Acta Metallurgica Sinica (English Letters) ›› 2020, Vol. 33 ›› Issue (6): 759-773.DOI: 10.1007/s40195-020-01039-7
Xinfeng Li1,2(), Xianfeng Ma1, Jin Zhang3, Eiji Akiyama4, Yanfei Wang5(
), Xiaolong Song2
Received:
2019-10-08
Revised:
2020-02-01
Online:
2020-06-10
Published:
2020-06-17
Contact:
Xinfeng Li,Yanfei Wang
Xinfeng Li, Xianfeng Ma, Jin Zhang, Eiji Akiyama, Yanfei Wang, Xiaolong Song. Review of Hydrogen Embrittlement in Metals: Hydrogen Diffusion, Hydrogen Characterization, Hydrogen Embrittlement Mechanism and Prevention[J]. Acta Metallurgica Sinica (English Letters), 2020, 33(6): 759-773.
Add to citation manager EndNote|Ris|BibTeX
Fig.1 a Hydrogen fugacity (fH2) for pure iron in 0.1 M NaOH with different additions of KCN [33]; b total hydrogen concentration of the 3.5NiCrMoV specimens charged electrochemically with hydrogen plotted to fit the regression line for charging in gaseous hydrogen [34]
Fig.2 Hydrogen traps in the steels [39]: a interstitial sites; b surface traps; c subsurface traps; d grain boundary traps; e dislocation traps; f vacancy traps
Trapping sites | Activation energy (kJ mol-1) |
---|---|
Reversible trapping sites | |
Interstitial sites in iron | 4-8 |
Dislocation | 26.4-26.8 |
Lath boundary | 17.8-18.6 |
Austenite/martensite | 22 |
Grain boundary | 17.8-18.6 |
NbC (coherent) | 39-48 |
Irreversible trapping sites | |
Ferrite/cementite interface | 66.3-68.4 |
Fe3C interface | 84 |
Al2O3 interface | 79 |
MnS interface | 72 |
NbC (incoherent) | 63-68 |
Table 1 Activation energies of various hydrogen traps in steels [3]
Trapping sites | Activation energy (kJ mol-1) |
---|---|
Reversible trapping sites | |
Interstitial sites in iron | 4-8 |
Dislocation | 26.4-26.8 |
Lath boundary | 17.8-18.6 |
Austenite/martensite | 22 |
Grain boundary | 17.8-18.6 |
NbC (coherent) | 39-48 |
Irreversible trapping sites | |
Ferrite/cementite interface | 66.3-68.4 |
Fe3C interface | 84 |
Al2O3 interface | 79 |
MnS interface | 72 |
NbC (incoherent) | 63-68 |
Type of steels | Grain size (μm) | Microstructure | Apparent hydrogen diffusion coefficient (m2 s-1) | Apparent hydrogen concentration (mol m-3) |
---|---|---|---|---|
Pure iron [ | - | Ferrite | 5.8 × 10-10 | 0.15 |
304 steels [ | - | Austenite | 7.37 × 10-16 | 32.51 |
SAF2205 [ | - | Ferrite + Austenite | 3.0 × 10-15 | - |
SAE1008 [ | 19 | Ferritic + carbides | 2.19 × 10-10 | 0.49 |
PSB1080 [ | 13 | Martensite + bainite | 4.43 × 10-11 | 12.21 |
300 M [ | - | Martensite + austenite | 9.6 × 10-12 | - |
PH17-4 [ | 27 | Martensite + Cu-rich precipitates | 2.18 × 10-12 | 1235 |
PH13-8Mo [ | 23 | Martensite + NiAl precipitates | 9.42 × 10-12 | 561 |
Table 2 Hydrogen diffusion behavior parameter for some steels
Type of steels | Grain size (μm) | Microstructure | Apparent hydrogen diffusion coefficient (m2 s-1) | Apparent hydrogen concentration (mol m-3) |
---|---|---|---|---|
Pure iron [ | - | Ferrite | 5.8 × 10-10 | 0.15 |
304 steels [ | - | Austenite | 7.37 × 10-16 | 32.51 |
SAF2205 [ | - | Ferrite + Austenite | 3.0 × 10-15 | - |
SAE1008 [ | 19 | Ferritic + carbides | 2.19 × 10-10 | 0.49 |
PSB1080 [ | 13 | Martensite + bainite | 4.43 × 10-11 | 12.21 |
300 M [ | - | Martensite + austenite | 9.6 × 10-12 | - |
PH17-4 [ | 27 | Martensite + Cu-rich precipitates | 2.18 × 10-12 | 1235 |
PH13-8Mo [ | 23 | Martensite + NiAl precipitates | 9.42 × 10-12 | 561 |
Fig.3 A-C hydrogen concentration distribution in austenite phase and martensitic phase of QPT steel [55]. A 3DAPT map of a combined atom map of carbon and hydrogen of the as-charged specimen, where iso-concentration surface representing 2.5 at.% carbon is displayed in red. Carbon atoms and hydrogen atoms are represented by pink and green, respectively. The inserted map is the corresponding mass spectrum. B Atom maps of iron, manganese, silicon, carbon and hydrogen of the selected blue rectangle in A. C Average compositions of carbon and hydrogen along the marked cylinder in A. a-h: Hydrogen concentration distribution in matrix and carbides of QPT steel [6]. b, d, g are enlarged views showing carbon and hydrogen atom distribution as indicated in a, c, e; f is the carbon content along the blue cylinder in e; i average compositions of carbon and hydrogen along the blue cylinder in h. Carbon and hydrogen are represented by red and green, respectively
Method | Temperature | Sample scale | Hydrogen concentration type | Mark | |
---|---|---|---|---|---|
Average hydrogen concentration | GM | 45 °C | mm-scale | Diffusible hydrogen | |
IGFHCM | > Melting point | mm-scale | Diffusible and non-diffusible hydrogen | ||
TDS | 600-1000 °C | mm-scale | Diffusible and non-diffusible hydrogen | Hydrogen trap activation energy | |
Local hydrogen concentration | SIMS | Room temperature | μm-scale | Diffusible and non-diffusible hydrogen | Hydrogen and grain boundary interactions |
HMT | Room temperature | μm-scale | Diffusible and non-diffusible hydrogen | Hydrogen and microstructure interactions | |
APT | Low temperature | nm-scale | Diffusible and non-diffusible hydrogen | Hydrogen and precipitates interactions |
Table 3 Similarities and differences of different hydrogen characterization methods
Method | Temperature | Sample scale | Hydrogen concentration type | Mark | |
---|---|---|---|---|---|
Average hydrogen concentration | GM | 45 °C | mm-scale | Diffusible hydrogen | |
IGFHCM | > Melting point | mm-scale | Diffusible and non-diffusible hydrogen | ||
TDS | 600-1000 °C | mm-scale | Diffusible and non-diffusible hydrogen | Hydrogen trap activation energy | |
Local hydrogen concentration | SIMS | Room temperature | μm-scale | Diffusible and non-diffusible hydrogen | Hydrogen and grain boundary interactions |
HMT | Room temperature | μm-scale | Diffusible and non-diffusible hydrogen | Hydrogen and microstructure interactions | |
APT | Low temperature | nm-scale | Diffusible and non-diffusible hydrogen | Hydrogen and precipitates interactions |
Fig.5 Schematic diagrams of HE mechanisms. a HIPT [64]: hydrogen-induced phase transformation theory; b HEDE [64]: hydrogen-enhanced decohesion mechanism; c HELP [64]: hydrogen-enhanced localized plasticity mechanism; d NVC [5]: nanovoid coalescence mechanism; e HEDE + HELP [5]: combined effect of hydrogen-enhanced decohesion mechanism and hydrogen-enhanced localized plasticity mechanism
Fig.6 a Hydrogen-induced intergranular fracture in Ni [23]; b dependence of grain boundary bonding energy on hydrogen concentration in Al [69]; c slip traces on intergranular fracture of hydrogenated Ni-201 [23]; d dislocation cells beneath hydrogen-induced intergranular fracture of Ni-201 [23]
Fig.7 a Dislocation configuration of hydrogen-uncharged and hydrogen-charged Al [28]; b stress-strain curve of Al, Al-H and Al-VaH complex [28]. HU hydrogen-uncharged, HC hydrogen-charged, Al-VaH Al-hydrogen vacancy complex
Fig.10 a Ni film cracking at 8% strain (1 MPa hydrogen gas, - 50°) [87]; b Cu film defects, 1 micropores; 2 cracks; 3 voids [87]; c non-densely spherical structure Al film [87]
[1] | X. Li, Z. Jin, Z. Peng, L. Pei, X. Song, J Fail Anal Prev. 15, 295 (2015) |
[2] | X. Li, J. Zhang, Q. Fu, X. Song, S. Shen, Q. Li, Mater. Sci. Eng. A 724, 518 (2018) |
[3] | X. Li, J. Zhang, S. Shen, Y. Wang, X. Song, Mater. Sci. Eng A 682, 359 (2017) |
[4] | X.F. Li, J. Zhang, M.M. Ma, X.L. Song, Int. J. Min. Met. Mater. 23, 667 (2016) |
[5] | T. Neeraj, R. Srinivasan, J. Li, Acta Mater. 60, 5160 (2012) |
[6] | Z. Xu, L. Wei, T.Y. Hsu, Z. Shu, W. Li, X. Jin, Scr. Mater. 97, 21 (2015) |
[7] | P. Zhou, L. Wei, Z. Xu, L. Yu, C. Jian. J. Electrochem. Soc. 163, 160 (2016) |
[8] | T. Zhao, Z. Liu, X. Xu, Y. Li, C. Du, X. Liu, Corros. Sci. 157, 146 (2019) |
[9] | J.A. Ronevich, B.P. Somerday, C.W. San Marchi, Int. J. Fatigue 82, 497 (2016) |
[10] | Alvaro, D. Wan, V. Olden, A. Barnoush, Eng. Fract. Mech. 219, 106641 (2019) |
[11] | Y. Ogawa, H. Matsunaga, J. Yamabe, M. Yoshikawa, S. Matsuoka, Int. J. Hydrog Energy 43, 20133 (2018) |
[12] | R. Wang, Corros. Sci. 51, 2803 (2009) |
[13] | E. Chatzidouros, A. Traidia, R. Devarapalli, D. Pantelis, T. Steriotis, M. Jouiad, Int. J. Hydrog. Energy 43, 5747 (2018) |
[14] | Y. Song, M. Chai, B. Yang, Z. Han, S. Ai, Y. Liu, G. Cheng, Y. Li, Materials 11, 1068 (2018) |
[15] | M.S. Bhuiyan, H. Toda, K. Shimizu, H. Su, K. Uesugi, A. Takeuchi, Y. Watanabe, Metall. Mater. Trans. A 49, 5368 (2018) |
[16] | S. Pallaspuro, H. Yu, A. Kisko, D. Porter, Z. Zhang, Mater. Sci. Eng. A 688, 190 (2017) |
[17] | J. Yamabe, M. Yoshikawa, H. Matsunaga, S. Matsuoka, Procedia Struct. Integr. 2, 525 (2016) |
[18] | S. Serebrinsky, E. Carter, M. Ortiz. J. Mech. Phys. Solids 52, 2403 (2004) |
[19] | Y. Wang, J. Gong, W. Jiang, Y. Jiang, J. Tang, Acta Metall. Sin. 47, 594 (2011). (in Chinese) |
[20] | V. Olden, C. Thaulow, R. Johnsen, Mater. Des. 29, 1934 2008 |
[21] | X. Xing, W. Chen, H. Zhang, Mater. Lett. 152, 86 (2015) |
[22] | M. Yu, X. Xing, H. Zhang, J. Zhao, R. Eadie, W. Chen, J. Been, G. Van Boven, R. Kania, Acta Mater. 96, 159 (2015) |
[23] | M.L. Martin, B.P. Somerday, R.O. Ritchie, P. Sofronis, I.M. Robertson, Acta Mater. 60, 2379 (2012) |
[24] | J. Song, W. Curtin, Nat. Mater. 12, 145 (2013) |
[25] | J. Song, W.A. Curtin, Acta Mater. 68, 61 (2014) |
[26] | H. Yu, A. Cocks, E. Tarleton. J. Mech. Phys. Solids 123, 41 (2019) |
[27] | W. Xie, X. Liu, W. Chen, H. Zhang, Comput. Mater. Sci. 50, 3379 (2011) |
[28] | D. Xie, S. Li, M. Li, Z. Wang, P. Gumbsch, J. Sun, E. Ma, J. Li, Z. Shan, Nat. Commun. 7, 13341 (2016) |
[29] | Q. Liu, A. Atrens, Corros. Rev. 31, 85 (2013) |
[30] | J.-G. Sezgin, C. Bosch, A. Montouchet, G. Perrin, K. Wolski, Int. J. Hydrog. Energy 42, 15403 (2017) |
[31] | T.P. Perng, J.K. Wu, Mater. Lett. 57, 3437 (2003) |
[32] | A. Lasia. J. Electrochem. Soc. 142, 3393 (1995) |
[33] | L. Qian, A.D. Atrens, Z. Shi, K. Verbeken, A. Atrens, Corros. Sci. 87, 239 (2014) |
[34] | J. Venezuela, C. Tapia-Bastidas, Q. Zhou, T. Depover, K. Verbeken, E. Gray, Q. Liu, L. Qian, M. Zhang, A. Atrens, Corros. Sci. 132, 90 (2017) |
[35] | R.N. Iyer, H.W. Pickering, M. Zamanzadeh. J. Electrochem. Soc. 136, 2463 (1989) |
[36] | M. Devanathan, Z. Stachurski. J. Electrochem. Soc. 111, 619 (1964) |
[37] | B. Chao, S.H. Chae, X. Zhang, K.H. Lu, J. Im, P.S. Ho, Acta Mater. 55, 2805 (2007) |
[38] | K. Kiuchi, R.B. Mclellan, Acta Metall. 31, 961 (1983) |
[39] | A. Pundt, R. Kirchheim, Annu. Rev. Mater. Res. 36, 555 (2006) |
[40] | G.M. Pressouyre, Metall. Trans. A 10, 1571 (1979) |
[41] | M. Nagumo, M. Nakamura, K. Takai, Metall. Mater. Trans. A 32, 339 (2001) |
[42] | S.K. Yen, I.B. Huang, Mater. Chem. Phys. 80, 662 (2003) |
[43] | C.F. Dong, Z.Y. Liu, X.G. Li, Y.F. Cheng, Int. J. Hydrog. Energy 34, 9879 (2009) |
[44] | H. Addach, P. Bercot, M. Rezrazi, M. Wery, Mater. Lett. 59, 1347 (2005) |
[45] | Y. Wang, X. Wang, J. Gong, L. Shen, W. Dong, Int. J. Hydrog. Energy 39, 13909 (2014) |
[46] | V. Ramunni, T.D.P. Coelh, P.V. de Miranda, Mater. Sci. Eng. A 435, 504 (2006) |
[47] | X. Li, J. Zhang, Y. Wang, M. Ma, S. Shen, X. Song, Mater. Des. 110, 602 (2016) |
[48] | D. Figueroa, M. Robinson, Corros. Sci. 52, 1593 (2010) |
[49] | X. Li, J. Zhang, Q. Fu, E. Akiyama, X. Song, S. Shen, Mater. Sci. Eng. A 742, 353 (2019) |
[50] | J. Yamabe, T. Awane, S. Matsuoka, Int. J. Hydrog. Energy 40, 10329 (2015) |
[51] | A. Oudriss, S. Le Guernic, Z. Wang, B. Osman Hoch, J. Bouhattate, E. Conforto, Z. Zhu, D.S. Li, X. Feaugas, Mater. Lett. 165, 217 (2016) |
[52] | X. Cheng, Z. Zhang, W. Liu, X. Wang, Prog. Nat. Sci. Mater. Int. 23, 446 (2013) |
[53] | X. Zhu, L.I. Wei, H. Zhao, L.I. Wang, X. Jin, Int. J. Hydrog. Energy 39, 13031 (2014) |
[54] | X. Zhu, W. Li, T. Hsu, S. Zhou, L. Wang, X. Jin, Scr. Mater. 97, 21 (2015) |
[55] | X. Zhu, W. Li, H. Zhao, L. Wang, X. Jin, Int. J. Hydrog. Energy 39, 13031 (2014) |
[56] | W.Y. Choo, J.Y. Lee, Metall. Trans. A 13, 135 (1982) |
[57] | H.J. Kang, J.S. Yoo, J.I. Tae Park, S.T. Ahn, Kang. Mater. Sci. Eng. A 543, 6 (2012) |
[58] | J. Ovejero-García, J. Mater. Sci. 20, 2623 (1985) |
[59] | Z. Tarzimoghadam, M. Rohwerder, S.V. Merzlikin, A. Bashir, L. Yedra, S. Eswara, D. Ponge, D. Raabe, Acta Mater. 109, 69 (2016) |
[60] | C. Zapffe, C. Sims, Trans. AIME 145, 225 (1941) |
[61] | X.C. Ren, W.Y. Zhu, J.X. Li, L.J. Qiao, B. Jiang, G. Chen, Y.H. Cui, Acta Metall. Sin. 42, 153 (2006). (in Chinese) |
[62] | C.D. Cann, E.E. Sexton, Acta Metall. 28, 1215 (1980) |
[63] | R. Dutton, K. Nuttall, M.P. Puls, L.A. Simpson, Metall. Trans. A 8, 1553 (1977) |
[64] | S. P. Lynch. Progress Towards Understanding Mechanisms Of Hydrogen Embrittlement And Stress Corrosion Cracking[J]. Nace International Corrosion Conference (2007) |
[65] | L.B. Pfeil, The effect of occluded hydrogen on the tensile strength of iron, in Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, vol. 112(1926), pp. 182-195 |
[66] | S.D. Wu, L. Chen, M.Z. Liu, Acta Metall. Sin. 26, 10 (1990). (in Chinese) |
[67] | H. Gao, W. Cao, C. Fang, E.R.D.L. Rios, Fatigue Fract. Eng. Mater. 17, 1213 (2010) |
[68] | J. Lufrano, P. Sofronis, Acta Mater. 46, 1519 (1998) |
[69] | X. Wei, C. Dong, Z. Chen, K. Xiao, X. Li, RSC Adv. 6, 27282 (2016) |
[70] | W. Shuai, M.L. Martin, P. Sofronis, S. Ohnuki, N. Hashimoto, I.M. Robertson, Acta Mater. 69, 275 (2014) |
[71] | A. Nagao, C.D. Smith, M. Dadfarnia, P. Sofronis, I.M. Robertson, Acta Mater. 60, 5182 (2012) |
[72] | Nagao, M.L. Martin, M. Dadfarnia, P. Sofronis, I.M. Robertson, Acta Mater. 74, 244 (2014) |
[73] | C.D. Beachem, Metall. Trans. 3, 441 (1972) |
[74] | I.M. Robertson, Eng. Fract. Mech. 68, 671 (2001) |
[75] | I.M. Robertson, P. Sofronis, A. Nagao, M.L. Martin, S. Wang, D.W. Gross, K.E. Nygren, Metall. Mater. Trans. A 46, 1085 (2015) |
[76] | D.P. Abraham, C.J. Altstetter, Metall. Mater. Trans. A 26, 2859 (1995) |
[77] | H. Matsui, H. Kimura, A. Kimura, Strength Met. Alloys 2, 977 (1979) |
[78] | J.P. Hirth, Metall. Trans. A 11, 861 (1980) |
[79] | X. Li, J. Zhang, E. Akiyama, Q. Fu, Q. Li, J. Mater. Sci. Technol. 35, 499 (2019) |
[80] | M. Nagumo, Mater. Sci. Technol. 20, 940 (2004) |
[81] | K. Sakaki, T. Kawase, M. Hirato, M. Mizuno, H. Araki, Y. Shirai, M. Nagumo, Scr. Mater. 55, 1031 (2006) |
[82] | M. Wen, L. Zhang, B. An, S. Fukuyama, K. Yokogawa, Phys. Rev. B 80, 94113 (2009) |
[83] | J. Hou, X.S. Kong, X. Wu, J. Song, C. Liu, Nat. Mater. 18, 833 (2019) |
[84] | M.L. Martin, I.M. Robertson, P. Sofronis, Scr. Mater. 59, 3680 (2011) |
[85] | M. Djukic, V.S. Zeravcic, G. Bakic, A. Sedmak, B. Rajicic, Procedia Mater. Sci. 3, 1167 (2014) |
[86] | M. Djukic, V.S. Zeravcic, G. Bakic, A. Sedmak, B. Rajicic, Eng. Fail. Anal. 58, 485 (2015) |
[87] | T. Michler, Surf. Coat. Technol. 203, 1819 (2009) |
[88] | H.K.D.H. Bhadeshia, ISIJ Int. 56, 24 (2016) |
[89] | D. Levchuk, F. Koch, H. Maier, H. Bolt. J. Nucl. Mater. 328, 103 (2004) |
[90] | D. Figueroa, M.J. Robinson, Corros. Sci. 50, 1066 (2008) |
[91] | K. Saito, S. Inayoshi, Y. Ikeda, Y. Yang, S. Tsukahara, J. Vac. Sci. Technol. A 13, 556 (1995) |
[92] | K. Hiroharu, N. Hiroshi, F. Takumi, O. Tamiko, Y. Yoshihito, I. Takeshi, S. Masanori, S. Yoshiaki, Jpn. J. Appl. Phys. 57, 1 (2018) |
[93] | T. Michler, Surf. Coat. Technol. 202, 1688 (2008) |
[94] | X. Liu, W. Xie, W. Chen, H. Zhang. J. Mater. Res. 26, 2735 (2011) |
[95] | T. Tsuchiyama, K. Tsuboi, S. Iwanaga, T. Masumura, A. Macadre, N. Nakada, S. Takaki, Scr. Mater. 90-91. 14 (2014) |
[96] | O. Takakuwa, H. Soyama, Int. J. Hydrog. Energy 37, 5268 (2012) |
[97] | Y. Zhang, C. Zhou, W. Hui, H. Dong, Iron Steel Res. 26, 49 (2014) |
[98] | S.K. Banerji, C.J. Mcmahon, H.C. Feng, Metall. Trans. A 9, 237 (1978) |
[99] | Han, Dissertation, Yanshan University (2010) |
[100] | Zheng, L.V. Bo, F. Zhang, Z. Yan, R. Dan, L. Qian, Mater. Sci. Eng. A 547, 99 (2012) |
[101] | T. Dieudonné, L. Marchetti, M. Wery, J. Chêne, C. Allely, P. Cugy, C.P. Scott, Corros. Sci. 82, 218 (2014) |
[102] | T. Nanninga, Corros. Sci. 52, 1237 (2010) |
[103] | S.K. Ji, H.L. You, D.L. Lee, K.T. Park, S.L. Chong, Mater. Sci. Eng. A 505, 105 (2009) |
[104] | L.W. Tsay, M.Y. Chi, H.R. Chen, C. Chen, Mater. Sci. Eng. A 416, 155 (2006) |
[105] | X. Zhu, K. Zhang, W. Li, X. Jin, Mater. Sci. Eng. A 658, 400 (2016) |
[106] | M. Wang, C.C. Tasan, M. Koyama, D. Ponge, D. Raabe, Metall. Mater. Trans. A 46, 3797 (2001) |
[107] | J. Lee, T. Lee, Y.J. Kwon, D.J. Mun, J.Y. Yoo, S.L. Chong, Met. Mater. Int. 22, 364 (2016) |
[108] | X. Shi, W. Yan, W. Wang, Y. Shan, K. Yang, Mater. Des. 92, 300 (2016) |
[109] | Y. Kimura, Y. Sakai, T. Hara, A. Belyakov, K. Tsuzaki, Scr. Mater. 49, 1111 (2003) |
[1] | Zuo-Yan Ye, Dao-Xin Liu, Meng Yuan, Xiao-Ming Zhang, Zhi Yang, Ming-Xia Lei. Effects of Prior Corrosion with and Without Stress on the Mechanical Properties of 7475-T761 Aluminum Alloy [J]. Acta Metallurgica Sinica (English Letters), 2015, 28(5): 608-613. |
[2] | Wang Yongli, Xiong Liangyin, Liu Shi. Rapid Hydrogen Transportation Along Grain Boundary in Nickel [J]. Acta Metallurgica Sinica (English Letters), 2014, 27(4): 615-620. |
[3] | Huang Zhenyi, Shi Qi, Chen Fuqiang, Shi Yunfeng. FEM Simulation of the Hydrogen Diffusion in X80 Pipeline Steel During Stacking for Slow Cooling [J]. Acta Metallurgica Sinica (English Letters), 2014, 27(3): 416-421. |
[4] | Xiliang ZHANG, Changyu ZHOU. Study on cracking of welding overlay based on the theory of diffusion-induced stress [J]. Acta Metallurgica Sinica (English Letters), 2011, 24(1): 75-80. |
[5] | W.C. Jiang, J.M. Gong, J.Q. Tang, H. Chen, S.T. Tu. 3-D Finite Element Analysis of the Effect of Welding Residual Stress on Hydrogen Diffusion in Hydrogen Contained Environment [J]. Acta Metallurgica Sinica (English Letters), 2007, 20(5): 347-354 . |
[6] | J.L. Li1,2) and Y.Li3) 1) Fushun Petroleum Institute,Fushun 113001 ,China 2) State Key Laboratory for Corrosion and Protection of Metal,Institute of Corrosion and Prtection of Metals, The Chinese Academy of Sciences,Shenyang 110015 ,China 3) Fushun Third Refinery Plant,Fushun 113001 ,China. ADISCUSSION ON THE PROBLEMS PRESENT IN IN SERVICE HYDROGENATION REACTORS [J]. Acta Metallurgica Sinica (English Letters), 1999, 12(4): 368-371. |
[7] | YX. Chen; X.J. Wan and W.X. Xu (Institute of Materials Sciences, Shanghai University, Shanghai 200072, China)(Shanghai Iron and Steel Research Institute, Shanghai 200940, China). SURFACE REACTION OF Ni_3Al WITH WATER VAPOR OR OXYGEN [J]. Acta Metallurgica Sinica (English Letters), 1997, 10(4): 363-368. |
[8] | Y Tan;D.H Zhouand J. Feng (Institute of Structural Mechanics, Chengdu 610003, China). INFLUENCE OF INTERNAL HYDROGEN ON THE HYDROGEN EMBRITTLEMENT OF AUSTENITIC STAINLESS STEEL [J]. Acta Metallurgica Sinica (English Letters), 1997, 10(3): 228-232. |
[9] | S. Tanimori and S. Shimamura(Department of Applied Science, Faculty of Engineering, Yamaguchi University, Ube 755, Japan). ELECTRONIC STATES AND HYDROGEN EMBRITTLEMENT IN TRANSITION METALS [J]. Acta Metallurgica Sinica (English Letters), 1997, 10(3): 271-275. |
[10] | WANG Anchuan;YANG Ke;FAN Cungan;LI Yiyi(Institute of Metal Research,Chinese Academy of Sciences Shenyang 110015,China) Manuscript received 4 May 1995. EFFECT OF TRACE ELEMENTS P AND Mn ON THE MICROSTRUCTURE AND HYDROGEN EMBRITTLEMENT OF AN Fe-Ni-Co BASED SUPERALLOY [J]. Acta Metallurgica Sinica (English Letters), 1996, 9(1): 32-36. |
[11] | WANG Yanbin;WANG Anrong;CHU Wuyang;XIAO Jimei University of Science and Technology Beijing,Beijing,China associate professor,Department of Materials Physics,University of Science and Technology Beijing,Beijing 100083,China. X-RAY TOPOGRAPHIC STUDY OF HYDROGEN DAMAGE IN Fe-3 wt-% Si ALLOY [J]. Acta Metallurgica Sinica (English Letters), 1993, 6(8): 87-91. |
[12] | XU Jian SUN Xiukui CHEN Wenxiu LI Yiyi State Key Laboratory of RSA,Institute of Metal Research,Academia Sinica,China research assistant,Institute of Metal Research,Academia Sinica,Shenyang 110015,China. HYDROGEN PERMEATION AND DIFFUSION IN ALLOY INCOLOY 903 [J]. Acta Metallurgica Sinica (English Letters), 1993, 6(3): 163-167. |
[13] | HU Wei WANG Yanbin CHU WuYang XIAO Jimei University of Science and Technology Beijing,China Associate Professor,Department of Materials Physics,University of Science and Technology Beijing,Beijing 100083,China. EFFECT OF COMPOSITION ON HYDROGEN EMBRITTLEMENT IN Ni-Fe FCC ALLOYS [J]. Acta Metallurgica Sinica (English Letters), 1992, 5(6): 443-448. |
[14] | WANG Zhengfu ZHU Ziyong KE Wei Corrosion Science Laboratory,Institute of Corrosion and Protection of Metals,Academia Sinica,Shenyang,ChinaZHANG Yun HU Zhuangqi Institute of Metal Research,Academia Sinica,Shenyang,China. BEHAVIOUR AND MECHANISM OF STRESS CORROSION CRACKING FOR Al-Li-Cu-Mg ALLOY [J]. Acta Metallurgica Sinica (English Letters), 1992, 5(11): 391-395. |
[15] | LIU Zhonghao CHEN Lian Institute of Metal Research,Academia Sinica,Shenyang,China. CRYOGENIC MECHANICAL BEHAVIOUR OF MARAGING STEEL CONTAINING HYDROGEN [J]. Acta Metallurgica Sinica (English Letters), 1991, 4(1): 47-54. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||