innovative Large-Scale Preparation Method for ODS Steel: Zone Melting with Built-In Precursor Powder [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(8): 1397-1409. |
| [8] | Haoran Pang, Liwei Lu, Gongji Yang, Xiaojun Wang, Wen Wang, Hua Zhang, Yujuan Wu. Amelioration of Mechanical Properties of Rolled Mg-4.5Al-2.5Zn Alloy by Cryogenic Cycling Treatment [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(8): 1436-1452. |
| [9] | Qi Zhou, Yufeng Xia, Yu Duan, Baihao Zhang, Yuqiu Ye, Peitao Guo, Lu Li. Microstructure and Mechanical Properties of Yb-Containing AZ80 Cast Alloys [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(7): 1095-1108. |
| [10] | Mengjun Chen, Tingping Hou, Shi Cheng, Feng Hu, Tao Yu, Xianming Pan, Yuanyuan Li, Kaiming Wu. A Comprehensive Exploration of the Relationship between Microstructure Optimization and Strength Enhancement in Low-Density 5Al-5Mn Steel [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(7): 1219-1236. |
| [11] | Wangjian Yu, Rui Hu, Guoqiang Shang, Xian Luo, Hong Wang. Correlation Mechanism Between Microstructure and Fatigue Crack Propagation Behavior of Ti-Mo-Cr-V-Nb-Al Titanium Alloys [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(6): 981-1002. |
| [12] | Wei Pan, Bin Xu, Chong Li. Effects of Groove Shape on Microstructure and Mechanical Responses of Laser-Directed Energy Deposition-Repaired GH4099 Ni-Based Superalloy [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(6): 1003-1011. |
| [13] | Xiang Fei, Naicheng Sheng, Zhaokuang Chu, Han Wang, Shijie Sun, Yuping Zhu, Shigang Fan, Jinjiang Yu, Guichen Hou, Jinguo Li, Yizhou Zhou, Xiaofeng Sun. Design Strategy for Synergistic Strengthening of W and Al in High-W Superalloys [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(6): 1057-1068. |
| [14] | Yao Zhang, Hongtao Wang, Zhongtao Lu, Zifeng Li, Pengfei Wen, Xiaobin Feng, Guodong Li, Bo Duan, Pengcheng Zhai. Effect of Ag Vacancies on the Mechanical Properties of Ag2S Thermoelectric Semiconductor [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(5): 869-875. |
| [15] | Yaoxiang Geng, Keying Lv, Chunfeng Zai, Zhijie Zhang, Anil Kunwar. A High-Strength TiB2-Modified Al-Si-Mg-Zr Alloy Fabricated by Laser Powder-Bed Fusion [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(4): 542-554. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
WeChat
