Acta Metallurgica Sinica (English Letters) ›› 2023, Vol. 36 ›› Issue (7): 1123-1143.DOI: 10.1007/s40195-022-01408-4
Previous Articles Next Articles
Z. Wang1,2, Q. Lu1, Z.H. Cao2, H. Chen3, M.X. Huang2, J.F. Wang1
Received:
2022-01-28
Revised:
2022-03-05
Accepted:
2022-03-16
Online:
2023-07-10
Published:
2023-07-04
Z. Wang, Q. Lu, Z.H. Cao, H. Chen, M.X. Huang, J.F. Wang. Review on Hydrogen Embrittlement of Press-hardened Steels for Automotive Applications[J]. Acta Metallurgica Sinica (English Letters), 2023, 36(7): 1123-1143.
Add to citation manager EndNote|Ris|BibTeX
Fig. 2 Influence of baking on the transition carbide precipitation of 22MnB5 PHS (adapted from [50]). a Time dependence of the height of the P3 peak during internal friction analysis at 127 ℃, which indicates the decrease of solute carbon concentration during aging; b Time dependence of the W value, a measure of fraction of the carbon atoms as interstitial in the microstructure, converted from a; c Bright-field transmission electron microscopy (TEM) of PHS after baked at 127 ℃; d Dark-field TEM in the same region as c, showing needle-shaped carbides
Fig. 3 Hydrogen embrittlement behaviors of Al-Si pre-coated 22MnB5 (adapted from [14]). a Thermal desorption analysis (TDA); b Stress-strain curves. From left to right are before hot stamping, after hot stamping, and after baking, respectively. Here, hydrogen is introduced during austenitization
Fig. 4 Alloying element segregation at grain boundaries in martensitic steels (adapted [62,63]). a A prior austenite grain boundary (PAGB) [62]; b Martensite-martensite (M-M) boundaries, B not detected in the entire probed volume [62]; c Quenched from 1050 ℃ [63]; d Quenched from 900 ℃ [63]. a) and (b are from APT analysis, while c and d are B signals from scanning transmission electron microscopy coupled with electron energy loss spectroscopy (STEM-EELS). M-M boundaries here may be the packet, block, and/or lath boundaries of martensite [62]
Fig. 6 APT analysis of a deuterium (D) charged steel sample with a platelet-like VC precipitate [26]. a 3D element maps; b Mass-to-charge spectrum; c Concentration profiles of carbon and vanadium across the platelet of VC
Fig. 7 Influence of NbC on hydrogen embrittlement resistance of high-strength martensitic steels (adapted from [77]). a-c Tensile stress-strain curves with and without hydrogen charging for martensitic steels as-quenched (900-Q’), tempered at 480 ℃ (Q&T-480), and tempered at 560 ℃ (Q&T-560), respectively; d TDA curves; e Schematism how NbC nano-precipitates enhances hydrogen embrittlement resistance
Fig. 8 Microstructure of Cr-containing coating-free PHS (adapted from [41]). a Scanning electron microscopy (SEM) image of coating-free PHS, white arrows pointing to Cr carbides; b TEM coupled with energy-dispersive X-ray spectroscopy (EDS) analysis for a Cr carbide; c, d Prior austenite grain structures of 22MnB5 and the coating-free PHS, respectively
Fig. 9 Influence of inclusions on hydrogen embrittlement. a-c High-resolution tritium autoradiography of FeS, TiN, and MnS, respectively, as hydrogen traps (adapted from [89]); d Fisheye morphology on the fracture surface of PHS1900 after hydrogen charging; e Enlarged image of d; (e1-e5) EDS analysis of the inclusion in e
Fig. 10 Mechanical properties and microstructure of a PHS with 7 wt% Mn (adapted from [10]). a Tensile stress-strain curves, where BP170 refers to the medium Mn PHS after baking; b SEM microstructure; c TEM bright-field microstructure, γ: austenite; d TEM dark-field microstructure, γ: austenite, VC: vanadium carbide
Fig. 11 Hydrogen permeation and TDA results of a martensitic steel (adapted from [101]). a-c Hydrogen permeation curves of martensitic steels as-quenched (AQ), tempered at 300 ℃ (300 T), and tempered at 450 ℃ (450 T), respectively; d-f TDA curves of AQ, 300 T, and 450 T, respectively
Sample | RA (vol.%) | ρ (1015 m−2) |
---|---|---|
AQ | 3.5 ± 0.6 | 8.6 ± 1.0 |
300 T | ~ 0 | 7.4 ± 1.0 |
450 T | ~ 0 | 3.3 ± 0.4 |
Table 1 Retained austenite (RA) fraction and dislocation density from the samples in Fig. 11 (adapted from [101])
Sample | RA (vol.%) | ρ (1015 m−2) |
---|---|---|
AQ | 3.5 ± 0.6 | 8.6 ± 1.0 |
300 T | ~ 0 | 7.4 ± 1.0 |
450 T | ~ 0 | 3.3 ± 0.4 |
Sample | i∞ (10-3 A m−2) | cl,BC (10-3 mol m−3) | tt (103 s) | Deff (10-3 m2 s−1) | Nt (10-3 mol m−3) |
---|---|---|---|---|---|
AQ | 4.34 | 3.90 | 14.2 | 6.88 | 1.81 |
300 T | 4.19 | 3.74 | 2.70 | 37.2 | 0.338 |
450 T | 3.92 | 3.34 | 2.72 | 32.8 | 0.382 |
Table 2 Average permeation results from the samples in Fig. 11 (adapted from [101])
Sample | i∞ (10-3 A m−2) | cl,BC (10-3 mol m−3) | tt (103 s) | Deff (10-3 m2 s−1) | Nt (10-3 mol m−3) |
---|---|---|---|---|---|
AQ | 4.34 | 3.90 | 14.2 | 6.88 | 1.81 |
300 T | 4.19 | 3.74 | 2.70 | 37.2 | 0.338 |
450 T | 3.92 | 3.34 | 2.72 | 32.8 | 0.382 |
Fig. 12 Comparison of surface qualities of PHS after hot stamping. a-b Hat-shaped parts of bare and Al-Si coated 22MnB5, respectively (adapted from [1]); c-d Bare 22MnB5 and coating-free components, respectively
Fig. 13 Influence of decarburization and oxidation on the microstructure and mechanical properties of bare PHS (adapted from [8]). a Austenitized at 900 ℃ for 4 min; b 900 ℃ 6 min; c 900 ℃ 10 min
Fig. 14 Microstructure of Al-Si coating after hot stamping (adapted from [7]). a SEM; b Phase map from electron backscatter diffraction (EBSD); c Al element mapping from EDS; d Si element mapping from EDS
Fig. 15 Influence of Al-Si coating on hydrogen embrittlement. a Al-Si coated PHS without hydrogen charging; b Bare PHS with hydrogen charging; c Al-Si coated PHS with hydrogen charging
Fig. 16 Influence of Zn coating on the hydrogen embrittlement risk of PHS [112,119]. Comparisons of a tensile curves and b TDA curves of aluminized, uncoated, and galvanized PHS immediately after hot stamping [112]; c Evolution of localized necking elongation (elongation from UTS up to fracture) with strain rate for a Zn coated steel in 3% NaCl solution and air conditions [119]
Fig. 17 Influence of trimming on residual stress at PHS surface and hydrogen embrittlement resistance (adapted from [13]). a-b Residual stress and delayed fracture time of cold blanked samples, respectively; c Residual stress of laser trimmed samples. 1 GPa and 1.2 GPa steel sheets are dual phase steels containing both martensite and ferrite, while 1.5 GPa steel sheets are a tempered martensitic steel
[1] | T. Taylor, A. Clough, Mater. Sci. Technol. (United Kingdom) 34, 809(2018). |
[2] |
H. Karbasian, A.E. Tekkaya, J. Mater. Process. Technol. 210, 2103 (2010).
DOI URL |
[3] | O. Bouaziz, H. Zurob, M. Huang, Steel Res. Int. 84, 937 (2013). |
[4] | H.L. Yi, L. Sun, X.C. Xiong, Mater. Sci. Technol. (United Kingdom) 34, 1112 (2018). |
[5] |
Z. Wang, Z.H. Cao, J.F. Wang, M.X. Huang, Scr. Mater. 192, 19 (2021).
DOI URL |
[6] | S. Tedesco, M. Shi, J. Coryell, Q. Lu, J. Wang,Heat Treat 2021 Proc. from 31st Heat Treating Social Conference Expo, 84147, 180 (2021). |
[7] |
Z. Wang, N.A. Xu, M.X. Huang,Materialia 20, 101268 (2021).
DOI URL |
[8] |
W.S. Choi, B.C. De Cooman, Steel Res. Int. 85, 824 (2014).
DOI URL |
[9] | H. Yi, Z. Chang, H. Cai, P. Du, D. Yang, Acta Metall. Sin. 56, 429 (2020). |
[10] |
Z.R. Hou, T. Opitz, X.C. Xiong, X.M. Zhao, H.L. Yi, Scr. Mater. 162, 492 (2019).
DOI URL |
[11] |
J. Yoo, M.C. Jo, M.C. Jo, S. Kim, S.H. Kim, J. Oh, S.S. Sohn, S. Lee, Acta Mater. 207, 116661 (2021).
DOI URL |
[12] |
L. Lin, B.S. Li, G.M. Zhu, Y.L. Kang, R.D. Liu, Mater. Sci. Eng. A 721, 38 (2018).
DOI URL |
[13] |
K. Mori, Y. Abe, K. Sedoguchi, CIRP Ann. 68, 297 (2019).
DOI URL |
[14] |
L. Cho, D.H. Sulistiyo, E.J. Seo, K.R. Jo, S.W. Kim, J.K. Oh, Y.R. Cho, B.C. De Cooman, Mater. Sci. Eng. A 734, 416 (2018).
DOI URL |
[15] |
G. Lovicu, M. Bottazzi, F. D’aiuto, M. De Sanctis, A. Dimatteo, C. Santus, R. Valentini, Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 43, 4075 (2012).
DOI URL |
[16] |
S. Ootsuka, S. Fujita, E. Tada, A. Nishikata, T. Tsuru, Corros. Sci. 98, 430 (2015).
DOI URL |
[17] |
C. Ayas, V.S. Deshpande, N.A. Fleck, J. Mech. Phys. Solids 63, 80 (2014).
DOI URL |
[18] |
J. Venezuela, Q. Zhou, Q. Liu, M. Zhang, A. Atrens, Corros. Sci. 111, 602 (2016).
DOI URL |
[19] |
W.T. Geng, V. Wang, J.X. Li, N. Ishikawa, H. Kimizuka, K. Tsuzaki, S. Ogata, Scr. Mater. 149, 79 (2018).
DOI URL |
[20] |
A. Shibata, T. Yonemura, Y. Momotani, M.H. Park, S. Takagi, Y. Madi, J. Besson, N. Tsuji, Acta Mater. 210, 116828 (2021).
DOI URL |
[21] |
Z. Wang, Z.C. Luo, M.X. Huang,Materialia 4, 260 (2018).
DOI URL |
[22] |
A. Nagao, K. Hayashi, K. Oi, S. Mitao, ISIJ Int. 52, 213 (2012).
DOI URL |
[23] |
Y. Matsumoto, K. Takai, Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 49, 490 (2018).
DOI |
[24] |
Y.S. Chen, H. Lu, J. Liang, A. Rosenthal, H. Liu, G. Sneddon, I. McCarroll, Z. Zhao, W. Li, A. Guo, J.M. Cairney,Science 367, 171 (2020).
DOI URL |
[25] |
S. Zhang, E. Fan, J. Wan, J. Liu, Y. Huang, X. Li, Corros. Sci. 139, 83 (2018).
DOI URL |
[26] |
J. Takahashi, K. Kawakami, Y. Kobayashi, Acta Mater. 153, 193 (2018).
DOI URL |
[27] |
T. Depover, K. Verbeken, Corros. Sci. 112, 308 (2016).
DOI URL |
[28] |
Y. Chen, J. Liu, F. Huang, L. Chen, Y.J. Su, G.F. Zhou, J. Iron Steel Res. Int. 26, 1199 (2019).
DOI |
[29] |
S. Fujita, Y. Murakami, Metall. Mater. Trans. A 44, 303 (2012).
DOI URL |
[30] |
S. Zheng, Y. Qi, C. Chen, S. Li, Corros. Sci. 60, 59 (2012).
DOI URL |
[31] | J. Wang, Y. Liu, Q. Lu, J. Pang, Z. Wang, C.M. Enloe, J.P. Singh, C.D. Horvath, Iron Steel Technol. 14, 104 (2017). |
[32] |
S. Li, P. Wen, S. Li, W. Song, Y. Wang, H. Luo, Acta Mater. 205, 116567 (2021).
DOI URL |
[33] |
D.W. Fan, B.C. De Cooman,Steel Res. Int. 83, 412 (2012).
DOI URL |
[34] |
J. Yoo, S. Kim, M.C. Jo, S. Kim, J. Oh, S.H. Kim, S. Lee, S.S. Sohn, Acta Mater. 225, 117561 (2022).
DOI URL |
[35] | K.I. Mori, J. Manuf. Mater. Process. 4, 54 (2020). |
[36] |
K. Mori, T. Maeno, S. Fuzisaka, J. Mater. Process. Technol. 212, 534 (2012).
DOI URL |
[37] | Q. Lu, Q. Lai, Z. Chai, X. Wei, X. Xiong, H. Yi, M. Huang, W. Xu, J. Wang, Sci. Adv. 7, 1 (2021). |
[38] | H. Yi, Z. Chang, Z. Liu, D. Yang, X. Xiong, CN 108588612 (2019). |
[39] |
Z. Hou, J. Min, J. Wang, Q. Lu, Z. He, Z. Chai, W. Xu,JOM 73, 3195 (2021).
DOI |
[40] |
L. Cho, L. Golem, E.J. Seo, D. Bhattacharya, J.G. Speer, K.O. Findley, J. Alloys Compd. 846, 156349 (2020).
DOI URL |
[41] |
X. Wei, Z. Chai, Q. Lu, J. Hu, Z. Liu, Q. Lai, J. Wang, W. Xu, Mater. Sci. Eng. A 819, 141461 (2021).
DOI URL |
[42] | P. Gong, J. Nutter, P.E.J. Rivera-Diaz-Del-Castillo, W.M. Rainforth, Sci. Adv. 6, 1 (2020). |
[43] |
G.L. Pioszak, R.P. Gangloff, Metall. Mater. Trans. A 48, 4025 (2017).
DOI |
[44] |
T. Neeraj, R. Srinivasan, J. Li, Acta Mater. 60, 5160 (2012).
DOI URL |
[45] |
C.D. Beachem, Metall. Mater. Trans. B 3, 441 (1972).
DOI URL |
[46] | G. Krauss, Steel Res. Int. l88, 1 (2017). |
[47] |
G. Krauss, Mater. Sci. Eng. A 273-275, 40 (1999).
DOI URL |
[48] |
Y.C. Lin, I.E. McCarroll, Y.T. Lin, W.C. Chung, J.M. Cairney, H.W. Yen, Acta Mater. 196, 516 (2020).
DOI URL |
[49] | M. Nagumo, Fundamentals of hydrogen embrittlement (Springer, Singapore, 2016). |
[50] |
W.S. Choi, J. Lee, B.C. De Cooman, Mater. Sci. Eng. A 639, 439 (2015).
DOI URL |
[51] |
X. Zhu, W. Li, T.Y. Hsu, S. Zhou, L. Wang, X. Jin, Scr. Mater. 97, 21 (2015).
DOI URL |
[52] |
H.K.D.H. Bhadeshia, ISIJ Int. 56, 24 (2016).
DOI URL |
[53] |
H.J. Kim, H.K. Park, C.W. Lee, B.G. Yoo, H.Y. Jung, Metals (Basel). 9, 636 (2019).
DOI URL |
[54] |
Y. Zhang, W. Hui, X. Zhao, C. Wang, H. Dong,Materials 11, 2507 (2018).
DOI URL |
[55] |
H.L. Cai, P. Chen, J.K. Oh, Y.R. Cho, D. Wu, H.L. Yi, Scr. Mater. 178, 77 (2020).
DOI URL |
[56] |
M. Naderi, M. Abbasi, A. Saeed-Akbari, Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 44, 1852 (2013).
DOI URL |
[57] |
D. Asari, S. Mizokami, M. Fukahori, K. Takai, Mater. Sci. Eng. A 780, 139209 (2020).
DOI URL |
[58] |
I.M. Robertson, P. Sofronis, A. Nagao, M.L. Martin, S. Wang, D.W. Gross, K.E. Nygren, Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 46, 2323 (2015).
DOI URL |
[59] | B. Sun, D. Wang, X. Lu, D. Wan, D. Ponge, X. Zhang, Acta Metall. Sin. Engl. Lett. 34, 741 (2021). |
[60] | R.A. Oriani, Ber. Bunsenges. Phys. Chem. 76, 848 (1972). |
[61] |
A.R. Troiano, Metallogr. Microstruct. Anal. 5, 557 (2016).
DOI URL |
[62] |
Y.J. Li, D. Ponge, P. Choi, D. Raabe, Scr. Mater. 96, 13 (2015).
DOI URL |
[63] |
G. Miyamoto, A. Goto, N. Takayama, T. Furuhara, Scr. Mater. 154, 168 (2018).
DOI URL |
[64] |
C.J. McMahon, Eng. Fract. Mech. 68, 773 (2001).
DOI URL |
[65] |
B. Sun, D. Palanisamy, D. Ponge, B. Gault, F. Fazeli, C. Scott, S. Yue, D. Raabe, Acta Mater. 164, 683 (2019).
DOI URL |
[66] |
S. Komazazki, S. Watanabe, T. Misawa, Mater. Sci. 43, 1851 (2003).
DOI URL |
[67] |
S.S. Kulkov, A.V. Bakulin, S.E. Kulkova, Int. J. Hydrog. Energy 43, 1909 (2018).
DOI URL |
[68] |
Z.B. Jiao, J.H. Luan, M.K. Miller, C.T. Liu, Acta Mater. 97, 58 (2015).
DOI URL |
[69] |
S.K. Hwang, J.W. Morris, Metall. Trans. A 11, 1197 (1980).
DOI URL |
[70] | B. Rheingans, E.J. Mittemeijer, Calphad Comput. Coupling Phase Diagr. Thermochem. 50, 49 (2015). |
[71] |
B. Hwang, D.W. Suh, S.J. Kim, Scr. Mater. 64, 1118 (2011).
DOI URL |
[72] |
W.T. Geng, A.J. Freeman, G.B. Olson, Phys. Rev. B 63, 165415 (2001).
DOI URL |
[73] |
W.T. Geng, A.J. Freeman, R. Wu, G.B. Olson, Phys. Rev. B 62, 6208 (2000).
DOI URL |
[74] |
T. Depover, O. Monbaliu, E. Wallaert, K. Verbeken, Int. J. Hydrog. Energy 40, 16977 (2015).
DOI URL |
[75] |
A. Nagao, M.L. Martin, M. Dadfarnia, P. Sofronis, I.M. Robertson, Acta Mater. 74, 244 (2014).
DOI URL |
[76] |
J. Takahashi, K. Kawakami, Y. Kobayashi, T. Tarui, Scr. Mater. 63, 261 (2010).
DOI URL |
[77] |
R. Shi, Y. Ma, Z. Wang, L. Gao, X.S. Yang, L. Qiao, X. Pang, Acta Mater. 200, 686 (2020).
DOI URL |
[78] |
R. Kirchheim, Scr. Mater. 160, 62 (2019).
DOI URL |
[79] |
J. Yoo, M.C. Jo, D.W. Kim, H. Song, M. Koo, S.S. Sohn, S. Lee, Acta Mater. 196, 370 (2020).
DOI URL |
[80] |
F.G. Wei, K. Tsuzaki, Metall. Mater. Trans. A 35, 3155 (2004).
DOI URL |
[81] |
K. Kawakami, T. Matsumiya, ISIJ Int. 52, 1693 (2012).
DOI URL |
[82] |
B. Zhang, J. Su, M. Wang, Z. Liu, Z. Yang, M. Militzer, H. Chen, Acta Mater. 208, 116744 (2021).
DOI URL |
[83] |
S.G. Hong, K.B. Kang, C.G. Park, Scr. Mater. 46, 163 (2002).
DOI URL |
[84] |
M.A. Altuna, A. Iza-Mendia, I. Gutiérrez, Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 43, 4571 (2012).
DOI URL |
[85] | ASTMG39-99 Standard practice for preparation and use of bent-beam stress-corrosion test specimens (2021). |
[86] |
J. Woodtli, R. Kieselbach, Eng. Fail. Anal. 7, 427 (1999).
DOI URL |
[87] |
J. Venezuela, Q. Liu, M. Zhang, Q. Zhou, A. Atrens, Corros. Sci. 99, 98 (2015).
DOI URL |
[88] |
L. Cho, P.E. Bradley, D.S. Lauria, M.J. Connolly, E.J. Seo, K.O. Findley, J.G. Speer, L. Golem, A.J. Slifka, Int. J. Hydrog. Energy 46, 24425 (2021).
DOI URL |
[89] |
M. Garet, A.M. Brass, C. Haut, F. Guttierez-Solana, Corros. Sci. 40, 1073 (1998).
DOI URL |
[90] | A. Laureys, M. Pinson, L. Claeys, T. De Seranno, T. Depover, K. Verbeken, Frat. Ed Integrita Strutt. 14, 113 (2020). |
[91] |
A. Laureys, E. Van den Eeckhout, R. Petrov, K. Verbeken, Acta Mater. 127, 192 (2017).
DOI URL |
[92] |
M.C. Tiegel, M.L. Martin, A.K. Lehmberg, M. Deutges, C. Borchers, R. Kirchheim, Acta Mater. 115, 24 (2016).
DOI URL |
[93] |
I.J. Park, S.Y. Jo, M. Kang, S.M. Lee, Y.K. Lee, Corros. Sci. 89, 38 (2014).
DOI URL |
[94] |
H. Liu, X. Lu, X. Jin, H. Dong, J. Shi, Scr. Mater. 64, 749 (2011).
DOI URL |
[95] |
Q. Lu, M. Eizadjou, J. Wang, A. Ceguerra, S. Ringer, H. Zhan, L. Wang, Q. Lai, Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 50, 4067 (2019).
DOI |
[96] |
F.D. Fischer, G. Reisner, E. Werner, K. Tanaka, G. Cailletaud, T. Antretter, Int. J. Plast. 16, 723 (2000).
DOI URL |
[97] |
L. Liu, B.B. He, G.J. Cheng, H.W. Yen, M.X. Huang, Scr. Mater. 150, 1 (2018).
DOI URL |
[98] |
X. Zhu, K. Zhang, W. Li, X. Jin, Mater. Sci. Eng. A 658, 400 (2016).
DOI URL |
[99] |
M. Wang, M.X. Huang, Acta Mater. 188, 551 (2020).
DOI URL |
[100] |
A. Turk, S.D. Pu, D. Bombač, P.E.J. Rivera-Díaz-del-Castillo, E.I. Galindo-Nava, Acta Mater. 197, 253 (2020).
DOI URL |
[101] |
A. Turk, G.R. Joshi, M. Gintalas, M. Callisti, P.E.J. Rivera-Díaz-del-Castillo, E.I. Galindo-Nava, Acta Mater. 194, 118 (2020).
DOI URL |
[102] |
M. Koyama, Y. Abe, K. Saito, E. Akiyama, K. Takai, K. Tsuzaki, Scr. Mater. 122, 50 (2016).
DOI URL |
[103] |
B. Sun, W. Lu, B. Gault, R. Ding, S.K. Makineni, D. Wan, C.H. Wu, H. Chen, D. Ponge, D. Raabe, Nat. Mater. 20, 1629 (2021).
DOI |
[104] |
L. Wang, J.G. Speer, Metallogr. Microstruct. Anal. 2, 268 (2013).
DOI URL |
[105] |
G.L. Pioszak, R.P. Gangloff, Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 48, 4025 (2017).
DOI |
[106] |
Z. Wang, M.X. Huang, Int. J. Plast. 134, 102851 (2020).
DOI URL |
[107] |
Z. Xiong, P.J. Jacques, A. Perlade, T. Pardoen, Scr. Mater. 157, 6 (2018).
DOI URL |
[108] |
Z. Wang, M.X. Huang, Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 50, 5650 (2019).
DOI |
[109] | J.D.P. Velasquez, J. Staudte, P. Drillet, US 9909194 B2(2018). |
[110] | P. Drillet, D. Spehner, R. Kefferstein, WO 2008/053273 A1(2006). |
[111] |
M. Windmann, A. Röttger, W. Theisen, Surf. Coat. Technol. 246, 17 (2014).
DOI URL |
[112] |
K.R. Jo, L. Cho, D.H. Sulistiyo, E.J. Seo, S.W. Kim, B.C. De Cooman, Surf. Coat. Technol. 374, 1108 (2019).
DOI URL |
[113] |
Y. Deng, A. Barnoush, Acta Mater. 142, 236 (2018).
DOI URL |
[114] |
M. Zamanzade, A. Barnoush, Procedia. Mater. Sci. 3, 2016 (2014).
DOI URL |
[115] |
G. Dehm, B.N. Jaya, R. Raghavan, C. Kirchlechner, Acta Mater. 142, 248 (2018).
DOI URL |
[116] | D. Di Maio, S.G. Roberts, J. Mater.Res 20, 299 (2005). |
[117] |
M. Wang, E. Akiyama, K. Tsuzaki, Corros. Sci. 48, 2189 (2006).
DOI URL |
[118] |
R. Autengruber, G. Luckeneder, A.W. Hassel, Corros. Sci. 63, 12 (2012).
DOI URL |
[119] |
G. Reumont, J.B. Vogt, A. Iost, J. Foct, Surf. Coat. Technol. 139, 265 (2001).
DOI URL |
[120] |
D. Figueroa, M.J. Robinson, Corros. Sci. 50, 1066 (2008).
DOI URL |
[121] |
Y. Nakagawa, K. Mori, T. Maeno, R. Umemiya, Int. J. Adv. Manuf. Technol. 105, 5081 (2019).
DOI |
[122] |
H.A. Wriedt, R.A. Oriani, Acta Metall. 18, 753 (1970).
DOI URL |
[123] |
S. Papula, J. Talonen, H. Hänninen, Metall. Mater. Trans. A 45, 1238 (2013).
DOI URL |
[124] | I. Valls, B. Casas, N. Rodríguez, U. Paar, Metall. Ital. 102, 23 (2010). |
[1] | Dayong An, Yuhao Zhou, Yao Xiao, Xinxi Liu, Xifeng Li, Jun Chen. Observation of the Hydrogen-Dislocation Interactions in a High-Manganese Steel after Hydrogen Adsorption and Desorption [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(7): 1105-1112. |
[2] | Ming-Tu Ma, Ke-Jian Li, Yu Si, Peng-Jun Cao, Hong-Zhou Lu, Ai-Min Guo, Guo-Dong Wang. Hydrogen Embrittlement of Advanced High-Strength Steel for Automobile Application: A Review [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(7): 1144-1158. |
[3] | Boning Zhang, Yong Mao, Zhenbao Liu, Jianxiong Liang, Jun Zhang, Maoqiu Wang, Jie Su, Kun Shen. Ab Initio Investigations for the Role of Compositional Complexities in Affecting Hydrogen Trapping and Hydrogen Embrittlement: A Review [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(7): 1159-1172. |
[4] | Wenjing Lou, Lin Cheng, Runsheng Wang, Chengyang Hu, Kaiming Wu. Atomistic Investigation of the Influence of Hydrogen on Mechanical Response during Nanoindentation in Pure Iron [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(7): 1179-1192. |
[5] | Rongjian Shi, Yanqi Tu, Liang Yang, Saiyu Liu, Shani Yang, Kewei Gao, Xu-Sheng Yang, Xiaolu Pang. Interactions between Pre-strain and Dislocation Structures and Its Effect on the Hydrogen Trapping Behaviors [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(7): 1193-1202. |
[6] | Yue-Yang Gu, Han-Yu Zhao, Wei Chen, Wei Yan, Liang-Yin Xiong, De-Min Chen. Effects of Hydrogen Charging on Mechanical Properties of CLAM Steel at Different Strain Rates [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(7): 1203-1210. |
[7] | Jun Zhang, Binhan Sun, Zhigang Yang, Chi Zhang, Hao Chen. Enhancing the Hydrogen Embrittlement Resistance of Medium Mn Steels by Designing Metastable Austenite with a Compositional Core-shell Structure [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(7): 1059-1077. |
[8] | Tuhin Das, Salim V. Brahimi, Jun Song, Stephen Yue. Assessment of Hydrogen Embrittlement Susceptibility and Mechanism(s) in Quench and Tempered AISI 4135 Steel Using A Novel Fast Fracture Test in Bending [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(7): 1078-1094. |
[9] | Ling Qin, Zhiguo Zhang, Baisong Guo, Wei Li, Jiawei Mi. Determining the Critical Fracture Stress of Al Dendrites near the Melting Point via Synchrotron X-ray Imaging [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(5): 857-864. |
[10] | Dong-Fu Song, Yu-Liang Zhao, Zhi Wang, Yi-Wang Jia, Dao-Xi Li, Ya-Nan Fu, Da-Tong Zhang, Wei-Wen Zhang. 3D Fe-Rich Phases Evolution and Its Effects on the Fracture Behavior of Al-7.0Si-1.2Fe Alloys by Mn Neutralization [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(1): 163-175. |
[11] | Muhammad Rizwan, Junxia Lu, Fei Chen, Ruxia Chai, Rafi Ullah, Yuefei Zhang, Ze Zhang. Microstructure Evolution and Mechanical Behavior of Laser Melting Deposited TA15 Alloy at 500 °C under In-Situ Tension in SEM [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(9): 1201-1212. |
[12] | Yingying Shen, Qing Jia, Xu Zhang, Ronghua Liu, Yumin Wang, Yuyou Cui, Rui Yang. Tensile Behavior of SiC Fiber-Reinforced γ-TiAl Composites Prepared by Suction Casting [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(7): 932-942. |
[13] | Zhitao Yu, Minghui Chen, Qunchang Wang, Xiaolan Wang, Fuhui Wang. Effect of Interfacial Microstructure on Mechanical and Tribological Properties of Cu/WS2 Self-lubricating Composites Sintered by Spark Plasma Sintering [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(7): 913-924. |
[14] | Binhan Sun, Dong Wang, Xu Lu, Di Wan, Dirk Ponge, Xiancheng Zhang. Current Challenges and Opportunities Toward Understanding Hydrogen Embrittlement Mechanisms in Advanced High-Strength Steels: A Review [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(6): 741-754. |
[15] | Guang-Lei Wang, Jin-Lai Liu, Ji-De Liu, Yi-Zhou Zhou, Xu-Dong Sun, Hai-Feng Zhang, Xiao-Feng Sun. Effect of Orientation on Stress-Rupture Property and Related Deformation Microstructure of a Ni-Base Re-containing Single-Crystal Superalloy at 900 °C [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(5): 719-728. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||