Acta Metallurgica Sinica (English Letters) ›› 2023, Vol. 36 ›› Issue (12): 1925-1935.DOI: 10.1007/s40195-023-01603-x
Linshuo Dong1, Feiyang Wang1, Hong-Hui Wu1,2(), Mengjie Gao1, Penghui Bai1, Shuize Wang1,2(
), Guilin Wu1,2, Junheng Gao1,2, Xiaoye Zhou3(
), Xinping Mao1,2
Received:
2023-07-10
Revised:
2023-07-28
Accepted:
2023-08-08
Online:
2023-12-10
Published:
2023-09-19
Contact:
Hong-Hui Wu, Shuize Wang, Xiaoye Zhou
Linshuo Dong, Feiyang Wang, Hong-Hui Wu, Mengjie Gao, Penghui Bai, Shuize Wang, Guilin Wu, Junheng Gao, Xiaoye Zhou, Xinping Mao. Enhanced Hydrogen Embrittlement Resistance via Cr Segregation in Nanocrystalline Fe-Cr Alloys[J]. Acta Metallurgica Sinica (English Letters), 2023, 36(12): 1925-1935.
Add to citation manager EndNote|Ris|BibTeX
Fig. 1 Atomic configurations of the nanocrystalline Fe-Cr alloys: a grain arrangement of the BCC pure Fe model, b Cr distribution of the model before MC swaps of Fe5.6Cr, c Cr distribution of the model after MC swaps of Fe5.6Cr, d hydrogen distribution of the model after hydrogen diffusion equilibration of Fe5.6Cr with hydrogen concentrations of 0.018 wt%
Fig. 2 Stress-strain curves of the nanocrystalline Fe-Cr alloys with hydrogen concentrations of 0.0000 wt%, 0.0018 wt%, 0.009 wt%, 0.018 wt% and Cr concentrations of 0.0 wt%, 5.6 wt% at with different strain rates of 107 s−1, 108 s−1, 109 s−1, 1010 s−1. In each sub-figure, a CH = 0.0000 wt%, CCr = 0.0 wt%; b CH = 0.0000 wt%, CCr = 5.6 wt%; c CH = 0.0018 wt%, CCr = 0.0 wt%; d CH = 0.0018 wt%, CCr = 5.6 wt%; e CH = 0.009 wt%, CCr = 0.0 wt%; f CH = 0.009 wt%, CCr = 5.6 wt%; g CH = 0.018 wt%, CCr = 0.0 wt%; h CH = 0.018 wt%, CCr = 5.6 wt%
Fig. 3 Peak stress, b fracture strain, c Young's modulus, and d toughness of the nanocrystalline Fe-Cr alloys with different Cr concentrations plotted against hydrogen concentration
Fig. 4 Microstructure evolution of the nanocrystalline Fe-Cr alloys at a strain rate of 108 s−1 with different hydrogen concentrations of 0.0018 wt%, 0.009 wt%, 0.018 wt% and Cr concentrations of 0.0 wt%, 5.6 wt% at the strain of 10%, 30%, 60%, respectively
Strain rate | 107 s−1 | 108 s−1 | 109 s−1 | 1010 s−1 |
---|---|---|---|---|
Fe0.0018H | 0.099 | 0.16 | 0.235 | 0.257 |
Fe0.009H | 0.07 | 0.09 | 0.195 | 0.21 |
Fe0.018H | 0.06 | 0.071 | 0.145 | 0.19 |
Fe5.6Cr0.0018H | 0.138 | 0.139 | > 1.000 | > 1.000 |
Fe5.6Cr0.009H | 0.094 | 0.135 | 0.204 | 0.487 |
Fe5.6Cr0.018H | 0.0933 | 0.11573 | 0.185 | 0.3367 |
Table 1 Summary of elongation at the beginning of cracking
Strain rate | 107 s−1 | 108 s−1 | 109 s−1 | 1010 s−1 |
---|---|---|---|---|
Fe0.0018H | 0.099 | 0.16 | 0.235 | 0.257 |
Fe0.009H | 0.07 | 0.09 | 0.195 | 0.21 |
Fe0.018H | 0.06 | 0.071 | 0.145 | 0.19 |
Fe5.6Cr0.0018H | 0.138 | 0.139 | > 1.000 | > 1.000 |
Fe5.6Cr0.009H | 0.094 | 0.135 | 0.204 | 0.487 |
Fe5.6Cr0.018H | 0.0933 | 0.11573 | 0.185 | 0.3367 |
Fig. 5 Shear strain distribution of the nanocrystalline Fe-Cr alloys at the strain rate of 108 s−1 with different hydrogen concentrations of 0.0018 wt%, 0.009 wt%, 0.018 wt%, Cr concentrations of 0.0 wt%, 5.6 wt% and strain of 3%, 5%, respectively
Fig. 6 Arrhenius plots of hydrogen diffusion coefficient with respect to temperature. a Total diffusion coefficient ${D}_{\mathrm{eff}}$, the ${D}_{\mathrm{bulk}}$ and ${D}_{\mathrm{GB}}$ of Fe-Cr alloys with b 0.0018 wt% H, c 0.009 wt% H, d 0.018 wt% H
1. |
M. Ball, M. Wietschel, Int. J. Hydrogen Energy 34,615 (2009)
DOI URL |
2. |
I. Staffell, D. Scamman, A.V. Abad, P. Balcombe, P.E. Dodds, P. Ekins, N. Shah, K.R. Ward, Energy Environ. Sci. 12, 463 (2019)
DOI URL |
3. | X. Cheng, Z. Zhang, W. Liu, X. Wang, Prog. Nat. Sci. -Mater. 23, 446 (2013) |
4. |
R. Oriani, Annu. Rev. Mater. Sci. 8, 327 (1978)
DOI URL |
5. |
J.P. Hirth, Metall. Trans. A 11, 861 (1980)
DOI URL |
6. | I.M. Robertson, P. Sofronis, A. Nagao, M. Martin, S. Wang, D. Gross, K.E. Nygren, Metall. Mater. Trans. B 46, 1085 (2015) |
7. |
H. Liu, Eng. Fract. Mech. 78, 2563 (2011)
DOI URL |
8. |
L. Dong, S. Wang, G. Wu, J. Gao, X. Zhou, H.H. Wu, X. Mao, Int. J. Hydrogen Energy. 47, 20288 (2022)
DOI URL |
9. |
G. Tiwari, A. Bose, J. Chakravartty, S. Wadekar, M. Totlani, R. Arya, R.K. Fotedar, Mater. Sci. Eng. A 286, 269 (2000)
DOI URL |
10. |
X.Y. Zhou, J.H. Zhu, H.H. Wu, X.S. Yang, S. Wang, X. Mao, Int. J. Hydrogen Energy 46,9613 (2021)
DOI URL |
11. |
Y. Zhu, Z. Li, M. Huang, Int. J. Hydrogen Energy 43,10481 (2018)
DOI URL |
12. |
L. Wan, W.T. Geng, A. Ishii, J.P. Du, Q. Mei, N. Ishikawa, H. Kimizuka, S. Ogata, Int. J. Plast. 112, 206 (2019)
DOI URL |
13. |
Y. Yan, Y. Zhang, L. Zhao, Y. Chen, R. Cao, H. Wu, Y. He, Y. Yan, L. Qiao, Metals 12,1614 (2022)
DOI URL |
14. |
M.B. Djukic, G.M. Bakic, V.S. Zeravcic, A. Sedmak, B. Rajicic, Eng. Fract. Mech. 216, 106528 (2019)
DOI URL |
15. |
M.B. Djukic, V.S. Zeravcic, G.M. Bakic, A. Sedmak, B. Rajicic, Eng. Fail. Anal. 58, 485 (2015)
DOI URL |
16. |
M. Djukic, V.S. Zeravcic, G. Bakic, A. Sedmak, B. Rajicic, Proced. Mater. Sci. 3, 1167 (2014)
DOI URL |
17. |
Z.D. Harris, S.K. Lawrence, D.L. Medlin, G. Guetard, J.T. Burns, B.P. Somerday, Acta Mater. 158, 180 (2018)
DOI URL |
18. | B. Sun, H. Chen, Acta Metall. Sin. -Engl. Lett. 36, 1057 (2023) |
19. | W. Lou, L. Cheng, R. Wang, C. Hu, K. Wu, Acta Metall. Sin. -Engl. Lett. 36, 1179 (2023) |
20. |
H.W. Lee, M.B. Djukic, C. Basaran, Int. J. Hydrogen Energy. 48, 20773 (2023)
DOI URL |
21. |
X. Xing, W. Chen, H. Zhang, Int. J. Hydrogen Energy 42,4571 (2017)
DOI URL |
22. |
A. Zafra, L. Peral, J. Belzunce, C. Rodríguez, Int. J. Hydrogen Energy 43,9068 (2018)
DOI URL |
23. |
D. Figueroa, M. Robinson, Corros. Sci. 50, 1066 (2008)
DOI URL |
24. |
Y. Bai, Y. Momotani, M. Chen, A. Shibata, N. Tsuji, Mater. Sci. Eng. A 651, 935 (2016)
DOI URL |
25. |
X. Cheng, H. Zhang, Corros. Sci. 174, 108800 (2020)
DOI URL |
26. |
X.Y. Zhou, J.H. Zhu, Y. Wu, X.S. Yang, T. Lookman, H.H. Wu, Acta Mater. 224, 117535 (2022)
DOI URL |
27. | B. Zhang, Y. Mao, Z. Liu, J. Liang, J. Zhang, M. Wang, J. Su, K. Shen, Acta Metall. Sin. -Engl. Lett. 36, 1159 (2023) |
28. | X. Lu, D. Wang, D. Wan, X. Guo, R. Johnsen, Acta Metall. Sin. -Engl. Lett. 36, 1095 (2022) |
29. |
Y. Xu, H. Nie, J. Li, X. Xiao, C. Zhu, J. Zhao, Mater. Sci. Eng. A 528, 643 (2010)
DOI URL |
30. |
K. Nazari, S. Shabestari, J. Alloy. Compd. 478, 523 (2009)
DOI URL |
31. |
Q. Chen, R. Hu, S. Jin, F. Xue, G. Sha, Acta Mater. 220, 117297 (2021)
DOI URL |
32. |
D.D. Shen, S.H. Song, Z.X. Yuan, L.Q. Weng, Mater. Sci. Eng. A 394, 53 (2005)
DOI URL |
33. |
W.J. Liu, J. Li, C.B. Shi, C.M. Wang, Metallogr. Microstruct. Anal. 4, 102 (2015)
DOI URL |
34. |
J. Lee, S.J. Lee, B.C. De Cooman, Mater. Sci. Eng. A 536, 231 (2012)
DOI URL |
35. |
D. Kong, C. Dong, X. Ni, L. Zhang, X. Li, Mater. Lett. 279, 128524 (2020)
DOI URL |
36. |
X. Li, P. Wu, R. Yang, S. Zhao, S. Zhang, S. Chen, X. Cao, X. Wang, Mater. Des. 115, 165 (2017)
DOI URL |
37. |
X.M. Chen, S.H. Song, L.Q. Weng, S.J. Liu, Mater. Sci. Eng. A 528, 7663 (2011)
DOI URL |
38. |
J. Escobar, J.D. Poplawsky, G. Faria, J. Rodriguez, J. Oliveira, C. Salvador, P.R. Mei, S.S. Babu, A.J. Ramirez, Mater. Des. 140, 95 (2018)
DOI URL |
39. |
A. Macadre, T. Tsuchiyama, S. Takaki, Materialia 8,100514 (2019)
DOI URL |
40. |
S. Chen, M. Zhao, L. Rong, Mater. Sci. Eng. A 594, 98 (2014)
DOI URL |
41. |
Y. Mine, N. Horita, Z. Horita, K. Takashima, Int. J. Hydrogen Energy 42,15415 (2017)
DOI URL |
42. |
Y. Fan, F. Cui, L. Lu, B. Zhang, J. Alloy. Compd. 788, 1066 (2019)
DOI |
43. | N. Zan, H. Ding, X. Guo, Z. Tang, W. Bleck, Int.J. Hydrogen Energy 40,10687 (2015) |
44. |
P. Bruzzoni, R.C. Pasianot, Comp. Mater. Sci. 154, 243 (2018)
DOI URL |
45. |
I. Peñalva, G. Alberro, J. Aranburu, F. Legarda, J. Sancho, R. Vila, C.J. Ortiz, J. Nucl. Mater. 442,S719 (2013)
DOI URL |
46. |
I. Dopico, P. Castrillo, I. Martin Bragado, Acta Mater. 95, 324 (2015).
DOI URL |
47. |
A. Kiejna, E. Wachowicz, Phys. Rev. B 78, 113403 (2008)
DOI URL |
48. |
P. Hedström, S. Baghsheikhi, P. Liu, J. Odqvist, Mater. Sci. Eng. A 534, 552 (2012)
DOI URL |
49. |
V. Kuksenko, C. Pareige, C. Genevois, P. Pareige, J. Nucl. Mater. 434, 49 (2013)
DOI URL |
50. |
I. Peñalva, G. Alberro, F. Legarda, R. Vila, C. Ortiz, Fusion Eng. Des. 89, 1628 (2014)
DOI URL |
51. | H.B. Zhou, J. Shuo, Y. Zhang, G.H. Lu, Prog. Nat. Sci. -Mater. 21, 240 (2011) |
52. |
Q. Li, J. Mo, S. Ma, F. Duan, Y. Zhao, S. Liu, W. Liu, S. Zhao, C. Liu, P. Liaw, T. Yang, Acta Mater. 241, 118410 (2022)
DOI URL |
53. |
A.J. Samin, D.A. Andersson, E.F. Holby, B.P. Uberuaga, Phys. Rev. B 99, 014110 (2019)
DOI URL |
54. |
R. Yang, D. Zhao, Y. Wang, S. Wang, H. Ye, C. Wang, Acta Mater. 49, 1079 (2001)
DOI URL |
55. |
B. He, W. Xiao, W. Hao, Z. Tian, J. Nucl. Mater. 441, 301 (2013)
DOI URL |
56. |
M. Yuasa, M. Hakamada, Y. Chino, M. Mabuchi, ISIJ Int. 55, 1131 (2015)
DOI URL |
57. | F. Wang, L. Dong, H.H. Wu, P. Bai, S. Wang, G. Wu, J. Gao, J. Zhu, X. Zhou, X. Mao, Prog. Nat. Sci.-Mater. 33, 185 (2023) |
58. |
H.H. Wu, L.S. Dong, S.Z. Wang, G.L. Wu, J.H. Gao, X.S. Yang, X.Y. Zhou, X.P. Mao, Rare Met. 42, 1645 (2023)
DOI |
59. |
W. Geng, A. Freeman, R. Wu, G. Olson, Phys. Rev. B 62, 6208 (2000)
DOI URL |
60. | H. Jun, B. Wang, J. Chen, X. Zhang, Adv. Powder Mater. 2, 100099 (2023) |
61. |
Y. Yang, S. Schönecker, W. Li, C. Wang, S. Huang, J. Zhao, L. Vitos, Scr. Mater. 181, 140 (2020)
DOI URL |
62. |
K. Ito, Y. Tanaka, K. Tsutsui, H. Sawada, Comp. Mater. Sci. 225, 112196 (2023)
DOI URL |
63. | P. Lejček, M. Šob, V. Paidar, Progs Mater. Sci. 87, 83 (2017) |
64. |
K. Ito, Y. Tanaka, K. Tsutsui, T. Omura, Comput. Mater. Sci. 218, 111951 (2023)
DOI URL |
65. |
F. Wang, H.H, Wu, L. Dong, G. Pan, X. Zhou, S. Wang, R. Guo, G. Wu, J. Gao, F. Dai, X. Mao, J. Mater. Sci. Technol. 165, 49 (2023).
DOI URL |
66. | X.Y. Zhou, J.H. Zhu, H.H. Wu, Int.J. Hydrogen Energy 46,5842 (2021) |
67. |
L. Zhang, Y. Shibuta, X. Huang, C. Lu, M. Liu, Comp. Mater. Sci. 156, 421 (2019)
DOI URL |
68. |
X.Y. Zhou, X.S. Yang, J.H. Zhu, Int. J. Hydrogen Energy 45,3294 (2020)
DOI URL |
69. | S. Starikov, D. Smirnova, T. Pradhan, I. Gordeev, R. Drautz, M. Mrovec, Phys. Rev. Mater. 6, 043604 (2022) |
70. | S. Plimpton, J. Comp. Phys. 117, 1 (1995) |
71. |
A. Stukowski, Model. Simul. Mater. Sci. Eng. 18, 015012 (2009)
DOI URL |
72. |
J.D. Honeycutt, H.C. Andersen, J. Phys. Chem. 91, 4950 (1987)
DOI URL |
73. |
F. Shimizu, S. Ogata, J. Li, Mater. Trans. 48, 2923 (2007)
DOI URL |
74. |
A. Brass, A. Chanfreau, Acta Mater. 44, 3823 (1996)
DOI URL |
75. |
A. Oudriss, J. Creus, J. Bouhattate, C. Savall, B. Peraudeau, X. Feaugas, Scr. Mater. 66, 37 (2012)
DOI URL |
76. |
J. Leblond, D. Dubois, Acta Metall. 31, 1471 (1983)
DOI URL |
[1] | Ming-Tu Ma, Ke-Jian Li, Yu Si, Peng-Jun Cao, Hong-Zhou Lu, Ai-Min Guo, Guo-Dong Wang. Hydrogen Embrittlement of Advanced High-Strength Steel for Automobile Application: A Review [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(7): 1144-1158. |
[2] | Boning Zhang, Yong Mao, Zhenbao Liu, Jianxiong Liang, Jun Zhang, Maoqiu Wang, Jie Su, Kun Shen. Ab Initio Investigations for the Role of Compositional Complexities in Affecting Hydrogen Trapping and Hydrogen Embrittlement: A Review [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(7): 1159-1172. |
[3] | Wenjing Lou, Lin Cheng, Runsheng Wang, Chengyang Hu, Kaiming Wu. Atomistic Investigation of the Influence of Hydrogen on Mechanical Response during Nanoindentation in Pure Iron [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(7): 1179-1192. |
[4] | Rongjian Shi, Yanqi Tu, Liang Yang, Saiyu Liu, Shani Yang, Kewei Gao, Xu-Sheng Yang, Xiaolu Pang. Interactions between Pre-strain and Dislocation Structures and Its Effect on the Hydrogen Trapping Behaviors [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(7): 1193-1202. |
[5] | Yue-Yang Gu, Han-Yu Zhao, Wei Chen, Wei Yan, Liang-Yin Xiong, De-Min Chen. Effects of Hydrogen Charging on Mechanical Properties of CLAM Steel at Different Strain Rates [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(7): 1203-1210. |
[6] | Jun Zhang, Binhan Sun, Zhigang Yang, Chi Zhang, Hao Chen. Enhancing the Hydrogen Embrittlement Resistance of Medium Mn Steels by Designing Metastable Austenite with a Compositional Core-shell Structure [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(7): 1059-1077. |
[7] | Tuhin Das, Salim V. Brahimi, Jun Song, Stephen Yue. Assessment of Hydrogen Embrittlement Susceptibility and Mechanism(s) in Quench and Tempered AISI 4135 Steel Using A Novel Fast Fracture Test in Bending [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(7): 1078-1094. |
[8] | Dayong An, Yuhao Zhou, Yao Xiao, Xinxi Liu, Xifeng Li, Jun Chen. Observation of the Hydrogen-Dislocation Interactions in a High-Manganese Steel after Hydrogen Adsorption and Desorption [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(7): 1105-1112. |
[9] | Z. Wang, Q. Lu, Z.H. Cao, H. Chen, M.X. Huang, J.F. Wang. Review on Hydrogen Embrittlement of Press-hardened Steels for Automotive Applications [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(7): 1123-1143. |
[10] | Xu Lu, Dong Wang, Di Wan, Xiaofei Guo, Roy Johnsen. Reveal Hydrogen Behavior at Grain Boundaries in Fe-22Mn-0.6C TWIP Steel via In Situ Micropillar Compression Test [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(7): 1095-1104. |
[11] | Shuang Ma, Junyu Zhang, Xudong Wang, Rie Y. Umetsu, Li Jiang, Wei Zhang, Man Yao. Structural Origins for Enhanced Thermal Stability and Glass-Forming Ability of Co-B Metallic Glasses with Y and Nb Addition [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(6): 962-972. |
[12] | X. J. Guan, Z. P. Jia, M. A. Nozzari Varkani, X. W. Li. Effect of Grain Boundary Engineering on the Work Hardening Behavior of AL6XN Super-Austenitic Stainless Steel [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(4): 681-693. |
[13] | Jiawei Tang, Yiren Wang, Yong Jiang, Jiangang Yao, Hao Zhang. Solute Segregation to Grain Boundaries in Al: A First-Principles Evaluation [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(9): 1572-1582. |
[14] | Yu-Juan Geng, Chun-Yang Wang, Jing-Xin Yan, Zhen-Jun Zhang, Hua-Jie Yang, Jin-Bo Yang, Kui Du, Zhe-Feng Zhang. Dissociation of Tilt Dislocation Walls in Au [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(11): 1787-1792. |
[15] | F. Shi, L. Yan, J. Hu, L. F. Wang, T. Z. Li, W. Li, X. J. Guan, C. M. Liu, X. W. Li. Improving Intergranular Stress Corrosion Cracking Resistance in a Fe-18Cr-17Mn-2Mo-0.85N Austenitic Stainless Steel Through Grain Boundary Character Distribution Optimization [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(11): 1849-1861. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||