Acta Metallurgica Sinica (English Letters) ›› 2024, Vol. 37 ›› Issue (2): 308-324.DOI: 10.1007/s40195-023-01624-6
Previous Articles Next Articles
Gang Niu, Rui Yuan, R. D. K. Misra2, Na Gong3, Zhi-Hui Zhang1, Hao-Xiu Chen4, Hui-Bin Wu1(), Cheng-Jia Shang1(
), Xin-Ping Mao1(
)
Received:
2023-06-13
Revised:
2023-09-03
Accepted:
2023-09-11
Online:
2024-02-10
Published:
2024-02-27
Contact:
Hui-Bin Wu, Gang Niu, Rui Yuan, R. D. K. Misra, Na Gong, Zhi-Hui Zhang, Hao-Xiu Chen, Hui-Bin Wu, Cheng-Jia Shang, Xin-Ping Mao. Effect of La on the Corrosion Behavior and Mechanism of 3Ni Weathering Steel in a Simulated Marine Atmospheric Environment[J]. Acta Metallurgica Sinica (English Letters), 2024, 37(2): 308-324.
Add to citation manager EndNote|Ris|BibTeX
Steel | C | Si | Mn | P | S | Cr | Cu | Ni | La | Fe |
---|---|---|---|---|---|---|---|---|---|---|
3Ni | 0.094 | 0.27 | 1.10 | 0.028 | 0.0055 | 0.34 | 0.34 | 3.02 | - | Bal. |
3NiRE | 0.094 | 0.28 | 1.09 | 0.026 | 0.0020 | 0.34 | 0.34 | 2.97 | 0.08 | Bal. |
Table 1 Chemical composition of the two kinds of steels (wt%)
Steel | C | Si | Mn | P | S | Cr | Cu | Ni | La | Fe |
---|---|---|---|---|---|---|---|---|---|---|
3Ni | 0.094 | 0.27 | 1.10 | 0.028 | 0.0055 | 0.34 | 0.34 | 3.02 | - | Bal. |
3NiRE | 0.094 | 0.28 | 1.09 | 0.026 | 0.0020 | 0.34 | 0.34 | 2.97 | 0.08 | Bal. |
Fig. 2 Typical inclusions in 3Ni and 3NiRE steels: a Al2O3 in 3Ni steel, b MnS in 3Ni steel, c, d (La, P, S) O in 3NiRE steel. e Statistical results of inclusions in 3Ni and 3NiRE steels
Steel | A | n | R2 |
---|---|---|---|
3Ni | 2.24 × 10-4 | 0.871 | 0.982 |
3NiRE | 2.095 × 10-4 | 0.844 | 0.973 |
Table 2 Fitting results after the corrosion test. R2 represents the error of fitting
Steel | A | n | R2 |
---|---|---|---|
3Ni | 2.24 × 10-4 | 0.871 | 0.982 |
3NiRE | 2.095 × 10-4 | 0.844 | 0.973 |
Fig.7 Evolution of the phase composition of the rust of 3Ni and 3NiRE steels by XRD tests: a IRL of 3Ni steel; b ORL of 3Ni steel; c IRL of 3NiRE steel; d ORL of 3NiRE steel
Fig. 13 Results of the EIS tests of bare steels: a-c 3Ni steel; d-f 3NiRE steel; g the equivalent circuit at 36 h and 84 h; h the equivalent circuit at 156 h and 252 h
Steels | RS (Ω·cm2) | Rct (Ω·cm2) | Qdl × 10-2 (Ω−1·cm−2·sn) | ndl | Rrl (Ω·cm2) | Qrl × 10-2 (Ω−1·cm−2·sn) | nrl | W × 10-3 | χ2 × 10-4 | |
---|---|---|---|---|---|---|---|---|---|---|
3Ni | 36 h | 43.69 | 39.64 | 0.89 | 0.41 | 36.67 | 2.28 | 0.61 | 4.00 | 0.42 |
84 h | 41.51 | 114.77 | 2.62 | 0.64 | 54.72 | 0.78 | 0.56 | 3.29 | 1.12 | |
156 h | 41.64 | 110.91 | 1.99 | 0.46 | 13.45 | 0.38 | 0.68 | 3.51 | ||
252 h | 44.88 | 80.55 | 2.38 | 0.46 | 16.57 | 0.70 | 0.53 | 2.23 | ||
3NiRE | 36 h | 36.64 | 92.74 | 3.42 | 0.55 | 10.62 | 0.29 | 0.72 | 47.5 | 3.30 |
84 h | 35.39 | 165.58 | 2.21 | 0.58 | 25.93 | 0.32 | 0.65 | 9.43 | 1.95 | |
156 h | 34.00 | 238.92 | 1.07 | 0.60 | 22.08 | 0.61 | 0.63 | 2.53 | ||
252 h | 44.39 | 108.50 | 1.79 | 0.60 | 18.11 | 0.96 | 0.44 | 1.27 |
Table 3 EIS fitting data after different test time
Steels | RS (Ω·cm2) | Rct (Ω·cm2) | Qdl × 10-2 (Ω−1·cm−2·sn) | ndl | Rrl (Ω·cm2) | Qrl × 10-2 (Ω−1·cm−2·sn) | nrl | W × 10-3 | χ2 × 10-4 | |
---|---|---|---|---|---|---|---|---|---|---|
3Ni | 36 h | 43.69 | 39.64 | 0.89 | 0.41 | 36.67 | 2.28 | 0.61 | 4.00 | 0.42 |
84 h | 41.51 | 114.77 | 2.62 | 0.64 | 54.72 | 0.78 | 0.56 | 3.29 | 1.12 | |
156 h | 41.64 | 110.91 | 1.99 | 0.46 | 13.45 | 0.38 | 0.68 | 3.51 | ||
252 h | 44.88 | 80.55 | 2.38 | 0.46 | 16.57 | 0.70 | 0.53 | 2.23 | ||
3NiRE | 36 h | 36.64 | 92.74 | 3.42 | 0.55 | 10.62 | 0.29 | 0.72 | 47.5 | 3.30 |
84 h | 35.39 | 165.58 | 2.21 | 0.58 | 25.93 | 0.32 | 0.65 | 9.43 | 1.95 | |
156 h | 34.00 | 238.92 | 1.07 | 0.60 | 22.08 | 0.61 | 0.63 | 2.53 | ||
252 h | 44.39 | 108.50 | 1.79 | 0.60 | 18.11 | 0.96 | 0.44 | 1.27 |
Steel | 36 h (mV) | 84 h (mV) | 156 h (mV) | 252 h (mV) |
---|---|---|---|---|
3Ni | − 108.7 | − 70.7 | − 120.0 | − 138.2 |
3NiRE | − 123.4 | − 164.4 | − 126.4 | − 147.9 |
Table 4 Cathodic polarizability of the two kinds of steels at different durations of the experiment
Steel | 36 h (mV) | 84 h (mV) | 156 h (mV) | 252 h (mV) |
---|---|---|---|---|
3Ni | − 108.7 | − 70.7 | − 120.0 | − 138.2 |
3NiRE | − 123.4 | − 164.4 | − 126.4 | − 147.9 |
[1] |
M. Morcillo, I. Díaz, H. Cano, B. Chico, D. De La Fuente, Constr. Build. Mater. 213, 723 (2019)
DOI |
[2] |
M. Morcillo, I. Díaz, H. Cano, B. Chico, D. De La Fuente, Constr. Build. Mater. 222, 750 (2019)
DOI |
[3] | V.K.B. Raja, K. Palanikumar, R.R. Renish, A.G. Babu, J. Varma, P. Gopal, Mater. Today Proc. 46, 3572 (2021) |
[4] |
H. Kihira, S. Ito, S. Mizoguchi, T. Murata, A. Usami, K. Tanabe, Zairyo-to-Kankyo 49, 30 (2011)
DOI URL |
[5] | I. Sugimoto, K. Kita, Evaluation of applicability for Ni-advanced weathering steels and bridge high-performance steels to railway steel bridges, Quarterly Report of RTRI, 51, 33 (2010) |
[6] |
H. Cano, D. Neff, M. Morcillo, P. Dillmann, I. Diaz, D. De La Fuente, Corros. Sci. 87, 438 (2014)
DOI URL |
[7] |
T. Zhang, W. Liu, L. Chen, B. Dong, W. Yang, Y. Fan, Y. Zhao, Corros. Sci. 192, 109851 (2021)
DOI URL |
[8] |
I. Diaz, H. Cano, D. De La Fuente, B. Chico, J.M. Vega, M. Morcillo, Corros. Sci. 76, 348 (2013)
DOI URL |
[9] | H. Cano, I. Díaz, D. De La Fuente, B. Chico, M. Morcillo, Mater. Corros. 69, 8 (2018) |
[10] |
I. Díaz, H. Cano, P. Lopesino, D. De La Fuente, B. Chico, J.A. Jiménez, S.F. Medina, M. Morcillo, Corros. Sci. 141, 146 (2018)
DOI URL |
[11] |
X. Cheng, Z. Jin, M. Liu, X. Li, Corros. Sci. 115, 135 (2017)
DOI URL |
[12] |
J. Jia, X. Cheng, X. Yang, X. Li, W. Li, Constr. Build. Mater. 259, 119760 (2020)
DOI URL |
[13] |
J. Jia, W. Wu, X. Cheng, J. Zhao, Constr. Build. Mater. 245, 118463 (2020)
DOI URL |
[14] |
W. Wu, Z. Dai, Z. Liu, C. Liu, X. Li, Corros. Sci. 183, 109353 (2021)
DOI URL |
[15] |
Y. Liu, L. Wang, K. Chou, J. Rare Earth 32, 759 (2014)
DOI URL |
[16] |
J.H. Ahn, H.D. Jung, J.H. Im, K.H. Jung, B.M. Moon, Mater. Sci. Eng. A 658, 255 (2016)
DOI URL |
[17] |
Y.P. Sun, Z. Wang, H.J. Yang, A.D. Lan, J.W. Qiao, J. Alloy. Compd. 842, 155825 (2020)
DOI URL |
[18] |
F. Dong, J. Venezuela, H. Li, Z. Shi, Q. Zhou, L. Chen, J. Chen, L.X. Du, A. Atrens, Corros. Sci. 185, 109440 (2021)
DOI URL |
[19] |
L. Yue, L. Wangand, J. Han, J. Rare Earth 28, 952 (2010)
DOI URL |
[20] |
X. Zhang, W. Wei, L. Cheng, J. Liu, K. Wu, M. Liu, Appl. Surf. Sci. 475, 83 (2019)
DOI |
[21] |
C. Liu, R.I. Revilla, Z. Liu, D. Zhang, X. Li, H. Terryn, Corros. Sci. 129, 82 (2017)
DOI URL |
[22] | Z. Liu, X. Lian, T. Liu, Y. Yang, J. Zhu, H. Dong, Mater. Corros. 71, 258 (2020) |
[23] |
D. Li, P. Wang, X.Q. Chen, P. Fu, Y. Luan, X. Hu, H. Liu, M. Sun, Y. Chen, Y. Cao, L. Zheng, J. Gao, Y. Zhou, L. Zhang, X. Ma, C. Dai, C. Yang, Z. Jiang, Y. Liu, Y. Li, Nat. Mater. 21, 1137 (2022)
DOI |
[24] | U. Heo, D.W. Han, S. Kim, C.B. Mo, Mater. Today Commun. 32, 104005 (2022) |
[25] |
M. Morcillo, B. Chico, J. Alcántara, I. Díaz, R. Wolthuis, D. De La Fuente, J. Electrochem. Soc. 163, C426 (2016)
DOI URL |
[26] |
W. Wu, X. Cheng, H. Hou, B. Liu, X. Li, Appl. Surf. Sci. 436, 80 (2018)
DOI URL |
[27] |
N. Sathirachinda, R. Pettersson, J. Pan, Corros. Sci. 51, 1850 (2009)
DOI URL |
[28] |
M. Morcillo, B. Chico, I. Díaz, H. Cano, D. De La Fuente, Corros. Sci. 77, 6 (2013)
DOI URL |
[29] |
S. Huang, W. Wu, Y. Su, L. Qiao, Y. Yan, Corros. Sci. 178, 109071 (2021)
DOI URL |
[30] |
M. Sun, C. Du, Z. Liu, C. Liu, X. Li, Y. Wu, Corros. Sci. 186, 109427 (2021)
DOI URL |
[31] |
H. Liu, F. Huang, W. Yuan, Q. Hu, J. Liu, Y.F. Cheng, Corros. Sci. 173, 108758 (2020)
DOI URL |
[32] | R. Yuan, H. Wu, Y. Gu, Mater. Corros. 73, 918 (2022) |
[33] |
Y. Yang, X. Cheng, J. Zhao, Y. Fan, X. Li, Corros. Sci. 188, 109549 (2021)
DOI URL |
[34] |
K. Asami, M. Kikuchi, Corros. Sci. 45, 2671 (2003)
DOI URL |
[35] |
M. Sun, Y. Pang, C. Du, X. Li, Y. Wu, Constr. Build. Mater. 302, 124346 (2021)
DOI URL |
[36] |
M. Yamashita, T. Shimizu, H. Konishi, J. Mizuki, H. Uchida, Corros. Sci. 45, 381 (2003)
DOI URL |
[37] | M. Yamashita, H. Konishi, J. Mizuki, Nano-structure of protective rust layer on weathering steel exposed in nation-wide environments in Japan. Paper presented at the 1st international conference on advanced structural steels. National Institute for Materials Science, 287, (2002) |
[38] |
C. Thee, L. Hao, J. Dong, X. Mu, X. Wei, X. Li, W. Ke, Corros. Sci. 78, 130 (2014)
DOI URL |
[39] | L. Wang, Q. Lin, J. Ji, D. Lan, J. Alloy. Compd. 408, 384 (2006) |
[40] | W.G. Wilson, D.A.R. Kay, A. Vahed, JOM 26, 14 (1974) |
[41] |
P. Wang, L. Ma, X. Cheng, X. Li, J. Alloy. Compd. 857, 158258 (2021)
DOI URL |
[42] |
X. Yang, Y. Yang, M. Sun, J. Jia, X. Cheng, Z. Pei, Q. Li, D. Xu, K. Xiao, X. Li, J. Mater. Sci. Technol. 104, 67 (2022)
DOI URL |
[43] | Y.W. Liu, J. Zhang, X. Lu, M.R. Liu, Z.Y. Wang, Acta Metall. Sin. -Engl. Lett. 33, 1302 (2020) |
[44] | L. Xu, B. Wang, M. Lu, Acta Metall. Sin. 52, 672 (2016) |
[45] |
M. Stratmann, K. Bohnenkamp, H.J. Engell, Corros. Sci. 23, 969 (1983)
DOI URL |
[46] | H.H. Wang, M. Du, Acta Metall. Sin. -Engl. Lett. 30, 585 (2017) |
[47] |
M. Forsyth, K. Wilson, T. Behrsing, C. Forsyth, G.B. Deacon, Corrosion 58, 953 (2002)
DOI URL |
[48] |
F.E.T. Heakal, O.S. Shehata, N.S. Tantawy, Corros. Sci. 56, 86 (2012)
DOI URL |
[1] | J. Sharath Kumar, Rakesh Kumar, Rajeev Verma. Surface Modification Aspects for Improving Biomedical Properties in Implants: A Review [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(2): 213-241. |
[2] | Ying Shen, Xianfeng Shan, Iniobong P. Etim, Muhammad Ali Siddiqui, Yang Yang, Zewen Shi, Xuping Su, Junxiu Chen. Comparative Study of the Effects of Nano ZnO and CuO on the Biodegradation, Biocompatibility, and Antibacterial Properties of Micro-arc Oxidation Coating of Magnesium Alloy [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(2): 242-254. |
[3] | Yu-Hang Chu, Liang-Yu Chen, Bo-Yuan Qin, Wenbin Gao, Fanmin Shang, Hong-Yu Yang, Lina Zhang, Peng Qin, Lai-Chang Zhang. Unveiling the Contribution of Lactic Acid to the Passivation Behavior of Ti-6Al-4V Fabricated by Laser Powder Bed Fusion in Hank’s Solution [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(1): 102-118. |
[4] | Hongyu Zheng, Xin Gai, Yun Bai, Wentao Hou, Shujun Li, Yulin Hao, R. D. K. Misra, Rui Yang. Influence of Component Size on the Corrosion Behavior of Ti6Al4V Alloy Fabricated by Electron Beam Powder Bed Fusion [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(1): 159-168. |
[5] | Shuilong Huang, Qingjun Chen, Li Ji, Kan Wang, Guosheng Huang. Microstructure and Internal Friction Behavior of Laser 3D Printed Fe-Based Amorphous Composites [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(1): 196-204. |
[6] | Zhonghua Jiang, Pei Wang, Dianzhong Li. Role of Solute Rare Earth in Altering Phase Transformations during Continuous Cooling of a Low Alloy Cr-Mo-V Steel [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(9): 1523-1535. |
[7] | Kai Hu, Lei Zhang, Yuanjie Zhang, Bo Song, Shifeng Wen, Qi Liu, Yusheng Shi. Electrochemical Corrosion Behavior and Mechanical Response of Selective Laser Melted Porous Metallic Biomaterials [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(8): 1235-1246. |
[8] | Chunquan Liu, Xianhua Chen, Yulong Wu, Yaobo Hu, Wei Zhang, Yusheng Zhang, Jingying Bai, Fusheng Pan. Improved Corrosion Resistance of Ultrafine-Grained Mg-Gd-Zr Alloy Fabricated by Surface Friction Treatment [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(8): 1281-1291. |
[9] | Long Chen, Xintong Lian, Zhong Xi, Tengshi Liu, Qingxiao Feng, Hualong Li, Yixin Shi, Han Dong. A Study of Rust Layer of Ultra-Thin Cast Strip Steel Containing 0.10% Sb in Simulated Industrial Atmosphere [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(8): 1371-1384. |
[10] | Xian Zhang, Li Gong, Yanpeng Feng, Zhihui Wang, Miao Yang, Lin Cheng, Jing Liu, Kaiming Wu. Effect of Retained Austenite on Corrosion Behavior of Ultrafine Bainitic Steel in Marine Environment [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(5): 717-731. |
[11] | Xin Wei, Yupeng Sun, Junhua Dong, Nan Chen, Qiying Ren, Wei Ke. Effects of Aerobic and Anoxic Conditions on the Corrosion Behavior of NiCu Low Alloy Steel in the Simulated Groundwater Solutions [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(5): 745-757. |
[12] | Renxian Yang, Xin Cai, Leigang Zheng, Xiaoqiang Hu, Dianzhong Li. Enhancement Mechanism of Cerium in 316LN Austenitic Stainless Steel During Creep at 700 °C [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(3): 507-512. |
[13] | Baotian Du, Zijian Yu, Kang Shi, Ke Liu, Shubo Li, Wenbo Du. Improving the Mechanical Properties of Mg-Gd-Y-Ag-Zr Alloy via Pre-Strain and Two-Stage Ageing [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(3): 456-468. |
[14] | Yu-Jin Nie, Jian-Wei Dai, Xiao-Bo Zhang. Effect of Ag Addition on Microstructure, Mechanical and Corrosion Properties of Mg-Nd-Zn-Zr Alloy for Orthopedic Application [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(2): 295-309. |
[15] | Guoqiang Xi, Xuhan Zhao, Yanlong Ma, Yu Mou, Ju Xiong, Kai Ma, Jingfeng Wang. Comparative Study on Corrosion Behavior and Mechanism of As-Cast Mg-Zn-Y and Mg-Zn-Gd Alloys [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(2): 310-322. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||