Acta Metallurgica Sinica (English Letters) ›› 2023, Vol. 36 ›› Issue (7): 1203-1210.DOI: 10.1007/s40195-022-01515-2
Previous Articles Next Articles
Yue-Yang Gu1,2, Han-Yu Zhao1,2, Wei Chen2, Wei Yan2, Liang-Yin Xiong2,3, De-Min Chen2
Received:
2022-07-28
Revised:
2022-10-03
Accepted:
2022-10-25
Online:
2023-07-10
Published:
2023-07-04
Yue-Yang Gu, Han-Yu Zhao, Wei Chen, Wei Yan, Liang-Yin Xiong, De-Min Chen. Effects of Hydrogen Charging on Mechanical Properties of CLAM Steel at Different Strain Rates[J]. Acta Metallurgica Sinica (English Letters), 2023, 36(7): 1203-1210.
Add to citation manager EndNote|Ris|BibTeX
C | Cr | W | V | Ta | Mn | Si | P | S | Fe |
---|---|---|---|---|---|---|---|---|---|
0.094 | 8.88 | 1.48 | 0.16 | 0.13 | 0.50 | 0.04 | 0.005 | 0.003 | Bal. |
Table 1 Main elemental composition of the chosen CLAM steel (in wt%)
C | Cr | W | V | Ta | Mn | Si | P | S | Fe |
---|---|---|---|---|---|---|---|---|---|
0.094 | 8.88 | 1.48 | 0.16 | 0.13 | 0.50 | 0.04 | 0.005 | 0.003 | Bal. |
Current density mA/cm2) | H uncharged | 5 | 10 | 20 |
---|---|---|---|---|
H content (ppm) | 0 | 1.90 ± 0.07 | 4.37 ± 0.11 | 5.02 ± 0.13 |
Table 3 Quantity of hydrogen in CLAM steel with and without hydrogen charging measured using TDS
Current density mA/cm2) | H uncharged | 5 | 10 | 20 |
---|---|---|---|---|
H content (ppm) | 0 | 1.90 ± 0.07 | 4.37 ± 0.11 | 5.02 ± 0.13 |
Strain rate (s−1) | Current density (mA/cm2) | Tensile strength (MPa) | Elongation (%) | IHE (%) |
---|---|---|---|---|
10−3 | H uncharged | 612 ± 2 | 22.47 ± 0.53 | 0 |
5 | 611 ± 3 | 20.70 ± 0.57 | 7.88 ± 2.5 | |
10 | 611 ± 2 | 10.07 ± 0.31 | 55.2 ± 1.4 | |
20 | 570 ± 7 | 5.18 ± 0.88 | 77.0 ± 3.9 | |
10−5 | H uncharged | 586 ± 6 | 19.90 ± 0.13 | 0 |
5 | 584 ± 5 | 12.03 ± 0.24 | 39.6 ± 1.6 | |
10 | 570 ± 6 | 7.87 ± 0.45 | 60.5 ± 2.3 | |
20 | 519 ± 3 | 2.30 ± 0.33 | 88.4 ± 1.8 |
Table 2 Tensile results of CLAM steel with and without hydrogen charging
Strain rate (s−1) | Current density (mA/cm2) | Tensile strength (MPa) | Elongation (%) | IHE (%) |
---|---|---|---|---|
10−3 | H uncharged | 612 ± 2 | 22.47 ± 0.53 | 0 |
5 | 611 ± 3 | 20.70 ± 0.57 | 7.88 ± 2.5 | |
10 | 611 ± 2 | 10.07 ± 0.31 | 55.2 ± 1.4 | |
20 | 570 ± 7 | 5.18 ± 0.88 | 77.0 ± 3.9 | |
10−5 | H uncharged | 586 ± 6 | 19.90 ± 0.13 | 0 |
5 | 584 ± 5 | 12.03 ± 0.24 | 39.6 ± 1.6 | |
10 | 570 ± 6 | 7.87 ± 0.45 | 60.5 ± 2.3 | |
20 | 519 ± 3 | 2.30 ± 0.33 | 88.4 ± 1.8 |
Fig. 5 a TDS profiles of CLAM steel with and without hydrogen charging; b engineering stress–strain curves of CLAM steel with hydrogen charging at 10 mA/cm2, and SEM fracture surfaces after c keeping at room temperature for 240 h d heating at 300 °C for 1 h
[1] |
Q. Huang, N. Baluc, Y. Dai, S. Jitsukawa, A. Kimura, J. Konys, R.J. Kurtz, R. Lindau, T. Muroga, G.R. Odette, B. Raj, R.E. Stoller, L. Tan, H. Tanigawa, A.A.F. Tavassoli, T. Yamamoto, F. Wan, Y. Wu, J. Nucl. Mater. 442, S2 (2013).
DOI URL |
[2] | D.P. Zhan, G.X. Qiu, C.S. Li, Y.K. Yang, Z.H. Jiang, H.S. Zhang, Acta Metall. Sin. Engl. Lett. 33, 881 (2020). |
[3] | S.N. Jiang, F.R. Wan, Y. Long, J.C. He, P.P. Liu, S. Ohnuki, N. Hashimoto, Acta Metall. Sin. Engl. Lett. 26, 303 (2013). |
[4] |
B. Wang, L. Liu, X. Xiang, Y. Rao, X. Ye, C.A. Chen, J. Nucl. Mater. 470, 30 (2016).
DOI URL |
[5] | P. Jung, J. Nucl. Mater. 258, 124 (1998). |
[6] |
Z.L. Wang, K.G. Zhu, X. Xiang, L. Zhang, B. Wang, X.Q. Ye, H. Zhou, C.A. Chen, Fusion Eng. Des. 137, 15 (2018).
DOI URL |
[7] |
S. Zhu, C. Zhang, Z. Yang, C. Wang, Nucl. Eng. Technol. 49, 1748 (2017).
DOI URL |
[8] | J.G. Chen, C.X. Liu, C. Wei, Y.C. Liu, H.J. Li, Acta Metall. Sin. Engl. Lett. 32, 1151 (2019). |
[9] | B. He, L. Cui, D.P. Wang, H.J. Li, C.X. Liu, Acta Metall. Sin. Engl. Lett. 33, 137 (2020). |
[10] |
H. Yang, W. Wang, M. Jiang, X. Ji, M.J. Zheng, J. Nucl. Mater. 511, 231 (2018).
DOI URL |
[11] |
Z.L. Wang, X. Xiang, C.A. Chen, J. Yan, Y.Q. Song, Y.C. Rao, K.G. Zhu, J. Nucl. Mater. 523, 342 (2019).
DOI URL |
[12] |
K. Shiba, T. Hirose, Fusion Eng. Des. 81, 1051 (2006).
DOI URL |
[13] |
T. Doshida, K. Takai, Acta Mater. 79, 93 (2014).
DOI URL |
[14] | B.H. Sun, D. Wang, X. Lu, D. Wan, D. Ponge, X.C. Zhang, Acta Metall. Sin. Engl. Lett. 34, 741 (2021). |
[15] |
D.P. Escobar, T. Depover, E. Wallaert, L. Duprez, M. Verhaege, K. Verbeken, Corros. Sci. 65, 199 (2012).
DOI URL |
[16] |
J. Venezuel, E. Gray, Q.L. Liu, Q.J. Zhou, C. Tapia-Bastidas, M.X. Zhang, A. Atrens, Corros. Sci. 127, 45 (2017).
DOI URL |
[17] |
D. Setoyama, J. Matsunaga, H. Muta, M. Uno, S. Yamanaka, J. Alloys Compd. 381, 215 (2004).
DOI URL |
[18] |
H. Addach, P. Berçot, M. Rezrazi, J. Takadoum, Corros. Sci. 51, 263 (2009).
DOI URL |
[19] | J. Zhang, J. Su, B.N. Zhang, Y. Zong, Z.G. Yang, C. Zhang, H. Chen, Acta Metall. Sin. Engl. Lett. 34, 1421 (2021). |
[20] |
C.Q. Chen, S.X. Li, K. Lu, Acta Mater. 51, 931 (2003).
DOI URL |
[21] | X.F. Li, X.F. Ma, J. Zhang, E. Akiyama, Y.F. Wang, X.L. Song, Acta Metall. Sin. Engl. Lett. 33, 759 (2020). |
[22] |
L. Rabahi, M. Gallouze, T. Grosdidier, D. Bradai, A. Kellou, Int. J. Hydrog. Energy 42, 2157 (2017).
DOI URL |
[23] |
Y.X. Qiao, D.K. Xu, S. Wang, Y.J. Ma, J. Chen, Y.X. Wang, H. Zhou, J. Mater. Sci. Technol. 60, 168 (2020).
DOI URL |
[24] | H. Yukawa, T. Matsumura, M. Morinaga, J. Alloys Compd. 293-295, 227 (1999). |
[25] |
R.V. Skolozdra, D. Fruchart, M. Kalychak, M. Bououdina, J. Alloys Compd. 296, 258 (2000).
DOI URL |
[1] | Jun Zhang, Binhan Sun, Zhigang Yang, Chi Zhang, Hao Chen. Enhancing the Hydrogen Embrittlement Resistance of Medium Mn Steels by Designing Metastable Austenite with a Compositional Core-shell Structure [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(7): 1059-1077. |
[2] | Tuhin Das, Salim V. Brahimi, Jun Song, Stephen Yue. Assessment of Hydrogen Embrittlement Susceptibility and Mechanism(s) in Quench and Tempered AISI 4135 Steel Using A Novel Fast Fracture Test in Bending [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(7): 1078-1094. |
[3] | Dayong An, Yuhao Zhou, Yao Xiao, Xinxi Liu, Xifeng Li, Jun Chen. Observation of the Hydrogen-Dislocation Interactions in a High-Manganese Steel after Hydrogen Adsorption and Desorption [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(7): 1105-1112. |
[4] | Bo Cheng, Yunkai Li, Xiaoxi Li, Huibin Ke, Liang Wang, Tangqing Cao, Di Wan, Benpeng Wang, Yunfei Xue. Solid-State Hydrogen Storage Properties of Ti-V-Nb-Cr High-Entropy Alloys and the Associated Effects of Transitional Metals (M = Mn, Fe, Ni) [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(7): 1113-1122. |
[5] | Z. Wang, Q. Lu, Z.H. Cao, H. Chen, M.X. Huang, J.F. Wang. Review on Hydrogen Embrittlement of Press-hardened Steels for Automotive Applications [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(7): 1123-1143. |
[6] | Ming-Tu Ma, Ke-Jian Li, Yu Si, Peng-Jun Cao, Hong-Zhou Lu, Ai-Min Guo, Guo-Dong Wang. Hydrogen Embrittlement of Advanced High-Strength Steel for Automobile Application: A Review [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(7): 1144-1158. |
[7] | Boning Zhang, Yong Mao, Zhenbao Liu, Jianxiong Liang, Jun Zhang, Maoqiu Wang, Jie Su, Kun Shen. Ab Initio Investigations for the Role of Compositional Complexities in Affecting Hydrogen Trapping and Hydrogen Embrittlement: A Review [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(7): 1159-1172. |
[8] | Jikui Liu, Junhua Hou, Fengchao An, Bingnan Qian, Christian H. Liebscher, Wenjun Lu. Characterization of Compositionally Complex Hydrides in a Metastable Refractory High-Entropy Alloy [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(7): 1173-1178. |
[9] | Wenjing Lou, Lin Cheng, Runsheng Wang, Chengyang Hu, Kaiming Wu. Atomistic Investigation of the Influence of Hydrogen on Mechanical Response during Nanoindentation in Pure Iron [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(7): 1179-1192. |
[10] | Rongjian Shi, Yanqi Tu, Liang Yang, Saiyu Liu, Shani Yang, Kewei Gao, Xu-Sheng Yang, Xiaolu Pang. Interactions between Pre-strain and Dislocation Structures and Its Effect on the Hydrogen Trapping Behaviors [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(7): 1193-1202. |
[11] | Yuxing Zhang, Zhen Wang, Shuchang Li, Xi Zhao, Zhimin Zhang, Yaojin Wu, Xianwei Ren, Fafa Yan, Beibei Dong. High Strength and Excellent Ductility of AZ80 Magnesium Alloy Cabin Component Developed by W-Shaped Channel Extrusion and Subsequent T6 Heat Treatment [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(5): 839-856. |
[12] | Baotian Du, Zijian Yu, Kang Shi, Ke Liu, Shubo Li, Wenbo Du. Improving the Mechanical Properties of Mg-Gd-Y-Ag-Zr Alloy via Pre-Strain and Two-Stage Ageing [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(3): 456-468. |
[13] | Shougang Duan, Qian Zhang, Wenxuan Li, Yong Dong, Beibei Jiang, Shichao Liu, Chuanqiang Li, Zhengrong Zhang. Effects of V Addition on Microstructural Evolution and Mechanical Properties of AlCrFe2Ni2 High-Entropy Alloys [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(3): 391-404. |
[14] | Weiying Huang, Jianhua Chen, Zhen Jiang, Xi Xiong, Wei Qiu, Jian Chen, Xianwei Ren, Liwei Lu. Influence of Ca Content on Microstructure and Mechanical Properties of Extruded Mg-Al-Ca-Mn Alloys [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(3): 426-438. |
[15] | Yu-Jin Nie, Jian-Wei Dai, Xiao-Bo Zhang. Effect of Ag Addition on Microstructure, Mechanical and Corrosion Properties of Mg-Nd-Zn-Zr Alloy for Orthopedic Application [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(2): 295-309. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||