Acta Metallurgica Sinica (English Letters) ›› 2023, Vol. 36 ›› Issue (7): 1144-1158.DOI: 10.1007/s40195-022-01517-0
Previous Articles Next Articles
Ming-Tu Ma1,2, Ke-Jian Li1,3(), Yu Si3, Peng-Jun Cao3, Hong-Zhou Lu4, Ai-Min Guo4, Guo-Dong Wang5
Received:
2022-09-07
Revised:
2022-11-02
Accepted:
2022-11-07
Online:
2023-07-10
Published:
2023-07-04
Contact:
Ke-Jian Li
Ming-Tu Ma, Ke-Jian Li, Yu Si, Peng-Jun Cao, Hong-Zhou Lu, Ai-Min Guo, Guo-Dong Wang. Hydrogen Embrittlement of Advanced High-Strength Steel for Automobile Application: A Review[J]. Acta Metallurgica Sinica (English Letters), 2023, 36(7): 1144-1158.
Add to citation manager EndNote|Ris|BibTeX
Fig. 1 Source, transport, direction, and fracture process of hydrogen in steel. In the figure, solid lines indicating strong correlations and dashed lines indicating weak correlations [2]
Reaction of uncoated hot forming steel | Reaction of Al-Si-coated hot forming steel |
---|---|
3Fe + 4H2O → Fe3O4 + 8H | Al + H2O → Al(OH) + H |
Fe + 4H2O → FeO + 8H | 2Al + 4H2O → 2Al(OH) + 6H |
(From 570 °C) | 2Al + 3H2O → Al2O3 + 6H |
2Fe + 3H2O → Fe2O3 + 6H | Si + 2H2O → SiO2 + 4H |
Table 1 Reaction of hot forming steel and Al-Si-coated hot forming steel
Reaction of uncoated hot forming steel | Reaction of Al-Si-coated hot forming steel |
---|---|
3Fe + 4H2O → Fe3O4 + 8H | Al + H2O → Al(OH) + H |
Fe + 4H2O → FeO + 8H | 2Al + 4H2O → 2Al(OH) + 6H |
(From 570 °C) | 2Al + 3H2O → Al2O3 + 6H |
2Fe + 3H2O → Fe2O3 + 6H | Si + 2H2O → SiO2 + 4H |
Fig. 2 Fracture morphologies of hydrogen embrittlement of a micro-void coalescence dimple, b quasi-cleavage fracture, c intergranular fracture, d cleavage fracture [20]
Hydrogen trap styles | Binding energy(kJ mol−1) | Materials |
---|---|---|
Single vacancy | 46.0-79.0 | Iron |
C atomic | 3.0 | Iron |
Mn atomic | 11.0 | Iron |
V and C atomic | 26.0-27.0 | Iron |
Dislocation | 27.0 | Iron |
Grain boundary | 17.2 | Iron |
Micro-void | 35.2 | Iron |
Fe3C | 84.0 | Medium carbon steel |
TiC (coherent) | 46.0-59.0 | Low carbon steel |
TiC(in-coherent) | 86.0 | Medium carbon steel |
MnS | 72.3 | Low carbon alloy steel |
V4C3 | 33.0-35.0 | Low carbon alloy steel |
NbC | 63.0-68.0 | Low carbon steel |
Residential austenitic | 59.9 | Dual phase steel |
Table 2 Binding energy of hydrogen in different materials [87,88,89]
Hydrogen trap styles | Binding energy(kJ mol−1) | Materials |
---|---|---|
Single vacancy | 46.0-79.0 | Iron |
C atomic | 3.0 | Iron |
Mn atomic | 11.0 | Iron |
V and C atomic | 26.0-27.0 | Iron |
Dislocation | 27.0 | Iron |
Grain boundary | 17.2 | Iron |
Micro-void | 35.2 | Iron |
Fe3C | 84.0 | Medium carbon steel |
TiC (coherent) | 46.0-59.0 | Low carbon steel |
TiC(in-coherent) | 86.0 | Medium carbon steel |
MnS | 72.3 | Low carbon alloy steel |
V4C3 | 33.0-35.0 | Low carbon alloy steel |
NbC | 63.0-68.0 | Low carbon steel |
Residential austenitic | 59.9 | Dual phase steel |
[1] | W.H. Johnson, Nature 11, 393 (1875). |
[2] | W.T. Anthoy, I.M. Bernstein, Stress Corrosion Cracking and hydrogen embrittlement, Review of advances in physical Metallurgy (Metallurgical Industry Press, Beijing, 1985), pp. 482-505. |
[3] |
P. Hirthj, Metall. Trans. A 11, 861 (1980).
DOI URL |
[4] |
M. Wang, E. Akiyamae, K. Tsuzaki, Corros. Sci. 49, 4081 (2007).
DOI URL |
[5] |
Q. Liu, A. Atrens, Corros. Rev. 31, 85 (2013).
DOI URL |
[6] |
M. Dadfarnia, A. Nagao, S. Wang, M.L. Martin, B.P. Somerday, P. Sofronis, Int. J. Fract. 196, 223 (2015).
DOI URL |
[7] |
H. Bhadeshia, ISIJ Int. 56, 24 (2016).
DOI URL |
[8] | M.T. Ma, H.Z. Lu, Y.S. Chen, B.Y. Liu, Automobile Technol. Mater. 4, 1 (2021). |
[9] |
S.W. Owen, Met. Technol. 7, 1 (1980).
DOI URL |
[10] | M.T. Ma, B.R. Wu, Duplex Steel-Physical and Mechanical Metallurgy (Metallurgical Industry Press, Beijing, 1988), pp. 1-10. |
[11] | M.T. Ma, H.L. Yi, H.Z. Lu, Eng. Sci. 9, 71 (2012). |
[12] | M.T. Ma, S.W. Jiang, G.Y. Li, Y. Feng, J. Zhou, H.Z. Lu, F.H. Li, Mater. Mech. Eng. 44, 1 (2020). |
[13] | Y.J. Zhang, W.J. Hui, H. Dong, Acta Metall. Sin. Engl. Lett. 49, 1153 (2013). |
[14] | J.Y. Li, H.B. Zhang, W.Z. Tan, G.P. Zhou, X.H. Wang, D.G. Ma, C.L. Liu,Analysis of Delayed Cracking Of Hot Stamping Steel, Study on Hydrogen-Induced Delayed Fracture of Chinese Automobile EVI and High Strength Steel (Beijing Institute of Technology Press, Beijing, 2019), pp. 318-324. |
[15] |
R.G. Davies, Metall. Trans. A 12, 1667 (1981).
DOI URL |
[16] |
H. Zhao, P. Chakraborty, D. Ponge, T. Hickel, B. Sun, C.H. Wu, B. Gault, D. Raabe,Nature 602, 437 (2022).
DOI |
[17] |
S. Hu, Y. Yin, H. Liang, Y.Z. Zhang, Y. Yan, Mater. Des. 218, 110702 (2022).
DOI URL |
[18] | C.B. Sebastian, S. Thierry, A. Anis,Hydrogen Embrittlement resistance of Al-Si coated 1.8GPa press hardened steel solutions for body-in-white(BIW) application//7 international conference for hot sheet metal forming of high-performance steel CHS2, 2019, June 2-5 th, Lulea Sweden, edited by Mats Oldenburg, Jens Hardell, Daniel Casellas. 2019: 179-189. |
[19] |
T. John, W.T. Anthony, I.M. Bernstein, J.R. Rebecca, Metall. Trans. A 7, 821 (1976).
DOI URL |
[20] |
T. Shinko, G. Hénaff, D. Halm, G. Benoit, G. Bilotta, M. Arzaghi, Int. J. Fatigue 121, 197 (2019).
DOI URL |
[21] | Q.H. Liu, H.W. Tang, T.Z. Si, Mater. Prod. 51, 134 (2018). |
[22] |
R.A. Oriani, Acta Metall. 18, 147 (1970).
DOI URL |
[23] | E. Fricke, H. Stüwe, G. Vibrans, Metall. Mater. Trans. A 2, 2697 (1971). |
[24] | J. Han, J.H. Nam, Y.K. Lee, Acta Metall. 113, 1 (2016). |
[25] |
K. Hirata, S. Iikubo, M. Koyama, K. Tsuzaki, H. Ohtani, Metall. Mater. Trans. A 49, 5015 (2018).
DOI |
[26] |
T. Das, R. Chakrabarty, J. Song, S. Yue, Int. J. Hydrog. Energy 47, 1343 (2022).
DOI URL |
[27] |
N. Yazdipour, A.J. Haq, K. Muzaka, E.V. Pereloma, Comput. Mater. Sci. 56, 49 (2012).
DOI URL |
[28] |
Y. Momotani, A. Shibata, T. Yonemura, B. Yu, N. Tsuji, Scr. Mater. 178, 318 (2020).
DOI URL |
[29] | D. Guedes, L. Cupertino Malheriros, A. Oudriss, S. Cohendoz, J. Bouhattate, J. Creus, F. Thebault, M. Piette, X. Feaugas, Acta Metall. 186, 133 (2020). |
[30] | D. Rudomilova, T. Proek, P. Salvetr, A. Knaislová, G. Luckeneder, Mater. Corros. 71, 909 (2019). |
[31] | A. Turk, G.R. Joshi, M. Gintalas, M. Callisti, E.I. Galindo-Nava, Acta Metall. 194, 118 (2020). |
[32] | T/CSAE 155-2020 U-shaped constant bending load test method for hydrogen-induced delayed fracture sensitivity of ultra-high strength automotive steel plates. |
[33] | M.T. Ma, G.D. Wang, D.F. Wang,Introduction to Automotive Lightweight (Chemical Industry Press, Beijing, 2020), pp. 158-178. |
[34] |
J.S. Kim, Y.H. Lee, D.L. Lee, K.T. Park, C.S. Lee, Mater Sci. Eng. A 505, 105 (2009).
DOI URL |
[35] |
M. Wang, E. Akiyama, K. Tsuzaki, Corros. Sci. 48, 2189 (2006).
DOI URL |
[36] | S. Hiroshi, T. Kenichi, Y. Hagihara,Strain-Aged High-Strength Steel with High-Resistance to Delayed Fracture and Its Mechanism. Paper presented at Material Mechanics Conference, The Japan society of Mechanical Engineers, Tokyo, 24-26 October 2007. |
[37] |
S. Takagi, Y. Toji, M. Yoshino, K. Hasegawa, ISIJ Int. 52, 316 (2012).
DOI URL |
[38] |
G.L. Pioszak, R.P. Gangloff,Corrosion 73, 1132 (2017).
DOI URL |
[39] | B. Sun, J.P. Lin, X.L. Gao, Hot Work. Technol. 44, 183 (2015). |
[40] |
K. Bergers, E. Camisão de Souza, I. Thomas, N. Mabho, J. Flock, Steel Res. Int. 81, 499 (2010).
DOI URL |
[41] | Kirchheimr, Acta Metall. 55 5139 (2007). |
[42] | Kirchheimr, Acta Metall. 55 5129 (2007). |
[43] | G. Westlaked, Argonne Natl Lab. 3, 1 (1969). |
[44] | A. Orianir, Ber Bunst für Phys. Chem. 76, 848 (1972). |
[45] |
D. Beachemc, Metall. Mater. Trans. B 3, 441 (1972).
DOI URL |
[46] | K. Rnbaumh, Sofronisp, Mater. Sci. Eng. A 176 191 (1994). |
[47] |
Y.A. Du, L. Ismer, J. Rogal, T. Hickel, J. Neugebauer, R. Drautz, Phys. Rev. B 84, 144121 (2011).
DOI URL |
[48] |
T. Yoshimasa, K. Hikaru, A. Ryo, A. Shigeo, H. Kimitaka, Y. Yamamoto, M. Shunsuke, T. Nobuo, Mater. Sci. Eng. A 661, 211 (2016).
DOI URL |
[49] | C.S. Marchic, B. Somerdayb, Technical reference on hydrogen compatibility of materials. Geology (2005). https://doi.org/10.2172/1055634 |
[50] |
S.Q. Zhang, J.F. Wan, Q.Y. Zhao, J. Liu, F. Huang, Y.H. Huang, X.G. Li, Corros. Sci. 164, 108345 (2020).
DOI URL |
[51] | A. Pundta, R. Kirchheimr, Annu.Rev. Mater. Res. 36, 555 (2006). |
[52] | S. Lynchs, Corros. Rev. 30, 105 (2012). |
[53] | M. Nagumom, Fundamentals of Hydrogen Embrittlement. Springer, 2016. |
[54] | P. Gong, J. Nutter, P.E.J. Rivera-Diaz-Del-Castillo, W.M. Rainforth, Sci. Adv. 6, 6152 (2020). |
[55] |
L.S. Darken, R.P. Smith,Corrosion 5, 1 (1949).
DOI URL |
[56] |
H. Wu, B. Ju, D. Tang, R. Hu, A. Guo, Q. Kang, D. Wang, Mater Sci. Eng. A 622, 61 (2015).
DOI URL |
[57] |
A. Nagao, K. Hayashi, K. Oi, S. Mitao, ISIJ Int. 52, 213 (2012).
DOI URL |
[58] | F.G. Wei, T.K. Hara, Adv. Mater.(2011). https://doi.org/10.1007/978-3-642-17665-4_11. |
[59] |
Y.S. Chen, H.Z. Lu, J.T. Laing,Science 367, 171 (2020).
DOI URL |
[60] | R.J. Shi, Y. Ma, Z.D. Wang, Acta Metall. 200, 686 (2020). |
[61] |
M. Masoumi, L.P.M. Santos, I.N. Bastos, S.S.M. Tavares, M.J.G. da Silva, H.F.G. de Abreu, Mater. Des. 91, 90 (2016).
DOI URL |
[62] |
V. Venegas, F. Caleyo, T. Baudin, J.H. Espina-hernández, J.M. Hallen, Corros. Sci. 53, 4204 (2011).
DOI URL |
[63] | M.T. Ma, Advanced Automotive Steel(Chemical Industry Press, Beijing, 2008), pp. 375-399. |
[64] |
S.M. Lee, J.Y. Lee, Acta Metall. 35, 2695 (1987).
DOI URL |
[65] |
J. Takahashi, K. Kawakami, Y. Kobayashia, T. Taruib, Scr. Mater. 63, 261 (2010).
DOI URL |
[66] |
F.G. Wei, K. Tsuzaki, Metall. Mater. Trans. A 37, 331 (2006).
DOI URL |
[67] | Y.C. Lin, I.E. McCarroll, Y.T. Lin, W.C. Chung, J.M. Cairney, H.W. Yen, Acta Mater. 196, 516 (2020). |
[68] | Y. Si, Y.S. Tang, X. Zhou, K.J. Li, Y.L. Ma, M.T. Ma, Automob. Technol. Mater. 6, 16 (2022). |
[69] |
J. Lee, T. Lee, Y.J. Kwon, D.J. Mun, J.Y. Yoo, C.S. Lee, Met. Mater. Int. 22, 364 (2016).
DOI URL |
[70] | Q.L. Yong, The Second Phase in Iron and Steel (Metallurgical Industry Press, Beijing, 2006), pp. 146-147. |
[71] | M.T. Ma, Z.G. Li, Spec. Steel 10, 11 (2001). |
[72] |
J. Yoo, M.C. Jo, M.C. Jo, S. Kim, J. Oh, J. Bian, S.S. Sohn, S. Lee, Mater. Sci. Eng. A 791, 139763 (2020).
DOI URL |
[73] |
X. Jin, L. Xu, W. Yu, K. Yao, J. Shi, M. Wang, Corros. Sci. 166, 108421 (2020).
DOI URL |
[74] |
B. Zhang, J. Su, M. Wang, Z. Liu, Z. Yang, M. Militzer, H. Chen, Acta Mater. 208, 116744 (2021).
DOI URL |
[75] |
Y. Zhang, W. Hui, X. Zhao, C. Wang, W. Cao, H. Dong, Eng. Fail. Anal. 97, 605 (2019).
DOI URL |
[76] |
J. Han, J.H. Nam, Y.K. Lee, Acta Mater. 113, 1 (2016).
DOI URL |
[77] |
M.R. Louthan Jr., R.G. Derrick, Corros. Sci. 15, 565 (1975).
DOI URL |
[78] | M.T. Ma, Heat Treat. 29, 1 (2014). |
[79] | X. Zhu, W. Li, H.S. Zhao, L. Wang, X.J. Jin, Int. J. Hydrog. Energy 39, 13031 (2014). |
[80] |
J. Yoo, M.C. Jo, D.W. Kim, H. Song, M. Koo, S.S. Sohn, S. Lee, Acta Mater. 196, 370 (2020).
DOI URL |
[81] | G.E. Totten. Handbook of Residual Stress and Deformation of Steel (ASM international, 2002). |
[82] | V. Renzo, M.T. Michele, B. Linda, S. Corsinovi, D.C Daniele,Hydrogen Induced Delayed Fracture in hot Stamped Al-Si Coated Boron Steels, in 7th International Conference Hot Sheet Metal Forming of High-performance Steel June2-5, (Lulea, Sweden, 2019), p. 191-200. |
[83] | M.T. Ma, Y.S. Zhang,Research progress in Hot Stamping of Ultra-High Strength Steel, Automotive Advanced Manufacturing Technology Tracking Research 2016(Beijing Institute of Technology Press, Beijing, 2016), pp. 15-75. |
[84] |
S.M. Myers, S.T. Picraux, J. Appl. Phys. 50, 5710 (1979).
DOI URL |
[85] | A.I. Shirley, C.K. Hall, Scr. Mater. 17, 1003 (1983). |
[86] |
W.Y. Choo, J.Y. Lee, Metall. Trans. A 13, 135 (1982).
DOI URL |
[87] |
I. Maroef, D.L. Olson, M. Eberhart, G.R. Edwards, Metall. Rev. 47, 191 (2002).
DOI URL |
[88] |
F.G. Wei, T. Hara, K. Tsuzaki, Metall. Mater. Trans. B 35, 587 (2004).
DOI URL |
[89] |
S.M. Lee, J.Y. Lee, Metall. Trans. A 17, 181 (1986).
DOI URL |
[90] | Y.D. Park, I.S. Maroef, D.L. Olson, Weld. J. 81, 7 (2002). |
[1] | Jun Zhang, Binhan Sun, Zhigang Yang, Chi Zhang, Hao Chen. Enhancing the Hydrogen Embrittlement Resistance of Medium Mn Steels by Designing Metastable Austenite with a Compositional Core-shell Structure [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(7): 1059-1077. |
[2] | Tuhin Das, Salim V. Brahimi, Jun Song, Stephen Yue. Assessment of Hydrogen Embrittlement Susceptibility and Mechanism(s) in Quench and Tempered AISI 4135 Steel Using A Novel Fast Fracture Test in Bending [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(7): 1078-1094. |
[3] | Dayong An, Yuhao Zhou, Yao Xiao, Xinxi Liu, Xifeng Li, Jun Chen. Observation of the Hydrogen-Dislocation Interactions in a High-Manganese Steel after Hydrogen Adsorption and Desorption [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(7): 1105-1112. |
[4] | Z. Wang, Q. Lu, Z.H. Cao, H. Chen, M.X. Huang, J.F. Wang. Review on Hydrogen Embrittlement of Press-hardened Steels for Automotive Applications [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(7): 1123-1143. |
[5] | Boning Zhang, Yong Mao, Zhenbao Liu, Jianxiong Liang, Jun Zhang, Maoqiu Wang, Jie Su, Kun Shen. Ab Initio Investigations for the Role of Compositional Complexities in Affecting Hydrogen Trapping and Hydrogen Embrittlement: A Review [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(7): 1159-1172. |
[6] | Wenjing Lou, Lin Cheng, Runsheng Wang, Chengyang Hu, Kaiming Wu. Atomistic Investigation of the Influence of Hydrogen on Mechanical Response during Nanoindentation in Pure Iron [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(7): 1179-1192. |
[7] | Rongjian Shi, Yanqi Tu, Liang Yang, Saiyu Liu, Shani Yang, Kewei Gao, Xu-Sheng Yang, Xiaolu Pang. Interactions between Pre-strain and Dislocation Structures and Its Effect on the Hydrogen Trapping Behaviors [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(7): 1193-1202. |
[8] | Yue-Yang Gu, Han-Yu Zhao, Wei Chen, Wei Yan, Liang-Yin Xiong, De-Min Chen. Effects of Hydrogen Charging on Mechanical Properties of CLAM Steel at Different Strain Rates [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(7): 1203-1210. |
[9] | Ming-Jie Zhao, Liang Huang, Chang-Min Li, Jia-Hui Xu, Xu-Yang Li, Jian-Jun Li, Peng-Chuan Li, Chao-Yuan Sun. Investigation and Modeling of Austenite Grain Evolution for a Typical High-strength Low-alloy Steel during Soaking and Deformation Process [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(6): 996-1010. |
[10] | Binhan Sun, Dong Wang, Xu Lu, Di Wan, Dirk Ponge, Xiancheng Zhang. Current Challenges and Opportunities Toward Understanding Hydrogen Embrittlement Mechanisms in Advanced High-Strength Steels: A Review [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(6): 741-754. |
[11] | Xiaohui Xi, Jinliang Wang, Liqing Chen, Zhaodong Wang. On the Microstructural Strengthening and Toughening of Heat-Affected Zone in a Low-Carbon High-Strength Cu-Bearing Steel [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(5): 617-627. |
[12] | Jun Zhang, Jie Su, Boning Zhang, Yi Zong, Zhigang Yang, Chi Zhang, Hao Chen. Phase-Field Modeling of Hydrogen Diffusion and Trapping in Steels [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(10): 1421-1426. |
[13] | Xinfeng Li, Xianfeng Ma, Jin Zhang, Eiji Akiyama, Yanfei Wang, Xiaolong Song. Review of Hydrogen Embrittlement in Metals: Hydrogen Diffusion, Hydrogen Characterization, Hydrogen Embrittlement Mechanism and Prevention [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(6): 759-773. |
[14] | Feng-Mei Bai, Hong-Wei Zhou, Xiang-Hua Liu, Meng Song, Ya-Xin Sun, Hai-Long Yi, Zhen-Yi Huang. Masing Behavior and Microstructural Change of Quenched and Tempered High-Strength Steel Under Low Cycle Fatigue [J]. Acta Metallurgica Sinica (English Letters), 2019, 32(11): 1346-1354. |
[15] | Wen-Bin Gao, Dong-Po Wang, Fang-Jie Cheng, Cai-Yan Deng, Wei Xu. Underwater Wet Welding for HSLA Steels: Chemical Composition, Defects, Microstructures, and Mechanical Properties [J]. Acta Metallurgica Sinica (English Letters), 2015, 28(9): 1097-1108. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||