Acta Metallurgica Sinica (English Letters) ›› 2024, Vol. 37 ›› Issue (2): 293-307.DOI: 10.1007/s40195-023-01625-5
Previous Articles Next Articles
Hong-Jiang Wan1,2, Xiao-Qi Wu2,3, Hong-Liang Ming1,2(), Jian-Qiu Wang1,2(
), En-Hou Han4
Received:
2023-07-20
Revised:
2023-08-18
Accepted:
2023-09-08
Online:
2024-02-10
Published:
2024-02-27
Contact:
Hong-Liang Ming, Hong-Jiang Wan, Xiao-Qi Wu, Hong-Liang Ming, Jian-Qiu Wang, En-Hou Han. Effects of Hydrogen Charging Time and Pressure on the Hydrogen Embrittlement Susceptibility of X52 Pipeline Steel Material[J]. Acta Metallurgica Sinica (English Letters), 2024, 37(2): 293-307.
Add to citation manager EndNote|Ris|BibTeX
C | Mn | Cu | Ni | Cr | Mo | Nb | Ti | Fe |
---|---|---|---|---|---|---|---|---|
0.04 | 1.1 | 0.15 | 0.15 | 0.25 | 0.04 | 0.02 | 0.01 | Balance |
Table 1 Chemical composition of investigated X52 pipeline steel (wt%)
C | Mn | Cu | Ni | Cr | Mo | Nb | Ti | Fe |
---|---|---|---|---|---|---|---|---|
0.04 | 1.1 | 0.15 | 0.15 | 0.25 | 0.04 | 0.02 | 0.01 | Balance |
Number | Hydrogen charging pressure (MPa) | Hydrogen charging time (h) |
---|---|---|
1 | 4.0 | 0 |
2 | 4.0 | 24 |
3 | 4.0 | 48 |
4 | 4.0 | 96 |
5 | 0.3 | 48 |
6 | 0.8 | 48 |
7 | 2.0 | 48 |
Table 2 Test conditions
Number | Hydrogen charging pressure (MPa) | Hydrogen charging time (h) |
---|---|---|
1 | 4.0 | 0 |
2 | 4.0 | 24 |
3 | 4.0 | 48 |
4 | 4.0 | 96 |
5 | 0.3 | 48 |
6 | 0.8 | 48 |
7 | 2.0 | 48 |
Fig. 6 Overall fracture morphologies of the specimen under different experimental conditions: a 4 MPa N2 charging for 0 h, b 4 MPa H2 charging for 0 h, c 4 MPa H2 charging for 24 h, d 4 MPa H2 charging for 48 h, e 4 MPa H2 charging for 96 h
Fig. 7 Fracture morphology of X52 pipeline steel specimen charged with 4 MPa nitrogen for 0 h: a fracture surfaces with a high proportion of ductile shear fracture region, b fracture surfaces with a high proportion of dimpled region, c dimpled region, d dimpled region with secondary phase particles
Fig. 8 Fracture morphologies of X52 pipeline steel specimen charged with 4 MPa hydrogen for 0 h: a overview of the fracture surface, and magnified images of b brittle fracture region, c region c, d dimple region
Fig. 9 Fracture morphologies of X52 pipeline steel specimens charged with 4 MPa hydrogen for different time: a 24 h, b enlarged view of area A in a, c 48 h, d enlarged view of area B in c, e 96 h, f enlarged view of area C in e
Fig. 10 Inner surface, and secondary cracks in the necking region of the specimens: a, b charged with 4 MPa N2 for 0 h, c, d charged with 4 MPa H2 for 48 h
Fig. 11 EBSD patterns and corresponding SEM image of the secondary crack on the fracture of the specimen charged with 4 MPa H2 for 48 h: a SEM image, b IPF + GB map, c KAM map
Fig. 15 Fracture morphologies of X52 pipeline steel specimens charged hydrogen 48 h for different pressures: a1-a3 0.3 MPa, b1-b3 0.8 MPa, c1-c3 2 MPa
[1] |
J.O. Abe, A.P.I. Popoola, E. Ajenifuja, Int. J. Hydrogen Energy 44, 15072 (2019)
DOI URL |
[2] |
M. Pudukudy, Z. Yaakob, M. Mohammad, B. Narayanan, K. Sopian, Renew. Sust. Energ. Rev. 30, 743 (2014)
DOI URL |
[3] |
P.P. Edwards, V.L. Kuznetsov, W.I.F. David, N.P. Brandon, Energy Policy 36, 4356 (2008)
DOI URL |
[4] |
K. Zeng, D. Zhang, Prog. Energy Combust. Sci. 36, 307 (2010)
DOI URL |
[5] |
S. Singh, S. Jain, V. Ps, A.K. Tiwari, M.R. Nouni, J.K. Pandey, S. Goel, Renew. Sust. Energ. Rev. 51, 623 (2015)
DOI URL |
[6] |
C. Yang, J. Ogden, Int. J. Hydrogen Energy 32, 268 (2007)
DOI URL |
[7] |
E. Ohaeri, U. Eduok, J. Szpunar, Int. J. Hydrogen Energy 43, 14584 (2018)
DOI URL |
[8] |
Y.S. Chen, D. Haley, S.S.A. Gerstl, A.J. London, F. Sweeney, R.A. Wepf, W.M. Rainforth, P.A.J. Bagot, M.P. Moody, Science 367, 171 (2020)
DOI URL |
[9] |
S.K. Dwivedi, M. Vishwakarma, Int. J. Hydrogen Energy 43, 21603 (2018)
DOI URL |
[10] | X. Li, X. Ma, J. Zhang, E. Akiyama, Y. Wang, X. Song, Acta Metall. Sin. -Engl. Lett. 33, 759 (2020) |
[11] |
M. Asadipoor, A. Pourkamali Anaraki, J. Kadkhodapour, S.M.H. Sharifi, A. Barnoush, Mater. Sci. Eng. A 772, 138762 (2020)
DOI URL |
[12] |
C.F. Dong, Z.Y. Liu, X.G. Li, Y.F. Cheng, Int. J. Hydrogen Energy 34, 9879 (2009)
DOI URL |
[13] |
V. Singh, R. Singh, K.S. Arora, D.K. Mahajan, Int. J. Hydrogen Energy 44, 22039 (2019)
DOI URL |
[14] |
I.M. Dmytrakh, R.L. Leshchak, A.M. Syrotyuk, Int. J. Hydrogen Energy 40, 4011 (2015)
DOI URL |
[15] |
I.M. Dmytrakh, R.L. Leshchak, A.M. Syrotyuk, R.A. Barna, Int. J. Hydrogen Energy 42, 6401 (2017)
DOI URL |
[16] |
T. An, H. Peng, P. Bai, S. Zheng, X. Wen, L. Zhang, Int. J. Hydrogen Energy 42, 15669 (2017)
DOI URL |
[17] |
H. Barthélémy,, Int. J. Hydrogen Energy 36, 2750 (2011)
DOI URL |
[18] |
B. Meng, C. Gu, L. Zhang, C. Zhou, X. Li, Y. Zhao, J. Zheng, X. Chen, Y. Han, Int. J. Hydrogen Energy 42, 7404 (2017)
DOI URL |
[19] |
T.T. Nguyen, J. Park, W.S. Kim, S.H. Nahm, U.B. Beak, Int. J. Hydrogen Energy 45, 2368 (2020)
DOI URL |
[20] |
T.T. Nguyen, N. Tak, J. Park, S.H. Nahm, U.B. Beak, Int. J. Hydrogen Energy 45, 23739 (2020)
DOI URL |
[21] |
E.J. Song, S.W. Baek, S.H. Nahm, U.B. Baek, Int. J. Hydrogen Energy 42, 8075 (2017)
DOI URL |
[22] |
D. Zhou, T. Li, D. Huang, Y. Wu, Z. Huang, W. Xiao, Q. Wang, X. Wang, Int. J. Hydrogen Energy 46, 7402 (2021)
DOI URL |
[23] | W. Chu, L. Qiao, J. Li, Y. Su, Y. Yan, Y. Bai, X. Ren, H. Huang, Hydrogen Embrittlement and Stress Corrosion Cracking (Science Press, Beijing, 2013), p. 7 |
[24] |
Y.D. Han, R.Z. Wang, H. Wang, L.Y. Xu, Int. J. Hydrogen Energy 44, 22380 (2019)
DOI URL |
[25] |
A. Au, B. Gb, Procedia Structural Integrity 19, 494 (2019)
DOI URL |
[26] |
T. Michler, F. Ebling, H. Oesterlin, C. Fischer, K. Wackermann, Int. J. Hydrogen Energy 47, 34676 (2022)
DOI URL |
[27] |
J. Du, H. Ming, J. Wang, E.H. Han, Mater. Lett. 334, 133734 (2023)
DOI URL |
[28] |
N.E. Nanninga, Y.S. Levy, E.S. Drexler, R.T. Condon, A.E. Stevenson, A.J. Slifka, Corros. Sci. 59, 1 (2012)
DOI URL |
[29] |
C. Wang, J. Zhang, C. Liu, Q. Hu, R. Zhang, X. Xu, H. Yang, Y. Ning, Y. Li, Int. J. Hydrogen Energy 48, 243 (2023)
DOI URL |
[30] |
A. Alvaro, V. Olden, A. Macadre, O.M. Akselsen, Mater. Sci. Eng. A 597, 29 (2014)
DOI URL |
[31] |
H. Boukortt, M. Amara, M. Hadj Meliani, O. Bouledroua, B.G.N. Muthanna, R.K. Suleiman, A.A. Sorour, G. Pluvinage, Int. J. Hydrogen Energy 43, 19615 (2018)
DOI URL |
[32] |
J. Shang, W. Chen, J. Zheng, Z. Hua, L. Zhang, C. Zhou, C. Gu, Scr. Mater. 189, 67 (2020)
DOI URL |
[33] |
A.A. Saleh, D. Hejazi, A.A. Gazder, D.P. Dunne, E.V. Pereloma, Int. J. Hydrogen Energy 41, 12424 (2016)
DOI URL |
[34] |
D.S. Bae, U.B. Baek, S.H. Nahm, I. Jo, Met. Mater. Int. 28, 466 (2021)
DOI |
[35] |
I. Moro, L. Briottet, P. Lemoine, E. Andrieu, C. Blanc, G. Odemer, Mater. Sci. Eng. A 527, 7252 (2010)
DOI URL |
[36] |
Y. Sun, Y.F. Cheng, Int. J. Hydrogen Energy 46, 34469 (2021)
DOI URL |
[37] |
L.Y. Mao, Z.A. Luo, C. Huang, Y.Q. Wang, R.H. Duan, X.M. Zhang, Mater. Sci. Eng. A 862, 144509 (2023)
DOI URL |
[38] |
S. Thomas, N. Ott, R.F. Schaller, J.A. Yuwono, P. Volovitch, G. Sundararajan, N.V. Medhekar, K. Ogle, J.R. Scully, N. Birbilis, Heliyon 2, e00209 (2016)
DOI URL |
[39] |
T. Doshida, K. Takai, Acta Mater. 79, 93 (2014)
DOI URL |
[40] |
W. Zhao, T. Zhang, Y. Zhao, J. Sun, Y. Wang, Corros. Sci. 111, 84 (2016)
DOI URL |
[41] |
I. Maroef, D.L. Olson, M. Eberhart, G.R. Edwards, Int. Mater. Rev. 47, 191 (2013)
DOI URL |
[42] |
C. Zhou, X. Liu, Y. Zhang, H. Wu, Y. Yang, Int. J. Hydrogen Energy 47, 20310 (2022)
DOI URL |
[43] |
C. Yao, H. Ming, J. Chen, J. Wang, E.H. Han, Coatings 13, 280 (2023)
DOI URL |
[44] | Y. Wang, L. Xiong, S. Liu, Acta Metall. Sin. -Engl. Lett. 27, 615 (2014) |
[45] |
W.Y. Chu, L.J. Qiao, Y.B. Wang, Y.H. Cheng, Corrosion 55, 667 (1999)
DOI URL |
[46] |
P.P. Bai, J. Zhou, B.W. Luo, S.Q. Zheng, P.Y. Wang, Y. Tian, Int. J. Miner. Metall. Mater. 27, 63 (2020)
DOI |
[47] |
J. He, L. Chen, X. Tao, S. Antonov, Y. Zhong, Y. Su, Corros. Sci. 176, 109046 (2020)
DOI URL |
[48] |
H.S. Shin, N.A. Custodio, U.B. Baek, Theor. Appl. Fract. Mech. 116, 103139 (2021)
DOI URL |
[49] |
H.S. Shin, K.O. Bae, U.B. Baek, S.H. Nahm, Int. J. Hydrogen Energy 44, 23472 (2019)
DOI URL |
[50] |
K.O. Bae, H.S. Shin, U.B. Baek, Int. J. Hydrogen Energy 46, 20107 (2021)
DOI URL |
[51] |
T.T. Nguyen, J.S. Park, W.S. Kim, S.H. Nahm, U.B. Beak, Mater. Sci. Eng. A 781, 139114 (2020)
DOI URL |
[52] |
Y. Wang, J. Gong, W. Jiang, Int. J. Hydrogen Energy 38, 12503 (2013)
DOI URL |
[1] | Jun Zhang, Binhan Sun, Zhigang Yang, Chi Zhang, Hao Chen. Enhancing the Hydrogen Embrittlement Resistance of Medium Mn Steels by Designing Metastable Austenite with a Compositional Core-shell Structure [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(7): 1059-1077. |
[2] | Tuhin Das, Salim V. Brahimi, Jun Song, Stephen Yue. Assessment of Hydrogen Embrittlement Susceptibility and Mechanism(s) in Quench and Tempered AISI 4135 Steel Using A Novel Fast Fracture Test in Bending [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(7): 1078-1094. |
[3] | Dayong An, Yuhao Zhou, Yao Xiao, Xinxi Liu, Xifeng Li, Jun Chen. Observation of the Hydrogen-Dislocation Interactions in a High-Manganese Steel after Hydrogen Adsorption and Desorption [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(7): 1105-1112. |
[4] | Z. Wang, Q. Lu, Z.H. Cao, H. Chen, M.X. Huang, J.F. Wang. Review on Hydrogen Embrittlement of Press-hardened Steels for Automotive Applications [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(7): 1123-1143. |
[5] | Ming-Tu Ma, Ke-Jian Li, Yu Si, Peng-Jun Cao, Hong-Zhou Lu, Ai-Min Guo, Guo-Dong Wang. Hydrogen Embrittlement of Advanced High-Strength Steel for Automobile Application: A Review [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(7): 1144-1158. |
[6] | Boning Zhang, Yong Mao, Zhenbao Liu, Jianxiong Liang, Jun Zhang, Maoqiu Wang, Jie Su, Kun Shen. Ab Initio Investigations for the Role of Compositional Complexities in Affecting Hydrogen Trapping and Hydrogen Embrittlement: A Review [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(7): 1159-1172. |
[7] | Wenjing Lou, Lin Cheng, Runsheng Wang, Chengyang Hu, Kaiming Wu. Atomistic Investigation of the Influence of Hydrogen on Mechanical Response during Nanoindentation in Pure Iron [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(7): 1179-1192. |
[8] | Rongjian Shi, Yanqi Tu, Liang Yang, Saiyu Liu, Shani Yang, Kewei Gao, Xu-Sheng Yang, Xiaolu Pang. Interactions between Pre-strain and Dislocation Structures and Its Effect on the Hydrogen Trapping Behaviors [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(7): 1193-1202. |
[9] | Yue-Yang Gu, Han-Yu Zhao, Wei Chen, Wei Yan, Liang-Yin Xiong, De-Min Chen. Effects of Hydrogen Charging on Mechanical Properties of CLAM Steel at Different Strain Rates [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(7): 1203-1210. |
[10] | Linshuo Dong, Feiyang Wang, Hong-Hui Wu, Mengjie Gao, Penghui Bai, Shuize Wang, Guilin Wu, Junheng Gao, Xiaoye Zhou, Xinping Mao. Enhanced Hydrogen Embrittlement Resistance via Cr Segregation in Nanocrystalline Fe-Cr Alloys [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(12): 1925-1935. |
[11] | Binhan Sun, Dong Wang, Xu Lu, Di Wan, Dirk Ponge, Xiancheng Zhang. Current Challenges and Opportunities Toward Understanding Hydrogen Embrittlement Mechanisms in Advanced High-Strength Steels: A Review [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(6): 741-754. |
[12] | Jun Zhang, Jie Su, Boning Zhang, Yi Zong, Zhigang Yang, Chi Zhang, Hao Chen. Phase-Field Modeling of Hydrogen Diffusion and Trapping in Steels [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(10): 1421-1426. |
[13] | Xinfeng Li, Xianfeng Ma, Jin Zhang, Eiji Akiyama, Yanfei Wang, Xiaolong Song. Review of Hydrogen Embrittlement in Metals: Hydrogen Diffusion, Hydrogen Characterization, Hydrogen Embrittlement Mechanism and Prevention [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(6): 759-773. |
[14] | Zuo-Yan Ye, Dao-Xin Liu, Meng Yuan, Xiao-Ming Zhang, Zhi Yang, Ming-Xia Lei. Effects of Prior Corrosion with and Without Stress on the Mechanical Properties of 7475-T761 Aluminum Alloy [J]. Acta Metallurgica Sinica (English Letters), 2015, 28(5): 608-613. |
[15] | Yongli Wang, Liangyin Xiong, Shi Liu. Rapid Hydrogen Transportation Along Grain Boundary in Nickel [J]. Acta Metallurgica Sinica (English Letters), 2014, 27(4): 615-620. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||