Acta Metallurgica Sinica (English Letters) ›› 2024, Vol. 37 ›› Issue (4): 648-664.DOI: 10.1007/s40195-023-01642-4
Previous Articles Next Articles
Zhaochen Yu1, Kaixuan Feng1, Shuyun Deng1, Yang Chen1, Hong Yan1, Honggun Song1, Chao Luo1,2, Zhi Hu1()
Received:
2023-08-18
Revised:
2023-10-08
Accepted:
2023-10-18
Online:
2024-04-10
Published:
2024-01-16
Contact:
Zhi Hu, huzhi@ncu.edu.cn
Zhaochen Yu, Kaixuan Feng, Shuyun Deng, Yang Chen, Hong Yan, Honggun Song, Chao Luo, Zhi Hu. Quasi-in-situ Observation and SKPFM Studies on Phosphate Protective Film and Surface Micro-Galvanic Corrosion in Biological Mg-3Zn-xNd Alloys[J]. Acta Metallurgica Sinica (English Letters), 2024, 37(4): 648-664.
Add to citation manager EndNote|Ris|BibTeX
Alloys | Zn | Nd | Mg |
---|---|---|---|
Mg-3Zn | 2.86 | 0 | Bal. |
Mg-3Zn-0.6Nd | 2.83 | 0.57 | Bal. |
Mg-3Zn-1.2N d | 2.79 | 1.18 | Bal. |
Table 1 Chemical components of the experimental alloys (wt%)
Alloys | Zn | Nd | Mg |
---|---|---|---|
Mg-3Zn | 2.86 | 0 | Bal. |
Mg-3Zn-0.6Nd | 2.83 | 0.57 | Bal. |
Mg-3Zn-1.2N d | 2.79 | 1.18 | Bal. |
Fig. 4 2D surface topography, 3D surface topography, 3D surface potential map and the relative potential curve on the A-B line obtained from SKPFM results of Mg-3Zn alloy a-d and Mg-3Zn-0.6Nd alloy e-h
Fig. 5 Optical microscope images of quasi-in-situ corrosion morphology of Mg-3Zn-xNd (x = 0, 0.6, 1.2) alloys: a-d Mg-3Zn alloy; e-h Mg-3Zn-0.6Nd alloy; i-l Mg-3Zn-1.2Nd alloy
Fig. 6 SEM images of the quasi-in-situ corrosion observation area and the corresponding EDS mapping of the Mg-3Zn-xNd (x = 0, 0.6, 1.2) alloys before and after corrosion: a-d Mg-3Zn alloy; e-h Mg-3Zn-0.6Nd alloy; i-l Mg-3Zn-1.2Nd alloy
Specimen | Ecorr (VSCE) | icorr (μA/cm2) |
---|---|---|
Mg-3Zn | − 1.789 | 276.8 |
Mg-3Zn-0.6Nd | − 1.619 | 140.042 |
Mg-3Zn-1.2Nd | − 1.635 | 180.548 |
Mg-3Zn (24 h) | − 1.436 | 157.805 |
Mg-3Zn-0.6Nd (24 h) | − 1.131 | 12.35 |
Mg-3Zn-1.2Nd (24 h) | − 1.179 | 29.87 |
Table 3 Electrochemical parameters from the potentiodynamic polarization curves of Mg-3Zn-xNd (x = 0, 0.6, 1.2) alloys
Specimen | Ecorr (VSCE) | icorr (μA/cm2) |
---|---|---|
Mg-3Zn | − 1.789 | 276.8 |
Mg-3Zn-0.6Nd | − 1.619 | 140.042 |
Mg-3Zn-1.2Nd | − 1.635 | 180.548 |
Mg-3Zn (24 h) | − 1.436 | 157.805 |
Mg-3Zn-0.6Nd (24 h) | − 1.131 | 12.35 |
Mg-3Zn-1.2Nd (24 h) | − 1.179 | 29.87 |
Alloys | Conditions | Ecorr (VSCE) | icorr (μA/cm2) | η (%) | References |
---|---|---|---|---|---|
Mg-2Zn-0.6Zr | Hank’s | − 1.509 | 20.27 | - | [ |
Mg-2Zn-0.6Zr-0.2Nd | Hank’s | − 1.494 | 16.21 | 20 | |
Mg-2Zn-0.2Mn | SBF | − 1.687 | 369.8 | - | [ |
Mg-2Zn-0.2Mn-0.6Nd | SBF | − 1.535 | 50.23 | 86.4 | |
Zn-5Al | 3.5% NaCl | − 1.142 | 2.181 | - | [ |
Zn-5Al-0.06Nd | 3.5% NaCl | − 1.117 | 1.061 | 51.4 | |
Mg-9Al | 3.5% NaCl | − 1.472 | 86 | - | [ |
Mg-9Al-0.25Nd | 3.5% NaCl | − 1.535 | 43.4 | 49.5 | |
Mg-2Zn-0.2Mn | Kokubo | − 1.633 | 287.59 | - | [ |
Mg-2Zn-0.2Mn-0.6Nd | Kokubo | − 1.502 | 36.32 | 87.3 | |
Mg-2Zn-0.2Mn-1.2Nd | Kokubo | − 1.588 | 58.21 | 79.7 | |
Mg-2Zn-0.2Mn-1.8Nd | Kokubo | − 1.611 | 93.65 | 67.4 | |
Mg-3Zn | SBF | − 1.789 | 276.8 | - | Present study |
Mg-3Zn-0.6Nd | SBF | − 1.619 | 140.042 | 49.4 | |
Mg-3Zn-1.2Nd | SBF | − 1.635 | 180.548 | 34.7 | |
Mg-3Zn (24 h) | SBF | − 1.436 | 157.805 | - | |
Mg-3Zn-0.6Nd (24 h) | SBF | − 1.131 | 12.35 | 92.1 | |
Mg-3Zn-1.2Nd (24 h) | SBF | − 1.179 | 29.87 | 81.1 |
Table 4 Modification of Nd to alloys under different conditions
Alloys | Conditions | Ecorr (VSCE) | icorr (μA/cm2) | η (%) | References |
---|---|---|---|---|---|
Mg-2Zn-0.6Zr | Hank’s | − 1.509 | 20.27 | - | [ |
Mg-2Zn-0.6Zr-0.2Nd | Hank’s | − 1.494 | 16.21 | 20 | |
Mg-2Zn-0.2Mn | SBF | − 1.687 | 369.8 | - | [ |
Mg-2Zn-0.2Mn-0.6Nd | SBF | − 1.535 | 50.23 | 86.4 | |
Zn-5Al | 3.5% NaCl | − 1.142 | 2.181 | - | [ |
Zn-5Al-0.06Nd | 3.5% NaCl | − 1.117 | 1.061 | 51.4 | |
Mg-9Al | 3.5% NaCl | − 1.472 | 86 | - | [ |
Mg-9Al-0.25Nd | 3.5% NaCl | − 1.535 | 43.4 | 49.5 | |
Mg-2Zn-0.2Mn | Kokubo | − 1.633 | 287.59 | - | [ |
Mg-2Zn-0.2Mn-0.6Nd | Kokubo | − 1.502 | 36.32 | 87.3 | |
Mg-2Zn-0.2Mn-1.2Nd | Kokubo | − 1.588 | 58.21 | 79.7 | |
Mg-2Zn-0.2Mn-1.8Nd | Kokubo | − 1.611 | 93.65 | 67.4 | |
Mg-3Zn | SBF | − 1.789 | 276.8 | - | Present study |
Mg-3Zn-0.6Nd | SBF | − 1.619 | 140.042 | 49.4 | |
Mg-3Zn-1.2Nd | SBF | − 1.635 | 180.548 | 34.7 | |
Mg-3Zn (24 h) | SBF | − 1.436 | 157.805 | - | |
Mg-3Zn-0.6Nd (24 h) | SBF | − 1.131 | 12.35 | 92.1 | |
Mg-3Zn-1.2Nd (24 h) | SBF | − 1.179 | 29.87 | 81.1 |
Fig. 8 EIS test results of Mg-3Zn-xNd (x = 0, 0.6, 1.2) immersion in SBF and equivalent fitting circuit of the EIS test: a 0 h; b 24 h; c equivalent fitting circuit
Specimen | Rs (Ω·cm2) | Rct (Ω·cm2) | CPEdl (F/cm2) | Rf (Ω·cm2) | CPEf (F/cm2) | ||
---|---|---|---|---|---|---|---|
C1-T | n1 | C2-T | n2 | ||||
Mg-3Zn | 32.2 | 58.69 | 2.96 × 10−5 | 0.87 | 13.03 | 5.41 × 10−3 | 0.92 |
Mg-3Zn-0.6Nd | 24.33 | 145.5 | 4.06 × 10−5 | 0.81 | 24.88 | 2.8 × 10−3 | 0.86 |
Mg-3Zn-1.2Nd | 19.09 | 73.13 | 2.73 × 10−5 | 0.87 | 30.20 | 5.51 × 10−3 | 0.77 |
Mg-3Zn (24 h) | 32.84 | 209.7 | 3.5 × 10−5 | 0.78 | 16.76 | 6.5 × 10−5 | 0.78 |
Mg-3Zn-0.6Nd (24 h) | 114.4 | 4271 | 4.25 × 10−5 | 0.66 | 3204 | 1.6 × 10−3 | 0.64 |
Mg-3Zn-1.2Nd (24 h) | 125.2 | 2726 | 4.4 × 10−5 | 0.69 | 2073 | 1.7 × 10−3 | 0.66 |
Table 5 Electrochemical parameters of Mg-3Zn-xNd (x = 0, 0.6, 1.2) alloys obtained by the fits of the experimental EIS data
Specimen | Rs (Ω·cm2) | Rct (Ω·cm2) | CPEdl (F/cm2) | Rf (Ω·cm2) | CPEf (F/cm2) | ||
---|---|---|---|---|---|---|---|
C1-T | n1 | C2-T | n2 | ||||
Mg-3Zn | 32.2 | 58.69 | 2.96 × 10−5 | 0.87 | 13.03 | 5.41 × 10−3 | 0.92 |
Mg-3Zn-0.6Nd | 24.33 | 145.5 | 4.06 × 10−5 | 0.81 | 24.88 | 2.8 × 10−3 | 0.86 |
Mg-3Zn-1.2Nd | 19.09 | 73.13 | 2.73 × 10−5 | 0.87 | 30.20 | 5.51 × 10−3 | 0.77 |
Mg-3Zn (24 h) | 32.84 | 209.7 | 3.5 × 10−5 | 0.78 | 16.76 | 6.5 × 10−5 | 0.78 |
Mg-3Zn-0.6Nd (24 h) | 114.4 | 4271 | 4.25 × 10−5 | 0.66 | 3204 | 1.6 × 10−3 | 0.64 |
Mg-3Zn-1.2Nd (24 h) | 125.2 | 2726 | 4.4 × 10−5 | 0.69 | 2073 | 1.7 × 10−3 | 0.66 |
Fig. 10 Surface corrosion morphology images and corresponding EDS mapping of tested alloys immersed in SBF for 24 h: a, b Mg-3Zn alloy; c, d Mg-3Zn-0.6Nd alloy; e, f Mg-3Zn-1.2Nd alloy
Fig. 11 Longitudinal images and the corresponding EDS mapping of tested alloys immersed in SBF for 24 h: a Mg-3Zn alloy; b Mg-3Zn-0.6Nd alloy; c Mg-3Zn-1.2Nd alloy; d locally enlarged longitudinal image; e EDS result
[1] |
V.C. Shunmugasamy, M. AbdelGawad, M.U. Sohail, T. Ibrahim, T. Khan, T.D. Seers, B. Mansoor, Bioact. Mater. 28, 448 (2023)
DOI PMID |
[2] | C.J. Yan, B. Guan, Y.C. Xin, L.Y. Zhao, G.J. Huang, R. Hong, X.B. Chen, P.K. Chu, Acta Metall. Sin. -Engl. Lett. 36, 439 (2023) |
[3] |
Z. Cui, W. Li, L. Cheng, D. Gong, W. Cheng, W. Wang, Mater. Charact. 151, 620 (2019)
DOI URL |
[4] | M. Hashemi, R. Alizadeh, T.G. Langdon, J. Magnes. Alloy. 11, 7 (2023) |
[5] | L. Shi, Y. Yan, C.S. Shao, K. Yu, B. Zhang, L.J. Chen, J. Magnes. Alloy. (2022) |
[6] |
S. Cai, T. Lei, N. Li, F. Feng, Mater. Sci. Eng. C 32, 2570 (2012)
DOI URL |
[7] |
S. Jafari, R.S. Raman, C.H. Davies, J. Hofstetter, P.J. Uggowitzer, J.F. Löffler, J. Mech. Behav. Biomed. Mater. 65, 634 (2017)
DOI URL |
[8] |
S.E. Harandi, P.C. Banerjee, C.D. Easton, R.S. Raman, Mater. Sci. Eng. C 80, 335 (2017)
DOI URL |
[9] |
W. Jiang, J. Wang, W. Zhao, Q. Liu, D. Jiang, S. Guo, J. Magnes. Alloy. 7, 15 (2019)
DOI URL |
[10] |
C. Cai, R. Song, L. Wang, J. Li, Appl. Surf. Sci. 462, 243 (2018)
DOI URL |
[11] |
Y. Zhang, J. Li, J. Li, J. Alloys Compd. 730, 458 (2018)
DOI URL |
[12] |
D.H. Cho, B.W. Lee, J.Y. Park, K.M. Cho, I.M. Park, J. Alloys Compd. 695, 1166 (2017)
DOI URL |
[13] |
Y. Cubides, A.I. Karayan, D. Zhao, L. Nash, K. Xie, H. Castaneda, J. Alloys Compd. 840, 155786 (2020)
DOI URL |
[14] | J. Shen, T. Lai, Z. Yin, Y. Chen, K. Wang, H. Yan, H. Song, R. Liu, C. Luo, Z. Hu, J. Magnes. Alloy. (2022). https://doi.org/10.1016/j.jma.2022.06.016 |
[15] |
R. Ambat, N.N. Aung, W. Zhou, Corros. Sci. 42, 1433 (2000)
DOI URL |
[16] |
J. Kwon, S.-M. Baek, H. Jung, J.C. Kim, S.Y. Lee, S.S. Park, Corros. Sci. 185, 109425 (2021)
DOI URL |
[17] |
Y. Jin, C. Blawert, F. Feyerabend, J. Bohlen, M.S. Campos, S. Gavras, B. Wiese, D. Mei, M. Deng, H. Yang, Corros. Sci. 158, 108096 (2019)
DOI URL |
[18] |
L. Yang, S. He, C. Yang, X. Zhou, X. Lu, Y. Huang, G. Qin, E. Zhang, J. Magnes. Alloy. 9, 676 (2021)
DOI URL |
[19] |
T. Lai, Z. Yin, J. Shen, P. Sun, Q. Liu, K. Wang, H. Yan, H. Song, C. Luo, Z. Hu, J. Electrochem. Soc. 168, 081502 (2021)
DOI |
[20] |
R. Jia, M. Zhang, L. Zhang, W. Zhang, F. Guo, J. Alloys Compd. 634, 263 (2015)
DOI URL |
[21] |
R. Arrabal, A. Pardo, M. Merino, M. Mohedano, P. Casajús, K. Paucar, G. Garcés, Corros. Sci. 55, 301 (2012)
DOI URL |
[22] | K.H. Anantha, C. Örnek, S. Ejnermark, A. Medvedeva, J. Sjöström, J. Pan, J. Electrochem. Soc. 164, C85 (2017) |
[23] |
Z. Yin, R. He, Y. Chen, Z. Yin, K. Yan, K. Wang, H. Yan, H. Song, C. Yin, H. Guan, Appl. Surf. Sci. 536, 147761 (2021)
DOI URL |
[24] |
P. Jiang, C. Blawert, N. Scharnagl, J. Bohlen, M.L. Zheludkevich, Corros. Sci. 174, 108863 (2020)
DOI URL |
[25] | B. Venkateswarlu, B.R. Sunil, R.S. Kumar, Mater. Today Proc. (2023). https://doi.org/10.1016/j.matpr.2023.02.342 |
[26] | D.Y. Ding, Y.H. Du, M.F. Tang, S. Bo, G. Ning, H.J. Zhang, S.F. Guo, Trans. Nonferr. Metal. Soc. 33, 7 (2023) |
[27] |
Z. Cao, G. Kong, C. Che, Y. Wang, Appl. Surf. Sci. 426, 67 (2017)
DOI URL |
[28] |
B. Mingo, R. Arrabal, M. Mohedano, C. Mendis, R. Del Olmo, E. Matykina, N. Hort, M. Merino, A. Pardo, Mater. Des. 130, 48 (2017)
DOI URL |
[29] |
J. Niu, M. Xiong, X. Guan, J. Zhang, H. Huang, J. Pei, G. Yuan, Corros. Sci. 113, 183 (2016)
DOI URL |
[30] |
Y. Zhang, J.Y. Li, P.K. Liaw, Y.Z. Xu, H.Y. Lai, J. Alloys Compd. 769, 552 (2018)
DOI URL |
[31] |
Y. Chen, X. Wang, T. Lai, D. Liu, J. Pan, L. Lin, H. Guan, C. Luo, H. Song, Y. Xin, J. Mol. Liq. 357, 119095 (2022)
DOI URL |
[32] |
Z. Hu, Z. Yin, Z. Yin, K. Wang, Q. Liu, P. Sun, H. Yan, H. Song, C. Luo, H. Guan, Corros. Sci. 176, 108923 (2020)
DOI URL |
[33] |
Z. Hu, R. Liu, S. Kairy, X. Li, H. Yan, N. Birbilis, Corros. Sci. 149, 144 (2019)
DOI |
[34] | X.Z. Shi, Z.Y. Cui, J. Li, B.C. Hu, Y.Q. An, X. Wang, H.Z. Cui, Acta Metall. Sin. -Engl. Lett. 36, 1421 (2023) |
[35] |
X. Yan, P. Wan, L. Tan, M. Zhao, L. Qin, K. Yang, Mater. Sci. Eng. C 93, 565 (2018)
DOI URL |
[36] | T. Bu, R. Jia, T. Ying, A. Atrens, P. Chen, D. Zheng, F. Cao, Acta Metall. Sin. -Engl. Lett. 36, 1630 (2023) |
[37] |
S. Mohajernia, S. Hejazi, A. Eslami, M. Saremi, Surf. Coat. Technol. 263, 54 (2015)
DOI URL |
[38] |
Y. Song, E.-H. Han, D. Shan, C.D. Yim, B.S. You, Corros. Sci. 65, 322 (2012)
DOI URL |
[39] |
N. Dinodi, A.N. Shetty, J. Magnes. Alloy. 1, 201 (2013)
DOI URL |
[40] | J. Chen, T. Jiang, X. Lan, K. Kang, F. Cai, S. Ma, Mater. Today Phys. 20, 100474 (2021) |
[41] | Z. Xu, H. Liu, G. Hu, X. Zhuo, K. Yan, J. Ju, W. Wang, H. Teng, J. Jiang, J. Bai, Acta Metall. Sin. -Engl. Lett. 36, 1833 (2023) |
[42] |
X. Cui, Q. Li, Y. Li, F. Wang, G. Jin, M. Ding, Appl. Surf. Sci. 255, 2098 (2008)
DOI URL |
[43] |
Y. Song, D. Shan, R. Chen, F. Zhang, E.-H. Han, Surf. Coat. Technol. 203, 1107 (2009)
DOI URL |
[44] |
C.H. Kao, T. Chan, K.S. Chen, Y.T. Chung, W.S. Luo, Microelectron. Reliab. 50, 709 (2010)
DOI URL |
[45] | Z.F. Al-Sherify, N.M. Dawood, Z.T. Khulief, Mater. Today: Proc. 61, 1100 (2022) |
[46] |
T. Lei, W. Tang, S.H. Cai, F.F. Feng, N.F. Li, Corros. Sci. 54, 270 (2012)
DOI URL |
[47] |
R.C. Zeng, L. Sun, Y.F. Zheng, H.Z. Cui, E.H. Han, Corros. Sci. 79, 69 (2014)
DOI URL |
[48] |
Y. Song, Y.H. Liu, S. Yu, X. Zhu, S. Wang, J. Mater. Sci. 42, 4435 (2007)
DOI URL |
[49] |
S. Zhong, C. Wu, J. Li, Y. Chen, Y. Wang, Y. Yan, J. Alloys Compd. 851, 156772 (2021)
DOI URL |
[50] |
X. Li, A. Ito, Y. Sogo, X. Wang, R. LeGeros, Acta Biomater. 5, 508 (2009)
DOI URL |
[1] | Jinchao Jiao, Jin Zhang, Yong Lian, Shengli Han, Kaihong Zheng, Fusheng Pan. Influence of Micro/Nano-Ti Particles on the Corrosion Behavior of AZ31-Ti Composites [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(3): 484-498. |
[2] | Baotian Du, Zijian Yu, Kang Shi, Ke Liu, Shubo Li, Wenbo Du. Improving the Mechanical Properties of Mg-Gd-Y-Ag-Zr Alloy via Pre-Strain and Two-Stage Ageing [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(3): 456-468. |
[3] | Guoqiang Xi, Xuhan Zhao, Yanlong Ma, Yu Mou, Ju Xiong, Kai Ma, Jingfeng Wang. Comparative Study on Corrosion Behavior and Mechanism of As-Cast Mg-Zn-Y and Mg-Zn-Gd Alloys [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(2): 310-322. |
[4] | Yun Zhang, Chen Jiang, Shaoheng Sun, Wei Xu, Quan Yang, Yongjun Zhang, Shiwei Tian, Xiaoge Duan, Zhe Xu, Haitao Jiang. Microstructural Evolution during Tensile Deformation in TRC-ZA21 Magnesium Alloy with Different Loading Directions and Strain Rates [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(2): 192-214. |
[5] | Yongqiao Li, Lifei Wang, Xiaohuan Pan, Qiang Zhang, Guangsheng Huang, Bin Xing, Weili Cheng, Hongxia Wang, Kwang Seon Shin. Effect of Pre-stretch Strain at High Temperatures on the Formability of AZ31 Magnesium Alloy Sheets [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(1): 48-60. |
[6] | Chunxiao Li, Hong Yan, Rongshi Chen. Microstructure and Texture Evolution of Mg-14Gd-0.5Zr Alloy during Rolling and Annealing under Different Temperatures [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(1): 61-76. |
[7] | Bao-Chang Liu, Shuai Zhang, Hong-Wei Xiong, Wen-Hao Dai, Yin-Long Ma. Effect of Al Content on the Corrosion Behavior of Extruded Dilute Mg-Al-Ca-Mn Alloy [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(1): 77-90. |
[8] | Yanan Wang, Sansan Shuai, Chenglin Huang, Tao Jing, Chaoyue Chen, Tao Hu, Jiang Wang, Zhongming Ren. Revealing the Diversity of Dendritic Morphology Evolution During Solidification of Magnesium Alloys using Synchrotron X-ray Imaging: A Review [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(2): 177-200. |
[9] | Lin-Yue Jia, Wen-Bo Du, Jin-Long Fu, Zhao-Hui Wang, Ke Liu, Shu-Bo Li, Xian Du. Obtaining Ultra-High Strength and Ductility in a Mg-Gd-Er-Zn-Zr Alloy via Extrusion, Pre-deformation and Two-Stage Aging [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(1): 39-44. |
[10] | Li-Sha Wang, Jing-Hua Jiang, Bassiouny Saleh, Qiu-Yuan Xie, Qiong Xu, Huan Liu, Ai-Bin Ma. Controlling Corrosion Resistance of a Biodegradable Mg-Y-Zn Alloy with LPSO Phases via Multi-pass ECAP Process [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(9): 1180-1190. |
[11] | Yang Shao, Rong-Chang Zeng, Shuo-Qi Li, Lan-Yue Cui, Yu-Hong Zou, Shao-Kang Guan, Yu-Feng Zheng. Advance in Antibacterial Magnesium Alloys and Surface Coatings on Magnesium Alloys: A Review [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(5): 615-629. |
[12] | A. Shah S., D. Wu, Chen R. S., Song G. S.. Temperature Effects on the Microstructures of Mg-Gd-Y Alloy Processed by Multi-direction Impact Forging [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(2): 243-251. |
[13] | Zhu Luo, Xian-Hua Chen, Kai Song, Chun-Quan Liu, Yan Dai, Di Zhao, Fu-Sheng Pan. Effect of Alloying Element on Electromagnetic Interference Shielding Effectiveness of Binary Magnesium Alloys [J]. Acta Metallurgica Sinica (English Letters), 2019, 32(7): 817-824. |
[14] | Huan Liu, He Huang, Jia-Peng Sun, Ce Wang, Jing Bai, Ai-Bin Ma, Xian-Hua Chen. Microstructure and Mechanical Properties of Mg-RE-TM Cast Alloys Containing Long Period Stacking Ordered Phases: A Review [J]. Acta Metallurgica Sinica (English Letters), 2019, 32(3): 269-285. |
[15] | Chao Xu, Taiki Nakata, Guo-Hua Fan, Kosuke Yamanaka, Guang-Ze Tang, Lin Geng, Shigeharu Kamado. Effect of Partially Substituting Ca with Mischmetal on the Microstructure and Mechanical Properties of Extruded Mg-Al-Ca-Mn-Based Alloys [J]. Acta Metallurgica Sinica (English Letters), 2019, 32(2): 205-217. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||