Acta Metallurgica Sinica (English Letters) ›› 2023, Vol. 36 ›› Issue (7): 1059-1077.DOI: 10.1007/s40195-022-01483-7
Previous Articles Next Articles
Jun Zhang1, Binhan Sun2(), Zhigang Yang1, Chi Zhang1, Hao Chen1(
)
Received:
2022-08-03
Revised:
2022-09-09
Accepted:
2022-09-16
Online:
2023-07-10
Published:
2022-11-06
Contact:
Binhan Sun, Hao Chen
Jun Zhang, Binhan Sun, Zhigang Yang, Chi Zhang, Hao Chen. Enhancing the Hydrogen Embrittlement Resistance of Medium Mn Steels by Designing Metastable Austenite with a Compositional Core-shell Structure[J]. Acta Metallurgica Sinica (English Letters), 2023, 36(7): 1059-1077.
Add to citation manager EndNote|Ris|BibTeX
Fig. 2 a, b Secondary electron (SE) images and EBSD phase-image quality (Phase-IQ) maps of the one-step a and two-step b ART sample; c EBSD inverse pole figure (IPF) map, Phase-IQ map and the corresponding SE image taken at the white box in the Phase-IQ map of b, showing the detailed morphology, phase condition and crystallographic orientation of the core-shell austenite in the two-step ART sample. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)
Type | Proportion (%) | Thickness of | Proportion (%) |
---|---|---|---|
34.5 | < 100 | 32.0 | |
100-200 | 50.4 | ||
65.5 | 200-300 | 13.4 | |
300-400 | 2.5 | ||
> 400 | 1.7 |
Table 1 Statistical analysis showing the proportion of different types of core-shell austenite grains and the proportion of grains with different shell thickness
Type | Proportion (%) | Thickness of | Proportion (%) |
---|---|---|---|
34.5 | < 100 | 32.0 | |
100-200 | 50.4 | ||
65.5 | 200-300 | 13.4 | |
300-400 | 2.5 | ||
> 400 | 1.7 |
Fig. 3 Mn distribution in austenite of one-step a, c, e, g and two-step b, d, f, h ART sample measured by AES-EBSD a-d and STEM-EDX e-h. a, b EBSD Phase-IQ maps of the one-step a and two-step b ART sample; c, d profiles of Mn intensity measured along the AES scanning line in a, b, and the insert shows the SEM morphology of the measured austenite grain; e, f STEM bright field (BF) images and the corresponding EDX maps of Mn of one-step e and two-step f ART sample. The white solid and dash closed curves show the core-shell austenite with distinct Mn enrichment in the shell region; g, h profiles of Mn content taken along the arrow in the EDX map
Sample | Sample thickness (mm) | Lag time (s) | Effective diffusivity (m2/s) | Flux at steady state (mol/m2/s) | Sub-surface H concentration (mol/m3) |
---|---|---|---|---|---|
One-step ART | 0.152 | 3660 | 1.05 | 1.42 | 20.6 |
Two-step ART | 0.146 | 3008 | 1.18 | 1.41 | 17.5 |
Table 2 H permeation test results of the one-step and two-step ART sample
Sample | Sample thickness (mm) | Lag time (s) | Effective diffusivity (m2/s) | Flux at steady state (mol/m2/s) | Sub-surface H concentration (mol/m3) |
---|---|---|---|---|---|
One-step ART | 0.152 | 3660 | 1.05 | 1.42 | 20.6 |
Two-step ART | 0.146 | 3008 | 1.18 | 1.41 | 17.5 |
Fig. 5 a, b Engineering stress–strain curves of the uncharged and H-charged (at current densities of 5 mA/cm2 and 60 mA/cm2) one-step a and two-step b ART sample; c the work hardening rate of the uncharged samples; d HE resistance index (HERI) as a function of current density of H charging, where ${\text{TEL}}_{{\text{H}}}$ and ${\text{TEL}}_{0}$ are the total elongation for the H-charged and uncharged specimen, respectively
Sample | Current density of H-charging (mA/cm2) | Lower yield strength (MPa) | Tensile strength (MPa) | Yield point elongation (%) | Uniform elongation (%) | Total elongation (%) | HE resistance index (%) |
---|---|---|---|---|---|---|---|
0 | 940 | 1106 | 11.8 | 42.0 | 44.8 | - | |
One-step ART | 5 | 943 | 993 | 12.7 | - | 17.6 | 39.3 |
60 | 951 | 950 | - | - | 3.5 | 7.8 | |
0 | 931 | 1092 | 13.3 | 41.6 | 44.3 | - | |
Two-step ART | 5 | 923 | 1026 | 14.1 | - | 25.5 | 57.7 |
60 | 918 | 964 | 13.9 | - | 17.2 | 39.0 |
Table 3 Slow-strain-rate tensile properties before and after H-charging at current densities of 5 and 60 mA/cm2 of one-step and two-step ART samples
Sample | Current density of H-charging (mA/cm2) | Lower yield strength (MPa) | Tensile strength (MPa) | Yield point elongation (%) | Uniform elongation (%) | Total elongation (%) | HE resistance index (%) |
---|---|---|---|---|---|---|---|
0 | 940 | 1106 | 11.8 | 42.0 | 44.8 | - | |
One-step ART | 5 | 943 | 993 | 12.7 | - | 17.6 | 39.3 |
60 | 951 | 950 | - | - | 3.5 | 7.8 | |
0 | 931 | 1092 | 13.3 | 41.6 | 44.3 | - | |
Two-step ART | 5 | 923 | 1026 | 14.1 | - | 25.5 | 57.7 |
60 | 918 | 964 | 13.9 | - | 17.2 | 39.0 |
Fig. 6 SEM images of the fracture surface of one-step a-c and two-step d-f ART samples. a, d Uncharged; b, e near-edge region of H-charged samples; c, f region located at ~ 100 μm away from the edge of H-charged samples. Arrowheads in b, c and e indicate intergranular facets. (The current density of H-charging is 60 mA/cm2.)
Fig. 7 Ex situ EBSD results of one-step ART sample (SEM images, EBSD Phase-IQ maps and IPF ($\gamma$) maps), showing two types of martensite transformation of individual austenite grains: a fully transformed at low strain (~ 12%); b transformation persisted at higher strain
Fig. 8 Ex situ EBSD results of martensite transformation of core–shell austenite grains in the two-step ART sample (SEM images, EBSD Phase-IQ maps and IPF ($\gamma$) maps): a complete transformation of both core and shell region into martensite at low strain (~ 12%); b stepwise transformation with the shell region transformed first; c stepwise transformation with the core region transformed first followed by the shell region; d almost no transformation occurred at analyzed strain levels
Fig. 10 a, b SEM images of the deformed region of H-charged (at current density of 60 mA/cm2) one-step a and two-step b ART sample stretched to a macroscopic strain approximately equal to one fifth of the YPE; c, d SEM images, EBSD Phase-IQ maps and IPF maps of the magnified regions near the main cracks in a, b, showing the formation of micro-cracks in H-charged one-step c and two-step d ART sample. The inset in d2 is the profile of Mn intensity measured along the AES scanning line, showing the Mn enrichment in the austenite shell. $\alpha$ represents ferrite and $\alpha^{\prime}$ stands for $\alpha^{\prime}$-martensite, which is distinguished based on the combination of SEM morphology and EBSD image quality map. PAGB represents prior-austenite grain boundaries
Fig. 11 a Phase-IQ map and the STEM-EDX measurements of the sample subjected to the first ART at 700 °C. The Mn profile is taken along the arrow in the EDX map of the corresponding STEM BF image. The inset in the Phase-IQ map is the setup of the DICTRA simulation; b length change during the first and second ART (note: the cooling stage after the first ART and the reheating stage of the second ART are not simulated here and they should not influence the dilatometry results as no phase transformation is expected during these two stages); c the simulated evolution of Mn profiles during the second ART; d magnified profiles taken at the black-dash rectangular frame in c; e EDX mapping of the two-step ART sample showing the Mn-depleted region in the ${\alpha }$ side near the phase boundary. The Mn profile is taken along the arrow in the EDX map, showing the Mn gradient inside austenite
Fig. 12 Schematic illustration showing the H-induced cracking behavior in one-step ART sample a, sample with randomly-distributed Mn-rich zone inside austenite [26] b and two-step ART sample with core–shell austenite c. With regard to intergranular cracking, only cracking along $\alpha$/$\alpha^{^{\prime}}$-martensite interface is presented for better comparison, as it is the most prevalent cracking behavior in H-charged MMS
[1] |
Y.K. Lee, J. Han, Mater. Sci. Technol. 31, 843 (2014).
DOI URL |
[2] |
R.L. Miller, Metall. Trans. 3, 905 (1972).
DOI URL |
[3] |
K. Steineder, D. Krizan, R. Schneider, C. Béal, C. Sommitsch, Acta Mater. 139, 39 (2017).
DOI URL |
[4] |
S.S. Sohn, K. Choi, J.H. Kwak, N.J. Kim, S. Lee, Acta Mater. 78, 181 (2014).
DOI URL |
[5] |
Z. Dai, H. Chen, R. Ding, Q. Lu, C. Zhang, Z. Yang, S. van der Zwaag, Mater. Sci. Eng. R-Rep. 143, 100590 (2021).
DOI URL |
[6] |
Q. Han, Y. Zhang, L. Wang, Metall. Mater. Trans. A 46, 1917 (2015).
DOI URL |
[7] |
B. Sun, Y. Ma, N. Vanderesse, R.S. Varanasi, W. Song, P. Bocher, D. Ponge, D. Raabe, Acta Mater. 178, 10 (2019).
DOI URL |
[8] |
S. Lee, B.C. De Cooman, Metall. Mater. Trans. A 44, 5018 (2013).
DOI URL |
[9] |
P. Jacques, Q. Furnémont, A. Mertens, F. Delannay, Philos. Mag. A 81, 1789 (2001).
DOI URL |
[10] |
P.J. Jacques, Curr. Opin. Solid State Mat. Sci. 8, 259 (2004).
DOI URL |
[11] |
Z.H. Cai, H. Ding, R.D.K. Misra, Z.Y. Ying, Acta Mater. 84, 229 (2015).
DOI URL |
[12] | P.J. Gibbs, E. De Moor, M.J. Merwin, B. Clausen, J.G. Speer, D.K. Matlock, Metall. Mater. Trans. A 42, 3691 (2011). |
[13] |
J. Shi, X. Sun, M. Wang, W. Hui, H. Dong, W. Cao,Scr. Mater. 63, 815 (2010).
DOI URL |
[14] |
H. Luo, H. Dong, M. Huang, Mater. Des. 83, 42 (2015).
DOI URL |
[15] |
J. Han, J.H. Nam, Y.K. Lee, Acta Mater. 113, 1 (2016).
DOI URL |
[16] |
C. Shao, W. Hui, Y. Zhang, X. Zhao, Y. Weng, Mater. Sci. Eng. A 726, 320 (2018).
DOI URL |
[17] |
B. Sun, W. Krieger, M. Rohwerder, D. Ponge, D. Raabe, Acta Mater. 183, 313 (2020).
DOI URL |
[18] |
J. Zhang, M. Huang, B. Sun, B. Zhang, R. Ding, C. Luo, W. Zeng, C. Zhang, Z. Yang, S. van der Zwaag, H. Chen, Scr. Mater. 190, 32 (2021).
DOI URL |
[19] |
L. Cho, Y. Kong, J.G. Speer, K.O. Findley,Metals 11, 358 (2021).
DOI URL |
[20] |
H.K.D.H. Bhadeshia, ISIJ Int. 56, 24 (2016).
DOI URL |
[21] |
J.H. Ryu, Y.S. Chun, C.S. Lee, H.K.D.H. Bhadeshia, D.W. Suh, Acta Mater. 60, 4085(2012).
DOI URL |
[22] |
T.P. Perng, M. Johnson, C.J. Altstetter, Acta Metall. 37, 3393 (1989).
DOI URL |
[23] |
M. Koyama, Y. Abe, K. Saito, E. Akiyama, K. Takai, K. Tsuzaki,Scr. Mater. 122, 50 (2016).
DOI URL |
[24] |
T. Hojo, M. Koyama, N. Terao, K. Tsuzaki, E. Akiyama, Int. J. Hydrog. Energy 44, 30472 (2019).
DOI URL |
[25] |
A. Pundt, R. Kirchheim, Ann. Rev. Mater. Res. 36, 555 (2006).
DOI URL |
[26] |
B. Sun, W. Lu, B. Gault, R. Ding, S.K. Makineni, D. Wan, C.H. Wu, H. Chen, D. Ponge, D. Raabe, Nat. Mater. 20, 1629 (2021).
DOI |
[27] |
D. Raabe, C.C. Tasan, E.A. Olivetti,Nature 575, 64 (2019).
DOI |
[28] |
M.A.V. Devanathan, Z. Stachurski, J. Electrochem. Soc. 111, 619 (1964).
DOI URL |
[29] | ISO 17081:2004(E), ISO, Switzerland (2004). |
[30] |
J. McBreen, L. Nonis, W. Beck, J. Electrochem. Soc. 113, 1218 (1966).
DOI URL |
[31] |
X. Wan, G. Liu, R. Ding, N. Nakada, Y.W. Chai, Z. Yang, C. Zhang, H. Chen, Scr. Mater.166, 68 (2019).
DOI URL |
[32] |
A. Turk, G.R. Joshi, M. Gintalas, M. Callisti, P.E.J. Rivera-Díaz-del-Castillo, E.I. Galindo-Nava, Acta Mater. 194, 118 (2020).
DOI URL |
[33] |
X.G. Wang, L. Wang, M.X. Huang, Acta Mater. 124, 17 (2017).
DOI URL |
[34] |
G. Han, J. He, S. Fukuyama, K. Yokogawa, Acta Mater. 46, 4559 (1998).
DOI URL |
[35] |
L. Zhang, Z. Li, J. Zheng, Y. Zhao, P. Xu, C. Zhou, X. Li, Int. J. Hydrog. Energy 38, 8208 (2013).
DOI URL |
[36] |
B. He,Materials 13, 3440 (2020).
DOI URL |
[37] |
Y. Ma, B. Sun, A. Schökel, W. Song, D. Ponge, D. Raabe, W. Bleck, Acta Mater. 200, 389 (2020).
DOI URL |
[38] |
R. Ding, Z. Dai, M. Huang, Z. Yang, C. Zhang, H. Chen, Acta Mater. 147, 59 (2018).
DOI URL |
[39] |
H. Luo, J. Shi, C. Wang, W. Cao, X. Sun, H. Dong, Acta Mater. 59, 4002 (2011).
DOI URL |
[40] |
P. Wen, B. Hu, J. Han, H. Luo, J. Mater. Sci. Technol. 97, 54 (2022).
DOI URL |
[41] |
X. Zhang, G. Miyamoto, T. Kaneshita, Y. Yoshida, Y. Toji, T. Furuhara, Acta Mater. 154, 1 (2018).
DOI URL |
[42] |
H. Dong, Y. Zhang, G. Miyamoto, H. Chen, Z. Yang, T. Furuhara, Scr. Mater. 188, 59 (2020).
DOI URL |
[43] | S.J. Lee, S. Lee, B.C. De Cooman, Scr. Mater. 64, 649 (2011). |
[44] |
S. Lee, S.J. Lee, B.C. De Cooman, Scr. Mater. 65, 225 (2011).
DOI URL |
[45] |
N. Nakada, K. Mizutani, T. Tsuchiyama, S. Takaki, Acta Mater. 65, 251 (2014).
DOI URL |
[46] |
A. Turnbull, R.B. Hutchings, Mater. Sci. Eng. A 177, 161 (1994).
DOI URL |
[47] |
E. Owczarek, T. Zakroczymski, Acta Mater. 48, 3059 (2000).
DOI URL |
[48] |
P. Tsong-Pyng, C.J. Altstetter, Acta Metall. 34, 1771 (1986).
DOI URL |
[49] | A.R. Troiano, Trans. ASM 52, 54 (1960). |
[50] | S. Lynch, Corros. Rev. 30, 105 (2012). |
[51] |
Y. Mine, N. Horita, Z. Horita, K. Takashima,Int. J. Hydrog. Energy 42, 15415 (2017).
DOI URL |
[52] |
I.J. Park, S.M. Lee, H.H. Jeon, Y.K. Lee, Corros. Sci. 93, 63 (2015).
DOI URL |
[53] |
S. Bechtle, M. Kumar, B.P. Somerday, M.E. Launey, R.O. Ritchie, Acta Mater. 57, 4148 (2009).
DOI URL |
[54] |
T.M. Park, H.J. Kim, H.Y. Um, N.H. Goo, J. Han, Mater. Charact. 165, 110386 (2020).
DOI URL |
[55] |
W. Krauss, S.K. Pabi, H. Gleiter, Acta Metall. 37, 25 (1989).
DOI URL |
[56] |
M. Koyama, C.C. Tasan, E. Akiyama, K. Tsuzaki, D. Raabe, Acta Mater. 70, 174 (2014).
DOI URL |
[57] |
J. Kadkhodapour, A. Butz, S.Z. Rad, Acta Mater. 59, 2575 (2011).
DOI URL |
[58] |
I. Pushkareva, C.P. Scott, M. Gouné, N. Valle, A. Redjaïmia, A. Moulin, ISIJ Int. 53, 1215 (2013).
DOI URL |
[59] |
G. Krauss, Mater. Sci. Eng. A 273-275, 40 (1999).
DOI URL |
[1] | Tuhin Das, Salim V. Brahimi, Jun Song, Stephen Yue. Assessment of Hydrogen Embrittlement Susceptibility and Mechanism(s) in Quench and Tempered AISI 4135 Steel Using A Novel Fast Fracture Test in Bending [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(7): 1078-1094. |
[2] | Dayong An, Yuhao Zhou, Yao Xiao, Xinxi Liu, Xifeng Li, Jun Chen. Observation of the Hydrogen-Dislocation Interactions in a High-Manganese Steel after Hydrogen Adsorption and Desorption [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(7): 1105-1112. |
[3] | Z. Wang, Q. Lu, Z.H. Cao, H. Chen, M.X. Huang, J.F. Wang. Review on Hydrogen Embrittlement of Press-hardened Steels for Automotive Applications [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(7): 1123-1143. |
[4] | Ming-Tu Ma, Ke-Jian Li, Yu Si, Peng-Jun Cao, Hong-Zhou Lu, Ai-Min Guo, Guo-Dong Wang. Hydrogen Embrittlement of Advanced High-Strength Steel for Automobile Application: A Review [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(7): 1144-1158. |
[5] | Boning Zhang, Yong Mao, Zhenbao Liu, Jianxiong Liang, Jun Zhang, Maoqiu Wang, Jie Su, Kun Shen. Ab Initio Investigations for the Role of Compositional Complexities in Affecting Hydrogen Trapping and Hydrogen Embrittlement: A Review [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(7): 1159-1172. |
[6] | Wenjing Lou, Lin Cheng, Runsheng Wang, Chengyang Hu, Kaiming Wu. Atomistic Investigation of the Influence of Hydrogen on Mechanical Response during Nanoindentation in Pure Iron [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(7): 1179-1192. |
[7] | Rongjian Shi, Yanqi Tu, Liang Yang, Saiyu Liu, Shani Yang, Kewei Gao, Xu-Sheng Yang, Xiaolu Pang. Interactions between Pre-strain and Dislocation Structures and Its Effect on the Hydrogen Trapping Behaviors [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(7): 1193-1202. |
[8] | Yue-Yang Gu, Han-Yu Zhao, Wei Chen, Wei Yan, Liang-Yin Xiong, De-Min Chen. Effects of Hydrogen Charging on Mechanical Properties of CLAM Steel at Different Strain Rates [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(7): 1203-1210. |
[9] | Binhan Sun, Dong Wang, Xu Lu, Di Wan, Dirk Ponge, Xiancheng Zhang. Current Challenges and Opportunities Toward Understanding Hydrogen Embrittlement Mechanisms in Advanced High-Strength Steels: A Review [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(6): 741-754. |
[10] | Jun Zhang, Jie Su, Boning Zhang, Yi Zong, Zhigang Yang, Chi Zhang, Hao Chen. Phase-Field Modeling of Hydrogen Diffusion and Trapping in Steels [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(10): 1421-1426. |
[11] | Xinfeng Li, Xianfeng Ma, Jin Zhang, Eiji Akiyama, Yanfei Wang, Xiaolong Song. Review of Hydrogen Embrittlement in Metals: Hydrogen Diffusion, Hydrogen Characterization, Hydrogen Embrittlement Mechanism and Prevention [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(6): 759-773. |
[12] | Zuo-Yan Ye, Dao-Xin Liu, Meng Yuan, Xiao-Ming Zhang, Zhi Yang, Ming-Xia Lei. Effects of Prior Corrosion with and Without Stress on the Mechanical Properties of 7475-T761 Aluminum Alloy [J]. Acta Metallurgica Sinica (English Letters), 2015, 28(5): 608-613. |
[13] | Yongli Wang, Liangyin Xiong, Shi Liu. Rapid Hydrogen Transportation Along Grain Boundary in Nickel [J]. Acta Metallurgica Sinica (English Letters), 2014, 27(4): 615-620. |
[14] | J.L. Li1,2) and Y.Li3) 1) Fushun Petroleum Institute,Fushun 113001 ,China 2) State Key Laboratory for Corrosion and Protection of Metal,Institute of Corrosion and Prtection of Metals, The Chinese Academy of Sciences,Shenyang 110015 ,China 3) Fushun Third Refinery Plant,Fushun 113001 ,China. ADISCUSSION ON THE PROBLEMS PRESENT IN IN SERVICE HYDROGENATION REACTORS [J]. Acta Metallurgica Sinica (English Letters), 1999, 12(4): 368-371. |
[15] | YX. Chen; X.J. Wan and W.X. Xu (Institute of Materials Sciences, Shanghai University, Shanghai 200072, China)(Shanghai Iron and Steel Research Institute, Shanghai 200940, China). SURFACE REACTION OF Ni_3Al WITH WATER VAPOR OR OXYGEN [J]. Acta Metallurgica Sinica (English Letters), 1997, 10(4): 363-368. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||