Acta Metallurgica Sinica (English Letters) ›› 2024, Vol. 37 ›› Issue (10): 1735-1751.DOI: 10.1007/s40195-024-01731-y
Previous Articles Next Articles
Chao Wang1, Xi Zhao1(), Yayun He2, Dingxia Zheng1
Received:
2024-03-02
Revised:
2024-03-23
Accepted:
2024-04-03
Online:
2024-10-10
Published:
2024-09-12
Contact:
Xi Zhao, zhaoxi_1111@163.com.Chao Wang, Xi Zhao, Yayun He, Dingxia Zheng. Implementation of Balanced Strength and Toughness of VW93A Rare-Earth Magnesium Alloy with Regulating the Overlapping Structure of Lamellar LPSO Phase and
Add to citation manager EndNote|Ris|BibTeX
Fig. 1 Schematic diagram of the preparation process of the VW93A cabin components: a physical drawing of the cabin, b size drawing of the tensile bar sampling
Gd | Y | Zn | Zr | Mg |
---|---|---|---|---|
9.02 | 3.44 | 1.85 | 0.8 | Bal. |
Table 1 Chemical composition of Mg-Re alloy
Gd | Y | Zn | Zr | Mg |
---|---|---|---|---|
9.02 | 3.44 | 1.85 | 0.8 | Bal. |
Fig. 4 OM and SEM micrographs of samples with different heat treatments: a, d 420 °C × 3 h + 200 °C × 64 h, b, e 450 °C × 5 h + 200 °C × 64 h, c, f 480 °C × 3 h + 200 °C × 64 h; a, b, c OM micrographs, d, e, f SEM images
Fig. 5 IPF coloring images with low-/high-angle grain boundary distributions (the white lines are the low-angle grain boundaries from 2° to 15°, and black lines are high-angle grain boundaries > 15°) and (0001) PFs of samples with different heat treatments: a, b 420 °C × 3 h + 200 °C × 64 h, c, d 450 °C × 5 h + 200 °C × 64 h, e, f 480 °C × 3 h + 200 °C × 64 h
Fig. 7 TEM bright-field images of samples with different heat treatments: a 420 °C × 3 h + 200 °C × 64 h, b 450 °C × 5 h + 200 °C × 64 h, c 480 °C × 3 h + 200 °C × 64 h; electron beam incident direction: B∥[11−20]α-Mg
Samples | YS (MPa) | UTS (MPa) | EL (%) |
---|---|---|---|
As-Extruded | 242 | 341 | 22.2 |
420 °C × 3 h + 200 °C × 64 h | 281 | 424 | 18.1 |
450 °C × 5 h + 200 °C × 64 h | 270 | 421 | 20.1 |
480 °C × 3 h + 200 °C × 64 h | 260 | 411 | 23.4 |
Table 2 Tensile properties of different samples at RT
Samples | YS (MPa) | UTS (MPa) | EL (%) |
---|---|---|---|
As-Extruded | 242 | 341 | 22.2 |
420 °C × 3 h + 200 °C × 64 h | 281 | 424 | 18.1 |
450 °C × 5 h + 200 °C × 64 h | 270 | 421 | 20.1 |
480 °C × 3 h + 200 °C × 64 h | 260 | 411 | 23.4 |
Samples | |||
---|---|---|---|
420 °C × 3 h + 200 °C × 64 h | 1.68 | 0.34 | 0.24 |
450 °C × 5 h + 200 °C × 64 h | 1.66 | 0.40 | 0.26 |
480 °C × 3 h + 200 °C × 64 h | 1.69 | 0.37 | 0.32 |
Table 3 Concentration of solute atoms in the α-Mg matrix of different heat treatment samples
Samples | |||
---|---|---|---|
420 °C × 3 h + 200 °C × 64 h | 1.68 | 0.34 | 0.24 |
450 °C × 5 h + 200 °C × 64 h | 1.66 | 0.40 | 0.26 |
480 °C × 3 h + 200 °C × 64 h | 1.69 | 0.37 | 0.32 |
Samples | Precipitates | Length | Width | Diameter | λ |
---|---|---|---|---|---|
420 °C × 3 h + 200 °C × 64 h | 12.6 | 8.5 | 9.8 | 22.7 | |
450 °C × 5 h + 200 °C × 64 h | 211.7 | 31.6 | 59.6 | 40.3 | |
480 °C × 3 h + 200 °C × 64 h | 19.5 | 10.7 | 13.9 | 29.5 |
Table 4 Size of nanoprecipitates in different heat treatment samples (nm)
Samples | Precipitates | Length | Width | Diameter | λ |
---|---|---|---|---|---|
420 °C × 3 h + 200 °C × 64 h | 12.6 | 8.5 | 9.8 | 22.7 | |
450 °C × 5 h + 200 °C × 64 h | 211.7 | 31.6 | 59.6 | 40.3 | |
480 °C × 3 h + 200 °C × 64 h | 19.5 | 10.7 | 13.9 | 29.5 |
Samples | |||||
---|---|---|---|---|---|
420 °C × 3 h + 200 °C × 64 h | 81.42 | 54.40 | 29.6 | 17.46 | 82.97 |
450 °C × 5 h + 200 °C × 64 h | 74.78 | 55.41 | 27.2 | 16.65 | 76.63 |
480 °C × 3 h + 200 °C × 64 h | 64.13 | 56.10 | 26.9 | 15.64 | 72.06 |
Table 5 Calculation results of strengthening contribution of different heat treatment samples
Samples | |||||
---|---|---|---|---|---|
420 °C × 3 h + 200 °C × 64 h | 81.42 | 54.40 | 29.6 | 17.46 | 82.97 |
450 °C × 5 h + 200 °C × 64 h | 74.78 | 55.41 | 27.2 | 16.65 | 76.63 |
480 °C × 3 h + 200 °C × 64 h | 64.13 | 56.10 | 26.9 | 15.64 | 72.06 |
Fig. 9 Fracture crack characteristics of tensile samples with different heat treatments: a, d, g 420 °C × 3 h + 200 °C × 64 h, b, e, h 450 °C × 5 h + 200 °C × 64 h, c, f, i 480 °C × 3 h + 200 °C × 64 h
Fig. 10 Schematic diagram of the effect of lamellar LPSO and $\beta^{\prime }$ phases forming overlapping structures on intracrystalline dislocation accumulation
Fig. 11 SEM images of cracks generated in the vicinity of a precipitation phases or b grain boundaries when an overlapping structure is precipitated in the grain, c a local magnification of the red dashed box in a, and d a local magnification of the blue dashed box in b
Fig. 13 Strain at complete fracture of the a 14H LPSO + $\beta^{\prime }$ phase overlapping model, b 14H LPSO-phase-only model, and c $\beta^{\prime }$-phase-only model
Models | Maximum stress (GPa) | Fracture strain |
---|---|---|
14H + | 2.581 | 0.655 |
14H | 2.420 | 0.633 |
3.414 | 0.625 |
Table 6 Maximum stress and fracture strain for different embedded phase models
Models | Maximum stress (GPa) | Fracture strain |
---|---|---|
14H + | 2.581 | 0.655 |
14H | 2.420 | 0.633 |
3.414 | 0.625 |
Fig. 14 Dislocation evolution maps during deformation of the a $\beta^{\prime }$-phase-only model, b 14H LPSO-phase-only model, and c 14H LPSO + $\beta^{\prime }$ phase overlapping model
[1] | J. Zhou, X.M. Wan, Y. Li, Q.J. Zhao, Key Eng. Mater. 585, 157 (2014) |
[2] | B. Mordike, T. Ebert, Mater. Sci. Eng. A 302, 37 (2001) |
[3] | T. Honma, T. Ohkubo, K. Hono, S. Kamado, Mater. Sci. Eng. A 395, 301 (2005) |
[4] | M. Meng, H.L. Zhang, Z. Gao, G.X. Lei, J.M. Yu, J. Magnes. Alloys 11,4628 (2023) |
[5] | M.N. Xu, N. Li, X.C. Sha, Y. Liu, B. Gao, L.R. Xiao, X.F. Chen, H. Zhou, Mater. Sci. Eng. A 841, 143017 (2022) |
[6] | R.G. Li, H.R. Li, H.C. Pan, D.S. Xie, J.H. Zhang, D.Q. Fang, Y.Q. Dai, D.Y. Zhao, H. Zhang, Scr. Mater. 193, 142 (2021) |
[7] | X.Z. Wang, Y.Q. Wang, C.B. Ni, Y.X. Fang, X. Yu, P. Zhang, Vacuum 205,111450 (2022) |
[8] | C. Dang, J.F. Wang, J.X. Wang, D. Yu, W.X. Zheng, Z.H. Wang, L. Feng, C.B. Xu, H. Hou, Y.H. Zhao, Vacuum 215,112230 (2023) |
[9] | D.D. Zhang, C.M. Liu, S.N. Jiang, Y.H. Gao, Y.C. Wan, Z.Y. Chen, Mater. Sci. Eng. A 856, 143990 (2022) |
[10] | Z.B. Ding, S. Zhang, Y.H. Zhao, D.R. Chen, L.H. Zou, Z.G. Chen, W.M. Guo, Z.J. Su, H. Hua, Trans. Nonferrous Met. Soc. China 32,824 (2022) |
[11] |
D. Wang, P.H. Fu, L.M. Peng, Y.X. Wang, W.J. Ding, Mater. Charact. 153, 157 (2019)
DOI |
[12] | Y.M. Zhu, A.J. Morton, J.F. Nie, Acta Mater. 60, 6562 (2012) |
[13] | M. Yamasaki, M. Sasaki, M. Nishijima, K. Hiraga, Y. Kawamura, Acta Mater. 55, 6798 (2007) |
[14] | T. Itoi, T. Seimiya, Y. Kawamura, M. Hirohashi, Scr. Mater. 51, 107 (2004) |
[15] | S. Yoshimoto, M. Yamasaki, Y. Kawamura, Mater. Trans. 47, 959 (2006) |
[16] | M. Suzuki, T. Kimura, J. Koike, K. Maruyama, Mater. Sci. Eng. A 387, 706 (2004) |
[17] | H. Liu, F. Xue, J. Bai, A.B. Ma, J.H. Jiang, J. Mater. Sci. Technol. 32, 1267 (2016) |
[18] | X.H. Shao, Z.Q. Yang, X.L. Ma, Acta Mater. 58, 4760 (2010) |
[19] | X.D. Huang, Y.C. Xin, Y. Cao, W. Li, G.J. Huang, X. Zhao, Q. Liu, P.D. Wu, Int. J. Plast. 158, 103412 (2022) |
[20] | G.L. Bi, D.Q. Fang, L. Zhao, J.S. Lian, Q. Jiang, Z.H. Jiang, Mater. Sci. Eng. A 528, 3609 (2011) |
[21] | Y.F. Wang, F. Zhang, Y.T. Wang, Y.B. Duan, K.J. Wang, W.J. Zhang, J. Hu, Mater. Sci. Eng. A 745, 149 (2019) |
[22] | G.T. Zhao, Z.R. Zhang, Y.X. Zhang, H.L. Peng, Z. Yang, H. Nagaumi, X.Y. Yang, Mater. Sci. Eng. A 834, 142626 (2022) |
[23] | X.H. Guan, W. Wang, T. Zhang, P. Peng, Q. Liu, P. Han, K. Qiao, J. Cai, L.Q. Wang, K.S. Wang, J. Magnes. Alloys 12, 2041 (2024) |
[24] | S. Yuan, J.H. Wang, X.Q. Li, H.B. Ma, L. Zhang, P.P. Jin, J. Magnes. Alloys 11,4679 (2023) |
[25] | X. Zhao, Z. Yang, X.S. Meng, X.B. Dong, J.P. Li, M.X. Liang, J. Alloys Compd. 917, 165476 (2022) |
[26] | X. Wu, Y. Wang, Y. Chen, L.Y. Qiao, J. She, J. Mater. Res. Technol. 21, 929 (2022) |
[27] | K. Kishida, K. Nagai, A. Matsumoto, A. Yasuhara, H. Inui, Acta Mater. 99, 228 (2015) |
[28] | Q.Q. Jin, X.H. Shao, Y.T. Zhou, B. Zhang, S.J. Zheng, X.L. Ma, J. Magnes. Alloys 10,160 (2022) |
[29] | J.J. Gao, J. Fu, N. Zhang, J. Alloys Compd. 768, 1029 (2018) |
[30] | K.H. Kim, J.B. Jeon, B.J. Lee, Calphad 48,27 (2015) |
[31] | H.S. Jang, K.M. Kim, B.J. Lee, Calphad 60,200 (2018) |
[32] | C. Zheng, S.F. Chen, R.X. Wang, S.H. Zhang, M. Cheng, Acta Metall. Sin. (Engl. Lett.) 34, 248 (2021) |
[33] | L.H. Li, Y.Q. Yang, H.T. Yao, W.H. Liu, J.C. Sha, M.L. Qiao, J. Tian, J.X. Bao, Z.Q. Zhang, Mater. Sci. Eng. A 891, 146018 (2024) |
[34] | B. Li, B.G. Teng, D.G. Luo, Acta Metall. Sin. (Engl. Lett.) 31, 1009 (2018) |
[35] | J. Zheng, Z.M. Yan, J.S. Ji, Y.S. Shi, H. Zhang, Z.M. Zhang, Y. Xue, J. Magnes. Alloys 10,1124 (2022) |
[36] | C. Xu, G.H. Fan, T. Nakata, X. Liang, Y.Q. Chi, X.G. Qiao, G.J. Cao, T.T. Zhang, M. Huang, K.S. Miao, Metall. Mater. Trans. A 49, 1931 (2018) |
[37] | C. Xu, T. Nakata, X.G. Qiao, M.Y. Zheng, K. Wu, S. Kamado, Sci. Rep. 7, 40846 (2017) |
[38] | W.Q. Yuan, S.K. Panigrahi, J.Q. Su, R. Mishra, Scr. Mater. 65, 994 (2011) |
[39] | Y.L. Xu, F. Gensch, Z. Ren, K.U. Kainer, N. Hort, Prog. Nat. Sci. Mater. Int. 28, 724 (2018) |
[40] | N. Ono, R. Nowak, S. Miura, Mater. Lett. 58, 39 (2004) |
[41] |
B. Guan, Y.C. Xin, X.X. Huang, P.D. Wu, Q. Liu, Acta Mater. 173, 142 (2019)
DOI |
[42] | L.A. Gypen, A. Deruyttere, J. Mater. Sci. 12, 1028 (1977) |
[43] | L.A. Gypen, A. Deruyttere, J. Mater. Sci. 12, 1034 (1977) |
[44] | L. Gao, R.S. Chen, E.H. Han, J. Alloys Compd. 481, 379 (2009) |
[45] | G.Q. Wu, Z.C. Li, J.M. Yu, Y.F. Liu, Z.M. Zhang, B.B. Dong, H.G. Huang, Mater. Des. 232, 112114 (2023) |
[46] | M. Calcagnotto, D. Ponge, E. Demir, D. Raabe, Mater. Sci. Eng. A 527, 2738 (2010) |
[47] | L. Liu, X.J. Zhou, S.L. Yu, J. Zhang, X.Z. Lu, X. Shu, Z.J. Su, J. Magnes. Alloys 10,501 (2022) |
[48] | T.Y. Kwak, W.J. Kim, J. Alloys Compd. 770, 589 (2019) |
[49] | X. Zhao, S.C. Li, Z.M. Zhang, P.C. Gao, S.L. Kan, F.F. Yan, J. Magnes. Alloys 8,624 (2020) |
[50] | L. Yan, Z.M. Zhang, Y. Xue, J. Xu, B.B. Dong, X.B. Li, J. Alloys Compd. 906, 164406 (2022) |
[51] | B. Li, J. Wu, B.G. Teng, Acta Metall. Sin. (Engl. Lett.) 34, 1051 (2021) |
[52] | B. Lei, Z.H. Dong, Y. Yang, B. Jiang, M. Yuan, H.B. Yang, Q.H. Wang, G.S. Huang, J.F. Song, D.F. Zhang, Mater. Sci. Eng. A 843, 143136 (2022) |
[53] | Z.R. Zeng, J.F. Nie, S.W. Xu, C.H.J. Davies, N. Birbilis, Nat. Commun. 8, 972 (2017) |
[54] | H.W. Miao, H. Huang, S.H. Fan, J.Y. Tan, Z.C. Wang, W.J. Ding, G.Y. Yuan, Mater. Des. 196, 109122 (2020) |
[55] | Q.H. Wang, Y.Q. Shen, B. Jiang, A.T. Tang, J.F. Song, Z.T. Jiang, T.H. Yang, G.S. Huang, F.S. Pan, Mater. Sci. Eng. A 735, 131 (2018) |
[56] |
P. Peng, A.T. Tang, B. Wang, S.B. Zhou, J. She, J.Y. Zhang, F.S. Pan, J. Mater. Res. Technol. 15, 1252 (2021)
DOI |
[57] | Y.X. Zhang, Z. Wang, S.C. Li, X. Zhao, Z.M. Zhang, Y.J. Wu, X.W. Ren, F.F. Yan, B.B. Dong, Acta. Metall. Sin. (Engl. Lett.) 36, 839 (2023) |
[58] | M. Zha, S.Q. Wang, T. Wang, H.L. Jia, Y.K. Li, Z.M. Hua, K. Guan, C. Wang, H.Y. Wang, Mater. Res. Lett. 11, 772 (2023) |
[59] | D.Y. Deng, R.J. Cheng, Z.H. Dong, B. Jiang, M.B. Yang, H.J. Wang, C.T. Yu, Y.L. Ma, F.S. Pan, Prog. Nat. Sci. Mater. Int. 33, 797 (2023) |
[60] | R. Guo, X. Zhao, B.W. Hu, X.D. Tian, Q. Wang, Z.M. Zhang, Acta Metall. Sin. (Engl. Lett.) 36, 1680 (2023) |
[61] | Q. Zhang, W.C. Liu, G.H. Wu, L. Zhang, W.J. Ding, Acta Metall. Sin. (Engl. Lett.) 33, 1505 (2020) |
[62] | H. Shi, L.X. Yang, Y.D. Huang, S.B. Zhou, K. Wang, C.Q. Liu, S. Gavras, L. Xiao, R. Willumeit-Römer, H. Dieringa, Mater. Sci. Eng. A 893, 146065 (2024) |
[1] | Hang Zhang, Jiaying Zhao, Rongguang Li, Boshu Liu, Shanshan Li, Sha Sha, Yuehong Zhang, Man Xu, Yan Tang. Microstructure and Mechanical Property of Mg-13Gd-0.2Ni Alloy Processed by Extrusion and Aging [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(8): 1367-1376. |
[2] | Qi-Yu Liao, Da-Zhi Zhao, Qi-Chi Le, Wen-Xin Hu, Yan-Chao Jiang, Wei-Yang Zhou, Liang Ren, Dan-Dan Li, Zhao-Yang Yin. Effect of Artificial Cooling Extrusion on Microstructure and Mechanical Properties of Mg-Zn-Y Alloys [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(7): 1115-1127. |
[3] | Qian-Long Ren, Shuai Yuan, Shi-Yu Luan, Jin-Hui Wang, Xiao-Wei Li, Xiao-Yu Liu. High-Temperature Stability of Mg-1Al-12Y Alloy Containing LPSO Phase and Mechanism of Its Portevin-Le Chatelier (PLC) Effect [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(6): 982-998. |
[4] | Yue-Hui Dang, Sheng-Lin Liu, Xiao-Lei Ai, Xiao-Wei Feng, Bo Feng, Zhuo Tian, Ying-Fei Lin, Huan-Tao Chen, Kai-Hong Zheng. Microstructure and Mechanical Behavior of Mg-Based Bimetal Plates with High Formability Sleeve by Co-extrusion [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(3): 499-512. |
[5] | Ronghe Gao, Feng Li, Huaqiu Du, Pengda Huo. Dynamic Recrystallization Mechanism and Texture Evolution during Interactive Alternating Extruded Magnesium Alloy [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(8): 1292-1304. |
[6] | Shuang Ma, Junyu Zhang, Xudong Wang, Rie Y. Umetsu, Li Jiang, Wei Zhang, Man Yao. Structural Origins for Enhanced Thermal Stability and Glass-Forming Ability of Co-B Metallic Glasses with Y and Nb Addition [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(6): 962-972. |
[7] | Yuxing Zhang, Zhen Wang, Shuchang Li, Xi Zhao, Zhimin Zhang, Yaojin Wu, Xianwei Ren, Fafa Yan, Beibei Dong. High Strength and Excellent Ductility of AZ80 Magnesium Alloy Cabin Component Developed by W-Shaped Channel Extrusion and Subsequent T6 Heat Treatment [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(5): 839-856. |
[8] | Wei Qiu, Wen Xie, Qi-Feng Li, Wei-Ying Huang, Li-Bo Zhou, Wei Chen, Jian Chen, Yan-Jie Ren, Mao-Hai Yao, Ai-Hu Xiong, Zhuo-Ran Zeng. Effect of Vanadium Nitride (VN) Particles on Microstructure and Mechanical Properties of Extruded AZ31 Mg Alloy [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(2): 237-250. |
[9] | Yu-Jin Nie, Jian-Wei Dai, Xiao-Bo Zhang. Effect of Ag Addition on Microstructure, Mechanical and Corrosion Properties of Mg-Nd-Zn-Zr Alloy for Orthopedic Application [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(2): 295-309. |
[10] | Zhenzhen Gui, Fan Jiang, Zhixin Kang, Fan Zhang, Zu Li, Jianhui Zhang. Microstructure and Properties of Micro-Alloyed Mg-2.0Nd-0.2Sr by Heat Treatment and Extrusion [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(2): 323-334. |
[11] | Linshuo Dong, Feiyang Wang, Hong-Hui Wu, Mengjie Gao, Penghui Bai, Shuize Wang, Guilin Wu, Junheng Gao, Xiaoye Zhou, Xinping Mao. Enhanced Hydrogen Embrittlement Resistance via Cr Segregation in Nanocrystalline Fe-Cr Alloys [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(12): 1925-1935. |
[12] | Nan Bian, Feng Li, Wentao Niu, Chao Li, Yuanqi Li. Dual Strengthened Control of Recrystallization Behavior on CVCDE Magnesium Alloy Containing Characteristic Structure [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(11): 1805-1821. |
[13] | Xuejian Wang, Huaqiang Xiao, Keqiang Su, Bo Lin, Tongmin Wang, Enyu Guo. Effect of Extrusion Temperature on the Mechanical Properties and Corrosion Behavior of LZ91 Alloys [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(11): 1822-1832. |
[14] | Yutian Fan, Liwei Lu, Hongliang Zhao, Zhiqiang Wu, Yong Xue, Wen Wang. Effect of Deformation Temperatures on Microstructure of AQ80 Magnesium Alloy under Repeated Upsetting-Extrusion [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(10): 1649-1664. |
[15] | Zhengran Liu, Xi Zhao, Kai Chen, Siqi Wang, Xianwei Ren, Zhimin Zhang, Yong Xue. Microstructural Evolution and Anisotropic Weakening Mechanism of ZK60 Magnesium Alloy Processed by Isothermal Repetitive Upsetting Extrusion [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(5): 839-852. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||