Acta Metallurgica Sinica (English Letters) ›› 2025, Vol. 38 ›› Issue (12): 2300-2315.DOI: 10.1007/s40195-025-01916-z
Previous Articles Next Articles
Jiang Liu1, Fengping Zhao1, Wen Shi1,2, Han Dong1,2,3, Xiaofei Guo1,2(
)
Received:2025-04-14
Revised:2025-05-15
Accepted:2025-05-21
Online:2025-12-10
Published:2025-08-21
Contact:
Xiaofei Guo, xiaofei_guo@shu.edu.cn
Jiang Liu, Fengping Zhao, Wen Shi, Han Dong, Xiaofei Guo. Enhanced Hydrogen Embrittlement Resistance in a Vanadium-Alloyed 42CrNiMoV Steel for High-Strength Wind Turbine Bolts[J]. Acta Metallurgica Sinica (English Letters), 2025, 38(12): 2300-2315.
Add to citation manager EndNote|Ris|BibTeX
| Material | C | Si | Mn | P | S | Cr | Mo | Ni | V | Fe |
|---|---|---|---|---|---|---|---|---|---|---|
| 42CrNiMoV | 0.45 | 0.25 | 0.75 | 0.012 | 0.007 | 1.20 | 0.32 | 0.35 | 0.08 | Bal. |
| 40CrNiMo | 0.40 | 0.25 | 0.75 | 0.012 | 0.008 | 0.75 | 0.19 | 1.35 | - | Bal. |
Table 1 Chemical compositions (wt%) of the developed 42CrNiMoV and reference 40CrNiMo steels
| Material | C | Si | Mn | P | S | Cr | Mo | Ni | V | Fe |
|---|---|---|---|---|---|---|---|---|---|---|
| 42CrNiMoV | 0.45 | 0.25 | 0.75 | 0.012 | 0.007 | 1.20 | 0.32 | 0.35 | 0.08 | Bal. |
| 40CrNiMo | 0.40 | 0.25 | 0.75 | 0.012 | 0.008 | 0.75 | 0.19 | 1.35 | - | Bal. |
Fig. 2 Microstructures of the investigated materials: a-c OM, SEM images, and prior austenite grain boundaries (PAGBs) distribution plot of 42CrNiMoV, d-f OM, SEM images, and PAGBs distribution plot of 40CrNiMo
Fig. 3 EBSD characterization of crystallographic features from a1-a3 42CrNiMoV and b1-b3 40CrNiMo steels: a1, b1 inverse-pole-figure (IPF) map, a2, b2 grain boundary distribution, a3, b3 kernel average misorientation (KAM) map, c number fraction of grain boundaries angle, d proportion of LAGBs and HAGBs and e frequency of KAM distribution
Fig. 4 TEM micrographs of test steels: a 42CrNiMoV, b 40CrNiMo, and c statistic plot of the lath width distribution, d, g high-resolution TEM (HR-TEM) images with the fast Fourier transform (FFT) diffractograms e, h and f, i the corresponding STEM-EDS maps from the 42CrNiMoV steel
Fig. 5 X-ray diffraction analysis of the phase structure and dislocation density of 42CrNiMoV and 40CrNiMo steel. a X-ray diffraction pattern, b fitting of the mean effective micro-strain according to the Williamson-Hall equation
| Materials | RP0.2 (MPa) | Rm (MPa) | A (%) | Z (%) | Hardness (HRC) | KV2 at − 40 °C (J) |
|---|---|---|---|---|---|---|
| 42CrNiMoV | 1209 ± 12 | 1288 ± 1 | 14.7 ± 0.1 | 57.0 ± 1.4 | 40.0 ± 0.2 | 45.3 ± 1.6 |
| 40CrNiMo | 1182 ± 1 | 1259 ± 1 | 14.7 ± 0.1 | 57.4 ± 0.5 | 40.5 ± 0.2 | 50.8 ± 1.5 |
| Requirement* | ≥ 1100 | ≥ 1220 | ≥ 8 | ≥ 4 | ≥ 39-44 | ≥ 27 |
Table 2 Mechanical properties of the investigated 42CrNiMoV and 40CrNiMo steels
| Materials | RP0.2 (MPa) | Rm (MPa) | A (%) | Z (%) | Hardness (HRC) | KV2 at − 40 °C (J) |
|---|---|---|---|---|---|---|
| 42CrNiMoV | 1209 ± 12 | 1288 ± 1 | 14.7 ± 0.1 | 57.0 ± 1.4 | 40.0 ± 0.2 | 45.3 ± 1.6 |
| 40CrNiMo | 1182 ± 1 | 1259 ± 1 | 14.7 ± 0.1 | 57.4 ± 0.5 | 40.5 ± 0.2 | 50.8 ± 1.5 |
| Requirement* | ≥ 1100 | ≥ 1220 | ≥ 8 | ≥ 4 | ≥ 39-44 | ≥ 27 |
Fig. 6 Notched tensile stress-displacement curves from SSRT test: a 42CrNiMoV, b 40CrNiMo, c HEI of the investigated steels under different hydrogen-charging conditions
| Material | Hydrogen-charging conditions | Notch tensile strength, $\sigma_{bN}$ (MPa) | HEI (%) | Hydrogen content, CH (ppm) |
|---|---|---|---|---|
| 42CrNiMoV | Uncharged | 1854 ± 2 | - | - |
| Pre-charged | 1822 ± 7 | 1.7 ± 0.4 | 1.74 | |
| In Walpole | 1705 ± 4 | 8.0 ± 0.3 | 0.89 | |
| 40CrNiMo | Uncharged | 1857 ± 5 | - | - |
| Pre-charged | 1804 ± 3 | 2.9 ± 0.2 | 1.46 | |
| In Walpole | 1701 ± 1 | 8.4 ± 0.1 | 0.49 |
Table 3 Notch tensile strength, hydrogen embrittlement index, and hydrogen content from the SSRT under different hydrogen-charging conditions
| Material | Hydrogen-charging conditions | Notch tensile strength, $\sigma_{bN}$ (MPa) | HEI (%) | Hydrogen content, CH (ppm) |
|---|---|---|---|---|
| 42CrNiMoV | Uncharged | 1854 ± 2 | - | - |
| Pre-charged | 1822 ± 7 | 1.7 ± 0.4 | 1.74 | |
| In Walpole | 1705 ± 4 | 8.0 ± 0.3 | 0.89 | |
| 40CrNiMo | Uncharged | 1857 ± 5 | - | - |
| Pre-charged | 1804 ± 3 | 2.9 ± 0.2 | 1.46 | |
| In Walpole | 1701 ± 1 | 8.4 ± 0.1 | 0.49 |
Fig. 7 Fracture surfaces of notch tensile specimens from 42CrNiMoV under different hydrogen-charging conditions: a, d, g uncharged, b, e, h pre-charged, c, f, i in Walpole
Fig. 8 Fracture surfaces of notch tensile specimens from 40CrNiMo under different hydrogen-charging conditions: a, d, g uncharged, b, e, h pre-charged, c, f, i in Walpole
| Fitting parameters | 42CrNiMoV | 40CrNiMo | ||
|---|---|---|---|---|
| First cycle | Second cycle | First cycle | Second cycle | |
| t0.63 (s) | 6469 | 5647 | 2182 | 1883 |
| L (cm) | 0.0994 | 0.0835 | ||
| Dapp (10−7 cm2 s−1) | 2.55 | 2.92 | 5.33 | 6.17 |
| C0app (10−5 mol cm−3) | 2.28 | 1.97 | 1.23 | 0.77 |
| NT (1025 cm−3) | 5.27 | 4.59 | 2.47 | 2.12 |
| Nir (1025 cm−3) | 0.68 | 0.35 | ||
Table 4 Parameter fitting according to the hydrogen diffusion measurements
| Fitting parameters | 42CrNiMoV | 40CrNiMo | ||
|---|---|---|---|---|
| First cycle | Second cycle | First cycle | Second cycle | |
| t0.63 (s) | 6469 | 5647 | 2182 | 1883 |
| L (cm) | 0.0994 | 0.0835 | ||
| Dapp (10−7 cm2 s−1) | 2.55 | 2.92 | 5.33 | 6.17 |
| C0app (10−5 mol cm−3) | 2.28 | 1.97 | 1.23 | 0.77 |
| NT (1025 cm−3) | 5.27 | 4.59 | 2.47 | 2.12 |
| Nir (1025 cm−3) | 0.68 | 0.35 | ||
| Steels | CH (ppm) | Ngr (× 1021 cm−3) | Ndis (× 1021 cm−3) | N(gr + dis) (× 1021 cm−3) |
|---|---|---|---|---|
| 42CrNiMoV | 2.09 | 3.10 | 0.14 | 3.24 |
| 40CrNiMo | 1.59 | 2.24 | 0.18 | 2.42 |
Table 5 Summaries of hydrogen content and traps provided by PAGBs and dislocations
| Steels | CH (ppm) | Ngr (× 1021 cm−3) | Ndis (× 1021 cm−3) | N(gr + dis) (× 1021 cm−3) |
|---|---|---|---|---|
| 42CrNiMoV | 2.09 | 3.10 | 0.14 | 3.24 |
| 40CrNiMo | 1.59 | 2.24 | 0.18 | 2.42 |
Fig. 11 EBSD-KAM mapping near the notched root region of the failed SSRT specimen: a 42CrNiMoV-pre-charged, b 40CrNiMo-pre-charged, c 42CrNiMoV-In-Walpole and d 40CrNiMo-In-Walpole and e, f KAM distribution profiles
Fig. 12 Cross section of the notch root region in the in situ SSRT specimen from 40CrNiMo steel: a ECC image of IG crack, b EBSD-PAGBs reconfiguration map corresponding to the same region in a and the grain misorientation of PAGBs on crack propagation path
| [1] | M. Wang, Z. Xu, L. Yao, L.C. Cui,Wind Energy 1, 104 (2014) |
| [2] |
Y. Zhang, H. Zhao, P.K. Liu, M.H. Wei, Y.L. Lu, Z.Q. Liu, J. Phys. Conf. Ser. 2459, 012044 (2023)
DOI |
| [3] |
J. Odqvist, M. Hillert, J. Ågren, Acta Mater. 50, 3213 (2002)
DOI URL |
| [4] |
C. Chen, F.C. Zhang, Z.N. Yang, C.L. Zheng, Mater. Des. 83, 422 (2015)
DOI URL |
| [5] | C. Sun, P.X. Fu, H.W. Liu, H.H. Liu, N.Y. Du,Metals 8, 232 (2018) |
| [6] |
W. Gong, J.B. Yue, J.L. Tian, J. Liao, Y. Yu, Z.H. Jiang, J. Mater. Res. Technol. 27, 4452 (2023)
DOI URL |
| [7] | M. Smialowski, Hydrogen in Steel (Pergamon Press, Oxford, 1962) |
| [8] | X.Y. Cheng, L. Wang, X.L. Li, Mater. Sci. Eng. A 840, 142902 (2022) |
| [9] |
C.X. Zhang, W.J. Hui, X.L. Zhao, X.M. Zhao, Corros. Sci. 209, 110710 (2022)
DOI URL |
| [10] | B.Y. Fang, W.J. Hui, H.Y. Song, Y.J. Zhang, X.L. Zhao, L. Xu, Int. J.Hydrogen Energy 81, 458 (2024) |
| [11] |
J.S. Park, H.G. Seong, J. Hwang, S.J. Kim, Mater. Des. 193, 108877 (2020)
DOI URL |
| [12] |
T. Homma, T. Chiba, K. Takai, E. Akiyama, W. Oshikawa, M. Nagumo, ISIJ Int. 62, 776 (2022)
DOI URL |
| [13] |
S.V. Brahimi, S. Yue, K.R. Sriraman, Philos. Trans. R. Soc. A. 375, 20160407 (2017)
DOI URL |
| [14] | S.J. Kim, E.H. Hwang, J.S. Park, S.M. Ryu, D.W. Yun, H.G. Seong, N.P.J. Mater. Degrad. 3, 12 (2019) |
| [15] | H.Y. Zhao, P. Wang, J.X. Li, Int. J.Hydrogen Energy 46, 34983 (2021) |
| [16] | S. Sagar, M.H.F. Sluiter, P. Dey, Int. J.Hydrogen Energy 50, 211 (2024) |
| [17] | L. Cho, E.J. Seo, D.H. Sulistiyo, K.R. Jo, S.W. Kim, J.K. Oh, Y.R. Cho, B.C.D. Cooman, Mater. Sci. Eng. A 735, 448 (2018) |
| [18] |
C.X. Zhang, W.J. Hui, X.L. Zhao, Y.J. Zhang, X.M. Zhao, Eng. Fail. Anal. 135, 106144 (2022)
DOI URL |
| [19] |
J. Takahashi, K. Kawakami, Y. Kobayashi, Acta Mater. 153, 193 (2018)
DOI URL |
| [20] |
X.B. Cheng, X.Y. Cheng, C.W. Jiang, X.Y. Zhang, Q.F. Wen, Mater. Lett. 213, 118 (2018)
DOI URL |
| [21] |
J. Lee, T. Lee, Y.J. Kwon, D.-J. Mun, J.Y. Yoo, C.S. Lee, Met. Mater. Int. 22, 364 (2016)
DOI URL |
| [22] | ISO, Mechanical properties of fasteners made of carbon steel and alloy steel: Part 1: Bolts, screws and studs with specified property classes - Coarse thread and fine pitch thread. (International Organization for Standardization, Switzerland, 2013). |
| [23] | X. Li, Research on Hardenability and Mechanical Properties of New Wind Turbine Fasteners Steel. Dissertation, (Shanghai University, 2024), p.18. |
| [24] | F. HajyAkbary, J. Sietsma, A.J. Böttger, M.J. Santofimia, Mater. Sci. Eng. A 639, 028 (2015) |
| [25] | Y. Chen, New method for evaluation and estimation of notch fatigue strength (Aeronautical Industry Press, Beijing, 2006) |
| [26] | W.J. Hui, H.X. Zhang, Y.J. Zhang, X.L. Zhao, C.W. Shao, Mater. Sci. Eng. A 674, 615 (2016) |
| [27] |
X.W. Zhang, W.J. Wu, H. Fu, J.X. Li, Corros. Sci. 203, 110316 (2022)
DOI URL |
| [28] | M.A.V. Devanathan, Z. Stachurski, Proc. R. Soc. London, Ser.A 270, 90 (1962) |
| [29] |
R. Sato, K. Takai, Scr. Mater. 228, 115339 (2023)
DOI URL |
| [30] | L.B. Peral, A. Zafra, I. Fernández-Pariente, C. Rodríguez, J. Belzunce, Int. J.Hydrogen Energy 45, 22054 (2020) |
| [31] |
C. Hai, Y.T. Zhu, E.D. Fan, C.W. Du, X.Q. Cheng, X.G. Li, Corros. Sci. 218, 111164 (2023)
DOI URL |
| [32] |
A. Zafra, J. Belzunce, C. Rodríguez, Mater. Chem. Phys. 255, 123599 (2020)
DOI URL |
| [33] | S. Frappart, X. Feaugas, J. Creus, F. Thebault, L. Delattre, H. Marchebois, Mater. Sci. Eng. A 534, 384 (2012) |
| [34] | C. Moussa, M. Bernacki, R. Besnard, N. Bozzolo, IOP Conf. Ser.: Mater. Sci. Eng. 89, 012038 (2015) |
| [35] | T.Y. Zeng, S.Z. Zhang, X.B. Shi, W. Wang, W. Yan, K. Yang, Mater. Sci. Eng. A 824, 141845 (2021) |
| [36] | X. Cheng, X. Zhang, Mater. Sci. Eng. A 873, 144948 (2023) |
| [37] | H.J. Seo, J.N. Kim, J.W. Jo, C.S. Lee, Int. J.Hydrogen Energy 46, 19670 (2021) |
| [38] |
T. Yokota, T. Shiraga, ISIJ Int. 43, 534 (2003)
DOI URL |
| [39] | W. Geng, A.J. Freeman, G.B. Olson, Phys. Rev. B 63, 1654151 (2001) |
| [40] |
H. Asahi, D. Hirakami, S. Yamasaki, ISIJ Int. 43, 527 (2003)
DOI URL |
| [41] |
A. Drexler, T. Depover, S. Leitner, K. Verbeken, W. Ecker, J. Alloys Compd. 826, 154057 (2020)
DOI URL |
| [42] | W.Y. Chu, L.J. Qiao, J.X. Li, Hydrogen embrittlement and stress corrosion cracking (China Science Publishing & Media Ltd, Beijing, 2013) |
| [43] |
L. Tsay, W. Lee, W. Luu, J. Wu, Corros. Sci. 44, 1311 (2002)
DOI URL |
| [44] |
M. Wang, E. Akiyama, K. Tsuzaki, Scr. Mater. 53, 713 (2005)
DOI URL |
| [45] | S. Dwivedi, M. Vishwakarma, Int. J.Hydrogen Energy 44, 28007 (2019) |
| [46] |
J. Lufrano, P. Sofronis, Acta Mater. 46, 1519 (1998)
DOI URL |
| [47] | B. Sun, D. Wang, X. Lu, D. Wan, D. Ponge, X.C. Zhang, Acta Metall. Sin.-Engl. Lett. 34, 741 (2021) |
| [48] | H.K. Birnbaum, P. Sofronis, Mater. Sci. Eng. A 176, 191 (1994) |
| [49] | R.A. Oriani, Ber. Bunsenges. Phys. Chem. 76, 848 (1972) |
| [50] | A. Zafra, J. Belzunce, C. Rodríguez, I. Fernández-Pariente, Int. J.Hydrogen Energy 45, 16890 (2020) |
| [51] | Y. Momotani, A. Shibata, D. Terada, N. Tsuji, Int. J.Hydrogen Energy 42, 3371 (2017) |
| [52] |
A. Shibata, T. Yonemura, Y. Momotani, M.H. Park, S. Takagi, Y. Madi, J. Besson, N. Tsuji, Acta Mater. 210, 116828 (2021)
DOI URL |
| [53] | D. An, Y. Zhou, Y. Xiao, X. Liu, X. Li, J. Chen, Acta Metall. Sin.-Engl. Lett. 36, 1109 (2023) |
| [54] | P. Novak, R. Yuan, B.P. Somerday, P. Sofronis, R.O. Ritchie, J. Mech. Phys. Solids 58, 206 (2010) |
| [55] |
J.H. Kim, G. Miyamoto, A. Shibata, T. Hojo, M. Koyama, Y. Zhang, T. Furuhara, Acta Mater. 274, 120036 (2024)
DOI URL |
| [1] | Noa Lulu-Bitton, Nissim U. Navi, Noam Eliaz. Tensile Properties of Electrochemically Hydrogenated As-Built, Hot Isostatic Pressed and Heat-Treated Electron Beam Melted Ti-6Al-4V Alloys [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(10): 1711-1718. |
| [2] | Hong-Jiang Wan, Xiao-Qi Wu, Hong-Liang Ming, Jian-Qiu Wang, En-Hou Han. Effects of Hydrogen Charging Time and Pressure on the Hydrogen Embrittlement Susceptibility of X52 Pipeline Steel Material [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(2): 293-307. |
| [3] | Hu-Yue Wang, Hong-Liang Ming, Dong-Ceng Hou, Jian-Qiu Wang, Wei Ke, En-Hou Han. Using Small Punch Test to Investigate the Mechanical Properties of X42 Exposed to Gaseous Hydrogen: Effect of Pressure, Pre-charge Time, Punch Velocity and Oxygen Content [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(11): 1961-1983. |
| [4] | Jun Zhang, Binhan Sun, Zhigang Yang, Chi Zhang, Hao Chen. Enhancing the Hydrogen Embrittlement Resistance of Medium Mn Steels by Designing Metastable Austenite with a Compositional Core-shell Structure [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(7): 1059-1077. |
| [5] | Tuhin Das, Salim V. Brahimi, Jun Song, Stephen Yue. Assessment of Hydrogen Embrittlement Susceptibility and Mechanism(s) in Quench and Tempered AISI 4135 Steel Using A Novel Fast Fracture Test in Bending [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(7): 1078-1094. |
| [6] | Dayong An, Yuhao Zhou, Yao Xiao, Xinxi Liu, Xifeng Li, Jun Chen. Observation of the Hydrogen-Dislocation Interactions in a High-Manganese Steel after Hydrogen Adsorption and Desorption [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(7): 1105-1112. |
| [7] | Z. Wang, Q. Lu, Z.H. Cao, H. Chen, M.X. Huang, J.F. Wang. Review on Hydrogen Embrittlement of Press-hardened Steels for Automotive Applications [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(7): 1123-1143. |
| [8] | Ming-Tu Ma, Ke-Jian Li, Yu Si, Peng-Jun Cao, Hong-Zhou Lu, Ai-Min Guo, Guo-Dong Wang. Hydrogen Embrittlement of Advanced High-Strength Steel for Automobile Application: A Review [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(7): 1144-1158. |
| [9] | Boning Zhang, Yong Mao, Zhenbao Liu, Jianxiong Liang, Jun Zhang, Maoqiu Wang, Jie Su, Kun Shen. Ab Initio Investigations for the Role of Compositional Complexities in Affecting Hydrogen Trapping and Hydrogen Embrittlement: A Review [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(7): 1159-1172. |
| [10] | Wenjing Lou, Lin Cheng, Runsheng Wang, Chengyang Hu, Kaiming Wu. Atomistic Investigation of the Influence of Hydrogen on Mechanical Response during Nanoindentation in Pure Iron [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(7): 1179-1192. |
| [11] | Rongjian Shi, Yanqi Tu, Liang Yang, Saiyu Liu, Shani Yang, Kewei Gao, Xu-Sheng Yang, Xiaolu Pang. Interactions between Pre-strain and Dislocation Structures and Its Effect on the Hydrogen Trapping Behaviors [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(7): 1193-1202. |
| [12] | Yue-Yang Gu, Han-Yu Zhao, Wei Chen, Wei Yan, Liang-Yin Xiong, De-Min Chen. Effects of Hydrogen Charging on Mechanical Properties of CLAM Steel at Different Strain Rates [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(7): 1203-1210. |
| [13] | Linshuo Dong, Feiyang Wang, Hong-Hui Wu, Mengjie Gao, Penghui Bai, Shuize Wang, Guilin Wu, Junheng Gao, Xiaoye Zhou, Xinping Mao. Enhanced Hydrogen Embrittlement Resistance via Cr Segregation in Nanocrystalline Fe-Cr Alloys [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(12): 1925-1935. |
| [14] | Binhan Sun, Dong Wang, Xu Lu, Di Wan, Dirk Ponge, Xiancheng Zhang. Current Challenges and Opportunities Toward Understanding Hydrogen Embrittlement Mechanisms in Advanced High-Strength Steels: A Review [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(6): 741-754. |
| [15] | Jun Zhang, Jie Su, Boning Zhang, Yi Zong, Zhigang Yang, Chi Zhang, Hao Chen. Phase-Field Modeling of Hydrogen Diffusion and Trapping in Steels [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(10): 1421-1426. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
WeChat
