Acta Metallurgica Sinica (English Letters) ›› 2023, Vol. 36 ›› Issue (7): 1193-1202.DOI: 10.1007/s40195-023-01568-x
Previous Articles Next Articles
Rongjian Shi1, Yanqi Tu1, Liang Yang5, Saiyu Liu1, Shani Yang1, Kewei Gao1, Xu-Sheng Yang3,4, Xiaolu Pang1,2()
Received:
2023-03-20
Revised:
2023-04-26
Accepted:
2023-05-01
Online:
2023-07-10
Published:
2023-07-04
Contact:
Xiaolu Pang
Rongjian Shi, Yanqi Tu, Liang Yang, Saiyu Liu, Shani Yang, Kewei Gao, Xu-Sheng Yang, Xiaolu Pang. Interactions between Pre-strain and Dislocation Structures and Its Effect on the Hydrogen Trapping Behaviors[J]. Acta Metallurgica Sinica (English Letters), 2023, 36(7): 1193-1202.
Add to citation manager EndNote|Ris|BibTeX
Fig. 1 Microstructural characterization in the investigated high-strength martensitic steel before pre-strain. a TEM bright-field micrograph depicting the overall microstructure. b HRTEM image of one typical nanoprecipitate, with the corresponding FFT image in the inset. c IFFT image showing the lattice structure of the FCC nanoprecipitate. d HAADF image. The STEM-EDS mapping of the dotted region with nanoprecipitates in d: (e1) the STEM image, EDS mapping showing (e2) Fe, (e3) Ni, (e4) C, (e5) V, and (e6) Mo
Fig. 2 a Representative engineering stress-engineering strain curves from the normal and interrupted tensile tests. b Hydrogen desorption curves of the steels with and without 5% pre-strain after hydrogen charging. The heating rate was 100 °C/h from room temperature to 500 °C
Fig. 4 Microstructural characterization of the investigated steel after pre-strain. a Overall TEM bright-field image, with the enlarged view shown in b, indicating the distribution of the dislocation substructure under deformation. c TEM bright-field image of the deformation nano-twins and d dark-field TEM images of NTs; the corresponding selected area electron diffraction patterns are indicated in the inset of c
Fig. 6 a Concomitant dislocation cell-twins duplex microstructure of the investigated steel after pre-strain. b Magnified view of the distribution and the morphology of the dislocation cells (indicated by the dotted lines) with the lath boundaries (red arrows)
Fig. 7 a Overall TEM bright-field micrograph indicating the distribution of dislocation cells embedded with the nanoprecipitates (yellow arrows). b Enlarged view of the tangled dislocations (blue arrows) and precipitates (yellow arrows) in the dislocation cell walls. c Enlarged view of the deformed precipitates deviated from the dislocation cell walls
Fig. 8 Details about the morphology of the precipitates with the surrounding dislocations under pre-strain. a TEM bright-field image. b IFFT image of the dislocations adjacent to the precipitate. c Magnified TEM image of the appearance of the deformation close to the precipitate/matrix interface
[1] |
X. Li, K. Lu, Nat. Mater. 16, 700 (2017).
DOI URL |
[2] |
R. Shi, H. Fu, K. Chen, W. Sun, Z. Wang, L. Qiao, X.S. Yang, X. Pang, Acta Mater. 229, 117831 (2022).
DOI URL |
[3] |
Y.S. Chen, H. Lu, J. Liang, A. Rosenthal, H. Liu, G. Sneddon, I. McCarroll, Z. Zhao, W. Li, A. Guo, J.M. Cairney,Science 367, 171 (2020).
DOI URL |
[4] |
P. Yu, Y. Cui, G.Z. Zhu, Y. Shen, M. Wen, Acta Mater. 185, 518 (2020).
DOI URL |
[5] |
Z. Que, M. Heczko, I. Kuběna, H.P. Seifert, P. Spätig, Mater. Charact. 165, 110405 (2020).
DOI URL |
[6] |
F. Ye, T. Zhu, K. Mori, Q. Xu, Y. Song, Q. Wang, R. Yu, B. Wang, X. Cao, J. Alloys Compd. 876, 160134 (2021).
DOI URL |
[7] |
S.P. Lynch, Acta Metall. 36, 2639 (1988).
DOI URL |
[8] |
H.K. Birnbaum, P. Sofronis, Mater. Sci. Eng. A 176, 191 (1994).
DOI URL |
[9] |
C.D. Beachem, Metall. Mater. Trans. B 3, 441 (1972).
DOI URL |
[10] | T. Das, S.V. Brahimi, J. Song, S. Yue, Acta Metall. Sin. Engl. Lett. (2022). https://doi.org/10.1007/s40195-022-01439-x |
[11] |
A. Drexler, C. Bergmann, G. Manke, V. Kokotin, K. Mraczek, S. Leitner, M. Pohl, W. Ecker, J. Alloys Compd. 856, 158226 (2021).
DOI URL |
[12] |
S.H. Yu, S.M. Lee, S. Lee, J.H. Nam, J.S. Lee, C.M. Bae, Y.K. Lee, Acta Mater. 172, 92 (2019).
DOI URL |
[13] |
S.H. Yu, H.B. Jeong, J.S. Lee, Y.K. Lee, Acta Mater. 225, 117567 (2022).
DOI URL |
[14] |
J.A. Ronevich, B.C. De Cooman, J.G. Speer, E. De Moor, D.K. Matlock, Metall. Mater. Trans. A 43, 2293 (2012).
DOI URL |
[15] |
J.L. Lee, J.Y. Lee, Met. Sci. 17, 426 (1983).
DOI URL |
[16] |
X. Li, Y. Wang, P. Zhang, B. Li, X. Song, J. Chen, Mater. Sci. Eng. A 616, 116 (2014).
DOI URL |
[17] |
M. Nagumo, Mater. Sci. Technol. 20, 940 (2013).
DOI URL |
[18] |
K. Takashima, R. Han, K.I. Yokoyama, Y. Funakawa, ISIJ Int. 59, 2327 (2019).
DOI URL |
[19] |
R. Shi, Y. Ma, Z. Wang, L. Gao, X.S. Yang, L. Qiao, X. Pang, Acta Mater. 200, 686 (2020).
DOI URL |
[20] |
H.J. Kim, S.H. Jeon, W.S. Yang, B.G. Yoo, Y.D. Chung, H.Y. Ha, H.Y. Chung, J. Alloys Compd. 735, 2067 (2018).
DOI URL |
[21] | M. Pinson, L. Claeys, H. Springer, V. Bliznuk, T. Depover, K. Verbeken, Mater. Charact. 184, 111671 (2022). |
[22] |
R. Shi, L. Chen, Z. Wang, X.S. Yang, L. Qiao, X. Pang, J. Alloys Compd. 854, 157218 (2021).
DOI URL |
[23] |
J. Takahashi, K. Kawakami, Y. Kobayashi, Acta Mater. 153, 193 (2018).
DOI URL |
[24] |
A. Laureys, L. Claeys, T. De Seranno, T. Depover, E. Van den Eeckhout, R. Petrov, K. Verbeken, Mater. Charact. 144, 22 (2018).
DOI URL |
[25] |
T. Depover, K. Verbeken, Corros. Sci. 112, 308 (2016).
DOI URL |
[26] | B. Zhang, Q. Zhu, C. Xu, C. Li, Y. Ma, Z. Ma, S. Liu, R. Shao, Y. Xu, B. Jiang, L. Gao, X. Pang, Y. He, G. Chen, L. Qiao, Nat.Commun. 13, 3858 (2022). |
[27] |
R.J. Shi, Z.D. Wang, L.J. Qiao, X.L. Pang, Int. J. Miner. Metall. Mater. 28, 644 (2021).
DOI |
[28] |
X. Jin, L. Xu, W. Yu, K. Yao, J. Shi, M. Wang, Corros. Sci. 166, 108421 (2020).
DOI URL |
[29] |
J. Takahashi, K. Kawakami, Y. Sakiyama, T. Ohmura, Mater. Charact. 178, 111282 (2021).
DOI URL |
[30] |
Z. Wang, B. Kan, J. Xu, J. Li, Metall. Mater. Trans. A 51, 2811 (2020).
DOI |
[31] |
M.A.V. Devanathan, Z. Stachurski, J. Electrochem. Soc. 111, 619 (1964).
DOI URL |
[32] |
T.Y. Zhang, Y.P. Zheng, Acta Mater. 46, 5023 (1998).
DOI URL |
[33] |
P. Schutz, F. Martin, Q. Auzoux, J. Adem, E.F. Rauch, Y. Wouters, L. Latu-Romain, Mater. Charact. 192, 112239 (2022).
DOI URL |
[34] |
T. Doshida, K. Takai, Acta Mater. 79, 93 (2014).
DOI URL |
[35] |
H. Sun, Y. Wang, Z. Wang, N. Liu, Y. Peng, X. Zhao, R. Ren, H. Zhang, J. Mater. Sci. Technol. 49, 126 (2020).
DOI URL |
[36] | J. Zhang, J. Su, B. Zhang, Y. Zong, Z. Yang, C. Zhang, H. Chen, Acta Metall. Sin. Engl. Lett. 34, 1421 (2021). |
[37] |
L. Chen, X. Xiong, X. Tao, Y. Su, L. Qiao, Corros. Sci. 166, 108428 (2020).
DOI URL |
[38] |
Y.T. Lin, X. An, Z. Zhu, M.L.S. Nai, C.W. Tsai, H.W. Yen, J. Alloys Compd. 925, 166735 (2022).
DOI URL |
[39] |
Y. Qin, D. Mayweg, P.Y. Tung, R. Pippan, M. Herbig, Acta Mater. 201, 79 (2020).
DOI URL |
[40] |
F.Z. Dai, Z.P. Sun, W.Z. Zhang, Acta Mater. 186, 124 (2020).
DOI URL |
[41] | J. Zhang, B.H. Sun, Z.G. Yang, C. Zhang, H. Chen, Acta Metall. Sin. Engl. Lett. (2022). https://doi.org/10.1007/s40195-022-01483-7 |
[1] | Jun Zhang, Binhan Sun, Zhigang Yang, Chi Zhang, Hao Chen. Enhancing the Hydrogen Embrittlement Resistance of Medium Mn Steels by Designing Metastable Austenite with a Compositional Core-shell Structure [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(7): 1059-1077. |
[2] | Tuhin Das, Salim V. Brahimi, Jun Song, Stephen Yue. Assessment of Hydrogen Embrittlement Susceptibility and Mechanism(s) in Quench and Tempered AISI 4135 Steel Using A Novel Fast Fracture Test in Bending [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(7): 1078-1094. |
[3] | Dayong An, Yuhao Zhou, Yao Xiao, Xinxi Liu, Xifeng Li, Jun Chen. Observation of the Hydrogen-Dislocation Interactions in a High-Manganese Steel after Hydrogen Adsorption and Desorption [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(7): 1105-1112. |
[4] | Z. Wang, Q. Lu, Z.H. Cao, H. Chen, M.X. Huang, J.F. Wang. Review on Hydrogen Embrittlement of Press-hardened Steels for Automotive Applications [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(7): 1123-1143. |
[5] | Ming-Tu Ma, Ke-Jian Li, Yu Si, Peng-Jun Cao, Hong-Zhou Lu, Ai-Min Guo, Guo-Dong Wang. Hydrogen Embrittlement of Advanced High-Strength Steel for Automobile Application: A Review [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(7): 1144-1158. |
[6] | Boning Zhang, Yong Mao, Zhenbao Liu, Jianxiong Liang, Jun Zhang, Maoqiu Wang, Jie Su, Kun Shen. Ab Initio Investigations for the Role of Compositional Complexities in Affecting Hydrogen Trapping and Hydrogen Embrittlement: A Review [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(7): 1159-1172. |
[7] | Wenjing Lou, Lin Cheng, Runsheng Wang, Chengyang Hu, Kaiming Wu. Atomistic Investigation of the Influence of Hydrogen on Mechanical Response during Nanoindentation in Pure Iron [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(7): 1179-1192. |
[8] | Yue-Yang Gu, Han-Yu Zhao, Wei Chen, Wei Yan, Liang-Yin Xiong, De-Min Chen. Effects of Hydrogen Charging on Mechanical Properties of CLAM Steel at Different Strain Rates [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(7): 1203-1210. |
[9] | Baotian Du, Zijian Yu, Kang Shi, Ke Liu, Shubo Li, Wenbo Du. Improving the Mechanical Properties of Mg-Gd-Y-Ag-Zr Alloy via Pre-Strain and Two-Stage Ageing [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(3): 456-468. |
[10] | Ming-Jie Zhao, Liang Huang, Chang-Min Li, Jia-Hui Xu, Xu-Yang Li, Jian-Jun Li, Peng-Chuan Li, Chao-Yuan Sun. Investigation and Modeling of Austenite Grain Evolution for a Typical High-strength Low-alloy Steel during Soaking and Deformation Process [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(6): 996-1010. |
[11] | Binhan Sun, Dong Wang, Xu Lu, Di Wan, Dirk Ponge, Xiancheng Zhang. Current Challenges and Opportunities Toward Understanding Hydrogen Embrittlement Mechanisms in Advanced High-Strength Steels: A Review [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(6): 741-754. |
[12] | Xiaohui Xi, Jinliang Wang, Liqing Chen, Zhaodong Wang. On the Microstructural Strengthening and Toughening of Heat-Affected Zone in a Low-Carbon High-Strength Cu-Bearing Steel [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(5): 617-627. |
[13] | Jun Zhang, Jie Su, Boning Zhang, Yi Zong, Zhigang Yang, Chi Zhang, Hao Chen. Phase-Field Modeling of Hydrogen Diffusion and Trapping in Steels [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(10): 1421-1426. |
[14] | Xinfeng Li, Xianfeng Ma, Jin Zhang, Eiji Akiyama, Yanfei Wang, Xiaolong Song. Review of Hydrogen Embrittlement in Metals: Hydrogen Diffusion, Hydrogen Characterization, Hydrogen Embrittlement Mechanism and Prevention [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(6): 759-773. |
[15] | Feng-Mei Bai, Hong-Wei Zhou, Xiang-Hua Liu, Meng Song, Ya-Xin Sun, Hai-Long Yi, Zhen-Yi Huang. Masing Behavior and Microstructural Change of Quenched and Tempered High-Strength Steel Under Low Cycle Fatigue [J]. Acta Metallurgica Sinica (English Letters), 2019, 32(11): 1346-1354. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||