Acta Metallurgica Sinica (English Letters) ›› 2023, Vol. 36 ›› Issue (7): 1078-1094.DOI: 10.1007/s40195-022-01439-x
Previous Articles Next Articles
Tuhin Das1(), Salim V. Brahimi1,2, Jun Song1, Stephen Yue1
Received:
2022-04-01
Revised:
2022-05-11
Accepted:
2022-05-28
Online:
2023-07-10
Published:
2022-07-28
Contact:
Tuhin Das
Tuhin Das, Salim V. Brahimi, Jun Song, Stephen Yue. Assessment of Hydrogen Embrittlement Susceptibility and Mechanism(s) in Quench and Tempered AISI 4135 Steel Using A Novel Fast Fracture Test in Bending[J]. Acta Metallurgica Sinica (English Letters), 2023, 36(7): 1078-1094.
Add to citation manager EndNote|Ris|BibTeX
C | Mn | Ni | Cr | Mo | Si | S | P | Cu | AI | V |
---|---|---|---|---|---|---|---|---|---|---|
0.35 | 0.90 | 0.04 | 0.95 | 0.16 | 0.25 | 0.015 | 0.01 | 0.06 | 0.001 | 0.02 |
Table 1 Chemical composition of the AISI 4135 steel (wt%)
C | Mn | Ni | Cr | Mo | Si | S | P | Cu | AI | V |
---|---|---|---|---|---|---|---|---|---|---|
0.35 | 0.90 | 0.04 | 0.95 | 0.16 | 0.25 | 0.015 | 0.01 | 0.06 | 0.001 | 0.02 |
Fig. 3 a NFS% for the Steels, obtained from the fast fracture (FF) test and the ISL test in 3.5 wt% NaCl solution at − 1.2 VSCE. b Average failure load (or notch fracture strength) obtained from the fast fracture (FF) test and ISL test for the four Steels in the absence and presence of H. c Load versus time plot obtained from the fast fracture test in case of Steel 3 (shown as an example), both in the absence of H and after precharging of H for various time intervals starting from 30 min to 48 h
CarBides | Dislocation Density(m-2) | |||||
---|---|---|---|---|---|---|
Length(mm) Width(nm) Number density(m-3) | Intra-lath(TEM) GND(EBSD) Total | |||||
Steel 1 | 35±25 | 15±6 | 6±1×1011 | 4.5×1014 | 2.6×1014 | 7.1×1014 |
Steel 4 | 44±20 | 7±3 | 1±0.3×1012 | 7.5×1014 | 4.3×1014 | 1.2×1015 |
Table 2 Quantitative analysis of microstructural features for Steel 1 and Steel 4
CarBides | Dislocation Density(m-2) | |||||
---|---|---|---|---|---|---|
Length(mm) Width(nm) Number density(m-3) | Intra-lath(TEM) GND(EBSD) Total | |||||
Steel 1 | 35±25 | 15±6 | 6±1×1011 | 4.5×1014 | 2.6×1014 | 7.1×1014 |
Steel 4 | 44±20 | 7±3 | 1±0.3×1012 | 7.5×1014 | 4.3×1014 | 1.2×1015 |
Fig. 7 a Bright field TEM image of cementite distribution in Steel 1. b Dark field image of a, with SAD pattern (top right corner) identified as cementite
Fig. 9 Load displacement plots for Steel 1 and Steel 4 obtained from the fast fracture test both in the absence of H and presence of H (with 1 h of H precharging)
Fig. 10 Fracture surface morphologies from the notch root area obtained after fast fracture test following 1 h of precharging at 500 × for a Steel 1, c Steel 2, e Steel 3 g Steel 4, respectively. b, d, f and h The same at higher magnification i.e., 2000 × for Steel 1, Steel 2, Steel 3 and Steel 4, respectively
Fig. 11 racture surface morphologies from the notch root area for Steel 2 after fast fracture test: a, b 3 h of precharging, c, d 24 h of precharging, e, f 48 h of precharging
Fig. 12 racture surface morphologies from the notch root area for Steel 3 after fast fracture test with a 24 h of precharging and b 48 h of precharging, at 500 ×. Fracture surface morphologies from the notch root area for Steel 3 after fast fracture test following 30 min of precharging at c 500 × and d 2000 ×
Fig. 13 Fracture surface morphologies from the notch root area for Steel 1 after a ISL test at -1.2 VSCE in 3.5 wt% NaCl and b fast fracture test following 48 h precharging. Fracture surface morphologies from the notch root area for Steel 4 after c ISL test at − 1.2 VSCE in 3.5 wt% NaCl and d fast fracture test following 48 h precharging
[1] | Y. Chung, L.K. Fulton, J. Fail. Anal. 17, 330 (2017). |
[2] |
D. Li, R.P. Gangloff, J.R. Scully, Metall. Mater. Trans. A 35, 849 (2004).
DOI URL |
[3] |
T. Doshida, M. Nakamura, H. Saito, T. Sawada, K. Takai, Acta Mater. 61, 7755 (2013).
DOI URL |
[4] |
E. Akiyama, M. Wang, S. Li, Z. Zhang, Y. Kimura, N. Uno, K. Tsuzaki, Metall. Mater. Trans. A 44, 1290 (2013).
DOI URL |
[5] |
T. Das, S.K. Rajagopalan, S.V. Brahimi, X. Wang, S. Yue, Mater. Sci. Eng. A 716, 189 (2018).
DOI URL |
[6] |
K. Ogawa, Y. Matsumoto, H. Suzuki, K. Takai, ISIJ Int. 59, 1705 (2019).
DOI URL |
[7] |
T. Das, S.V. Brahimi, J. Song, S. Yue, Corros. Sci. 190, 109701 (2021).
DOI URL |
[8] | X. Li, X. Ma, J. Zhang, E. Akiyama, Y. Wang, X. Song, Acta Metall. Sin. Engl. Lett. 33, 759 (2020). |
[9] | S. Lynch, Corros. Rev. 30, 105 (2012). |
[10] | F07 Committee, Test Method for Measurement of Hydrogen Embrittlement Threshold in Steel by the Incremental Step Loading Technique(ASTM International, West Conshohocken, Pennsylvania, US). |
[11] |
A. Atrens, C.C. Brosnan, S. Ramamurthy, A. Oehlert, I.O. Smith, Meas. Sci. Technol. 4, 1281 (1993).
DOI URL |
[12] |
N. Winzer, A. Atrens, W. Dietzel, G. Song, K.U. Kainer, Mater. Sci. Eng. A 472, 97 (2008).
DOI URL |
[13] |
J.A. Beavers, G.H. Koch,Corrosion 48, 256 (1992).
DOI URL |
[14] |
E. Martínez-Pañeda, Z.D. Harris, S. Fuentes-Alonso, J.R. Scully, J.T. Burns, Corros. Sci. 163, 108291 (2020).
DOI URL |
[15] | F07 Committee, Test Method for Mechanical Hydrogen Embrittlement Evaluation of Plating/Coating Processes and Service Environments (ASTM International, West Conshohocken, Pennsylvania, US). |
[16] | S.V. Brahimi, K.R. Sriraman, S. Yue, Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 231, 3214 (2017). |
[17] | F16 Committee, Test Method for Process Control Verification to Prevent Hydrogen Embrittlement in Plated or Coated Fasteners (ASTM International, West Conshohocken, Pennsylvania, US). |
[18] |
J. Venezuela, Q. Liu, M. Zhang, Q. Zhou, A. Atrens, Corros. Sci. 99, 98 (2015).
DOI URL |
[19] | L. Raymond,U.S. Patent 5,505,095, 9 April, 1996. |
[20] | SV Brahimi, S Yue, KR Sriraman, Philos(2017). Trans. R. Soc. A Math. Phys. Eng. Sci. 375: 20160407. |
[21] |
H.J. Maier, W. Popp, H. Kaesche, Acta Mater. 35, 875 (1987).
DOI URL |
[22] |
M. Wang, E. Akiyama, K. Tsuzaki, Corros. Sci. 48, 2189 (2006).
DOI URL |
[23] |
T. Das, E. Legrand, S.V. Brahimi, J. Song, S. Yue, Eng. Fract. Mech. 224, 106714 (2020).
DOI URL |
[24] | L.B. Pfeil,Proc. R. Soc. London Ser. A Contain. Pap. Math. Phys. Char. 112, 182 (1926). |
[25] |
L. Zhong, R. Wu, A.J. Freeman, G.B. Olson, Phys. Rev. B 62, 13938 (2000).
DOI URL |
[26] |
J. Song, W.A. Curtin, Nat. Mater. 12, 145 (2013).
DOI PMID |
[27] |
S.K. Dwivedi, M. Vishwakarma,Int. J. Hydrog. Energy 43, 21603 (2018).
DOI URL |
[28] | S. Brahimi, Hydrogen Embrittlement in Steel Fasteners, (2014), (Accessed May 5, 2022). |
[29] | H. Bhadeshia, R. Honeycombe,in Steels: Microstructure and Properties (Fourth Edition), edited by H. Bhadeshia and R. Honeycombe (Butterworth-Heinemann, 2017), pp. 237-270. |
[30] | Y. Sun, J. Chen, J. Liu,Acta Metall. Sin. 51, 1315 (2015). |
[31] | J. Peŝiĉka, A. Dronhofer, G. Eggeler, Mater. Sci. Eng. A 387, 176 (2004). |
[32] |
A. Dronhofer, J. Pešicka, A. Dlouhỳ, G. Eggeler,Int. J. Mater. Res. 94, 511 (2003).
DOI URL |
[33] |
A. Oudriss, J. Creus, J. Bouhattate, C. Savall, B. Peraudeau, X. Feaugas, Scr. Mater. 66, 37 (2012).
DOI URL |
[34] | S. Brahimi, Dissertation, McGill University, 2018. |
[35] | M.H. Loretto,Electron Beam Analysis of Materials, 1st edn.(Springer, Netherlands, 1984), pp. 119-151. |
[36] |
J. Pešička, R. Kužel, A. Dronhofer, G. Eggeler, Acta Mater. 51, 4847 (2003).
DOI URL |
[37] | L. Jianchao, G. Yunyi, X. Zhongshu, S. Changxu, W. Liang, Acta Metall. Sin. Engl. Lett. 2, 168 (1989). |
[38] | K.W. Andrews, D.J. Dyson, S.R. Keown,Interpretation of electron diffraction patterns, 1st edn. (Springer, US, 1967), pp. 152-163. |
[39] |
C.A. Schneider,W.S. Rasband, K.W. Eliceiri, Nat. Methods 9, 671 (2012).
PMID |
[40] |
D. Guedes, L. Cupertino Malheiros, A. Oudriss, S. Cohendoz, J. Bouhattate, J. Creus, F. Thébault, M. Piette, X. Feaugas, Acta Mater. 186, 133 (2020).
DOI URL |
[41] |
S. Frappart, X. Feaugas, J. Creus, F. Thebault, L. Delattre, H. Marchebois, Mater. Sci. Eng. A 534, 384 (2012).
DOI URL |
[42] |
W.Y. Choo, J.Y. Lee, Metall. Mater. Trans. A 13, 135 (1982).
DOI URL |
[43] | G. E. Dieter, D. Bacon, Mechanical Metallurgy, 3rd edn. (McGraw-Hill, 1988), pp. 351-353. |
[44] |
M.L. Jokl, V. Vitek, C.J. McMahon, Acta Mater. 28, 1479 (1980).
DOI URL |
[45] |
E.J. Ripling, J.H. Mulherin, P.B. Crosley, Metall. Trans. A 14, 1459 (1983).
DOI URL |
[46] |
Y. Wang, J. Gong, W. Jiang, Int. J. Hydrog. Energy 38, 12503 (2013).
DOI URL |
[47] |
K.S. de Assis, M.A. Lage, G. Guttemberg, F.P. dos Santos, O.R. Mattos, Eng. Fract. Mech. 176, 116 (2017).
DOI URL |
[48] |
D. Birenis, Y. Ogawa, H. Matsunaga, O. Takakuwa, J. Yamabe, Ø. Prytz, A. Thøgersen, Mater. Sci. Eng. A 756, 396 (2019).
DOI URL |
[1] | Hui Jiang, Li Li, Jianming Wang, Chengbin Wei, Qiang Zhang, Chunjian Su, Huaiming Sui. Wear Properties of Spark Plasma-Sintered AlCoCrFeNi2.1 Eutectic High Entropy Alloy with NbC Additions [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(6): 987-998. |
[2] | Peng Peng, Shengyuan Li, Weiqi Chen, Yuanli Xu, Xudong Zhang, Zhikun Ma, Jiatai Wang. Phase Selection and Microhardness of Directionally Solidified AlCoCrFeNi2.1 Eutectic High-Entropy Alloy [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(8): 1281-1290. |
[3] | Pengcheng Zhu, Lin Zhang, Zhaochang Li, K. H. Lo, Jianfeng Wang, Yufeng Sun, Shaokang Guan. Microstructure and Mechanical Properties of Friction Stir Welded 1.5 GPa Martensitic High-Strength Steel Plates [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(7): 1079-1089. |
[4] | Ashutosh Sahu, Ram Sajeevan Maurya, Lavish Kumar Singh, Tapas Laha. Analyzing the Effects of Milling and Sintering Parameters on Crystalline Phase Evolution and Mechanical Properties of Al86Ni8Y6 and Al86Ni6Y4.5Co2La1.5 Amorphous Ribbons [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(6): 1043-1054. |
[5] | Zelei Zhang, Atsushi Kitada, Kazuhiro Fukami, Kuniaki Murase. Aluminum Electroplating on AZ31 Magnesium Alloy with Acetic Anhydride Pretreatment [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(12): 1996-2006. |
[6] | Yunpeng Meng, Boyu Lin, Lifei Wang, Jianfeng Fan, Shangzhou Zhang, Liwei Lu, Hans Jørgen Roven, Hua Zhang. Effect of Extrusion Combination Types on Microstructure and Mechanical Properties of the AZ31/GW103K Bimetallic Composite Plates [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(12): 1959-1972. |
[7] | Fengqi Zhang, Chao Xiang, En-Hou Han, Zijian Zhang. Effect of Nb Content on Microstructure and Mechanical Properties of Mo0.25V0.25Ti1.5Zr0.5Nbx High-Entropy Alloys [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(10): 1641-1652. |
[8] | Xuan Huang, Yong Dong, Shaomu Lu, Chuanqiang Li, Zhengrong Zhang. Effects of Homogenized Treatment on Microstructure and Mechanical Properties of AlCoCrFeNi2.2 Near-Eutectic High-Entropy Alloy [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(8): 1079-1086. |
[9] | Susana Montecinos, Sebastián Tognana, Walter Salgueiro. Indentation Size Effect in β CuAlBe and Cu-2Be Alloys [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(12): 1669-1678. |
[10] | Xiaojuan Fan, Ruitao Qu, Zhefeng Zhang. Relation Between Strength and Hardness of High-Entropy Alloys [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(11): 1461-1482. |
[11] | Tianbo Zhao, Yutaka S. Sato, Hiroyuki Kokawa, Kazuhiro Ito. Predicting Tensile Properties of Friction-Stir-Welded 6063 Aluminum with Experimentally Measured Welding Heat Input [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(9): 1235-1242. |
[12] | Yuan Yu, Peiying Shi, Kai Feng, Jiongjie Liu, Jun Cheng, Zhuhui Qiao, Jun Yang, Jinshan Li, Weimin Liu. Effects of Ti and Cu on the Microstructure Evolution of AlCoCrFeNi High-Entropy Alloy During Heat Treatment [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(8): 1077-1090. |
[13] | Yunhai Su, Xuewei Liang, Yunqi Liu, Zhiyong Dai. Effect of Ti Addition on the Microstructure and Property of FeAlCuCrNiMo0.6 High-Entropy Alloy [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(7): 957-967. |
[14] | Yue Su, Shun-Cun Luo, Liang Meng, Piao Gao, Ze-Min Wang. Selective Laser Melting of In Situ TiB/Ti6Al4V Composites: Formability, Microstructure Evolution and Mechanical Performance [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(6): 774-788. |
[15] | Jin Hyuk Choi, Gobinda Gyawali, Dhani Ram Dhakal, Bhupendra Joshi, Soo Wohn Lee. Electrodeposited Ni-W-TiC Composite Coatings: Effect of TiC Reinforcement on Microstructural and Tribological Properties [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(4): 573-582. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||