Acta Metallurgica Sinica (English Letters) ›› 2024, Vol. 37 ›› Issue (10): 1657-1666.DOI: 10.1007/s40195-024-01738-5
Previous Articles Next Articles
Chunhui Wang1, Lei Guo1, Rui Li1(), Qing Peng2,3,4(
)
Received:
2024-03-07
Revised:
2024-04-08
Accepted:
2024-04-17
Online:
2024-10-10
Published:
2024-06-28
Contact:
Rui Li, lirui@ustb.edu.cn; Qing Peng, pengqing@imech.ac.cn.Chunhui Wang, Lei Guo, Rui Li, Qing Peng. Atomistic Insights into the Irradiation Resistance of Co-Free High Entropy Alloy FeMnNiCr[J]. Acta Metallurgica Sinica (English Letters), 2024, 37(10): 1657-1666.
Add to citation manager EndNote|Ris|BibTeX
Fig. 2 Evolution of the number of FPs with respect to time during cascade displacement process for two materials, FeNiMnCr (red line) and Ni (black line), where the PKA energy is EPKA = 30 keV. The inset is the zoom-in of the plot within 20 ps. The Stage I and Stage II are marked
Sample | Time to peak (ps) | Number of FPs at peak | Time to steady (ps) | Number of surviving FPs | Defect recombination rate |
---|---|---|---|---|---|
FeMnNiCr | 1.77 | 17,970 | 79.12 | 34 | 99.81% |
Ni | 1.03 | 7347 | 10.34 | 67 | 99.08% |
Table 1 Time, number of FPs, and defect recombination rate when reaching the cascade spike and steady state
Sample | Time to peak (ps) | Number of FPs at peak | Time to steady (ps) | Number of surviving FPs | Defect recombination rate |
---|---|---|---|---|---|
FeMnNiCr | 1.77 | 17,970 | 79.12 | 34 | 99.81% |
Ni | 1.03 | 7347 | 10.34 | 67 | 99.08% |
Fig. 3 Spatial distribution of defects at the thermal peak for a FeMnNiCr and c Ni, compared to that at the end of the cascade for b FeMnNiCr and d Ni
Fig. 4 Size distribution of defect clusters in FeMnNiCr (yellow) and Ni (green) at the end of cascade: a interstitial clusters, b vacancy clusters, c the largest defect clusters
Fig. 5 a Potential energy in the FeMnNiCr (red) and Ni (green) during displacement cascades. b Temperature of FeMnNiCr and Ni during displacement cascade process
Fig. 7 Dislocation distribution in the system with preset defects at equilibrium: a Ni, b FeMnNiCr. Dislocation distribution in the system at the end of displacement cascade: c Ni, d FeMnNiCr
[1] | S.J. Zinkle, J.T. Busby, Mater. Today 12, 12 (2009) |
[2] | C.M. Lousada, I.L. Soroka, Y. Yagodzinskyy, N.V. Tarakina, O. Todoshchenko, H. Hänninen, P.A. Korzhavyi, M. Jonsson, Sci. Rep. 6, 24234 (2016) |
[3] | B. Uberuaga, R. Hoagland, A. Voter, S. Valone, Phys. Rev. Lett. 99, 135501 (2007) |
[4] |
B. Gludovatz, A. Hohenwarter, D. Catoor, E.H. Chang, E.P. George, R.O. Ritchie, Science 345,1153 (2014)
DOI PMID |
[5] | C. Li, X. Hu, T. Yang, N.K. Kumar, B.D. Wirth, S.J. Zinkle, J. Nucl. Mater. 527, 151838 (2019) |
[6] | J. Yang, K. Shi, Q. Chen, W. Zhang, C. Zhu, Z. Ning, J. Liao, Y. Yang, N. Liu, J. Yang, Surf. Coat. Technol. 418, 127252 (2021) |
[7] | S.J. Zinkle, G. Was, Acta Mater. 61, 735 (2013) |
[8] | Y. Guérin, G.S. Was, S.J. Zinkle, MRS Bull. 34, 10 (2009) |
[9] | J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, S.Y. Chang, Adv. Eng. Mater. 6, 299 (2004) |
[10] | B. Cantor, I. Chang, P. Knight, A. Vincent, Mater. Sci. Eng. A 375, 213 (2004) |
[11] | W. Li, P.K. Liaw, Y. Gao, Intermetallics 99,69 (2018) |
[12] | Z. Lei, X. Liu, Y. Wu, H. Wang, S. Jiang, S. Wang, X. Hui, Y. Wu, B. Gault, P. Kontis, Nature 563,546 (2018) |
[13] |
T. Yang, Y. Zhao, Y. Tong, Z. Jiao, J. Wei, J. Cai, X. Han, D. Chen, A. Hu, J. Kai, Science 362,933 (2018)
DOI PMID |
[14] | M.H. Chuang, M.H. Tsai, W.R. Wang, S.J. Lin, J.W. Yeh, Acta Mater. 59, 6308 (2011) |
[15] | V. Gavriljuk, B. Shanina, H. Berns, Acta Mater. 56, 5071 (2008) |
[16] | C. Liu, Y. Wang, Y. Zhang, L. Wang, Acta Metall. Sin. -Engl. Lett. 37, 3 (2024) |
[17] | J.Q. Zheng, M.L. Wang, W.N. Jiao, L.J. Zou, Y. Di, Acta Metall. Sin. -Engl. Lett. 36, 1493 (2023) |
[18] | M.H. Tsai, J.W. Yeh, Mater. Res. Lett. 2, 107 (2014) |
[19] | Y. Dou, K. Jin, X. He, W. Yang, W. Zhong, H. Cao, C. Huang, At. Energy Sci. Technol. 53, 1868 (2019) |
[20] | C. Lu, L. Niu, N. Chen, K. Jin, T. Yang, P. Xiu, Y. Zhang, F. Gao, H. Bei, S. Shi, Nat. Commun. 7, 13564 (2016) |
[21] | L. Yang, H. Ge, J. Zhang, T. Xiong, Q. Jin, Y. Zhou, X. Shao, B. Zhang, Z. Zhu, S. Zheng, J. Mater. Sci. Technol. 35, 300 (2019) |
[22] | N.K. Kumar, C. Li, K. Leonard, H. Bei, S. Zinkle, Acta Mater. 113, 230 (2016) |
[23] | Y. Li, R. Li, Q. Peng, Nanotechnology 31,025703 (2019) |
[24] | Y. Li, R. Li, Q. Peng, S. Ogata, Nanotechnology 31,425701 (2020) |
[25] | Z. Su, T. Shi, H. Shen, L. Jiang, L. Wu, M. Song, Z. Li, S. Wang, C. Lu, Scr. Mater. 212, 114547 (2022) |
[26] | R. Li, L. Guo, Y. Liu, Q. Xu, Q. Peng, Acta Metall. Sin. -Engl. Lett. 36, 1482 (2023) |
[27] | R. Li, Y. Li, Y. Liu, Q. Peng, Comput. Mater. Sci. 225, 112185 (2023) |
[28] | B. Kombaiah, Y. Zhou, K. Jin, A. Manzoor, J.D. Poplawsky, J.A. Aguiar, H. Bei, D.S. Aidhy, P.D. Edmondson, Y. Zhang, A.C.S. Appl, Mater. Interfaces 15, 3912 (2023) |
[29] | Y. Lin, T. Yang, L. Lang, C. Shan, H. Deng, W. Hu, F. Gao, Acta Mater. 196, 133 (2020) |
[30] | W. Lin, G. Yeli, G. Wang, J. Lin, S. Zhao, D. Chen, S. Liu, F. Meng, Y. Li, F. He, J. Mater. Sci. Technol. 101, 226 (2022) |
[31] | D. Chen, Y. Tong, H. Li, J. Wang, Y. Zhao, A. Hu, J. Kai, J. Nucl. Mater. 501, 208 (2018) |
[32] | T. Shi, P.H. Lei, X. Yan, J. Li, Y.D. Zhou, Y.P. Wang, Z.X. Su, Y.K. Dou, X.F. He, D. Yun, Tungsten 3,197 (2021) |
[33] | Z. Wu, H. Bei, Mater. Sci. Eng. A 640, 217 (2015) |
[34] | D.J. Bacon, F. Gao, Y.N. Osetsky, J. Nucl. Mater. 276, 1 (2000) |
[35] | R. Wang, Z. Chen, Y. Shu, Y. Lin, Z. Liu, H. Deng, W. Hu, T. Yang, J. Nucl. Mater. 577, 154342 (2023) |
[36] | L. Qian, H. Bao, R. Li, Q. Peng, Mater. Adv. 3, 1680 (2022) |
[37] | Q. Fang, J. Peng, Y. Chen, L. Li, H. Feng, J. Li, C. Jiang, P.K. Liaw, Mech. Mater. 155, 103744 (2021) |
[38] | J. Dong, X. Feng, X. Hao, W. Kuang, Scr. Mater. 204, 114127 (2021) |
[39] | A.P. Thompson, H.M. Aktulga, R. Berger, D.S. Bolintineanu, W.M. Brown, P.S. Crozier, S.J. Plimpton, LAMMPS-a flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales. Comput. Phys. Commun. 271, 108171 (2022) |
[40] | W.M. Choi, Y.H. Jo, S.S. Sohn, S. Lee, B.J. Lee, npj Comput. Mater. 4, 1 (2018) |
[41] | H.S. Do, B.J. Lee, Sci. Rep. 8, 16015 (2018) |
[42] | J.F. Ziegler, J.P. Biersack, in Treatise on Heavy-Ion Science: Volume 6: Astrophysics, Chemistry, and Condensed Matter, ed. by D.A. Bromley (Springer US, Boston, MA, p. 93) (1985) |
[43] | Y. Zhang, G.M. Stocks, K. Jin, C. Lu, H. Bei, B.C. Sales, L. Wang, L.K. Béland, R.E. Stoller, G.D. Samolyuk, Nat. Commun. 6, 8736 (2015) |
[44] | W. Chen, X. Ding, Y. Feng, X. Liu, K. Liu, Z.P. Lu, D. Li, Y. Li, C.T. Liu, X.Q. Chen, J. Mater. Sci. Technol. 34, 355 (2018) |
[45] | A. Stukowski, Modell. Simul. Mater. Sci. Eng. 20, 045021 (2012) |
[46] | K. Nordlund, M. Ghaly, R. Averback, M. Caturla, T.D. de La Rubia, J. Tarus, Phys. Rev. B 57, 7556 (1998) |
[47] | A. Stukowski, V.V. Bulatov, A. Arsenlis, Modell. Simul. Mater. Sci. Eng. 20, 085007 (2012) |
[48] | Z. Sun, C. Shi, L. Gao, S. Lin, W. Li, J. Alloys Compd. 901, 163554 (2022) |
[49] | A. Calder, D.J. Bacon, A.V. Barashev, Y.N. Osetsky, Philos. Mag. 90, 863 (2010) |
[50] | C. Lu, T. Yang, K. Jin, N. Gao, P. Xiu, Y. Zhang, F. Gao, H. Bei, W.J. Weber, K. Sun, Acta Mater. 127, 98 (2017) |
[51] | K. Jin, C. Lu, L. Wang, J. Qu, W. Weber, Y. Zhang, H. Bei, Scr. Mater. 119, 65 (2016) |
[52] | Y. Zhang, K. Jin, H. Xue, C. Lu, R.J. Olsen, L.K. Beland, M.W. Ullah, S. Zhao, H. Bei, D.S. Aidhy, J. Mater. Res. 31, 2363 (2016) |
[53] | Y. Matsukawa, S.J. Zinkle, Science 318,959 (2007) |
[54] | A. Foreman, W. Phythian, C. English, Philos. Mag. A 66, 671 (1992) |
[55] | P. Zhao, Y. Shimomura, Comput. Mater. Sci. 14, 84 (1999) |
[56] | C. Lu, T. Yang, L. Niu, Q. Peng, K. Jin, M.L. Crespillo, G. Velisa, H. Xue, F. Zhang, P. Xiu, J. Nucl. Mater. 509, 237 (2018) |
[1] | Jie Lu, Yanhui Li, Shuang Ma, Wanping Li, Feng Bao, Zhengwang Zhu, Qiaoshi Zeng, Haifeng Zhang, Man Yao, Wei Zhang. Novel Soft Magnetic Co-Based Ternary Co-Er-B Bulk Metallic Glasses [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(9): 1633-1642. |
[2] | Z. C. Meng, K. G. Wang, T. Ali, D. Li, C. G. Bai, D. S. Xu, S. J. Li, A. H. Feng, G. J. Cao, J. H. Yao, Q. B. Fan, H. Wang, R. Yang. Atomistic Investigation of Shock-Induced Amorphization within Micro-shear Bands in Hexagonal Close-Packed Titanium [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(9): 1590-1600. |
[3] | Yujing Zhou, Siyi Peng, Yueling Guo, Xiaoxiang Wu, Changmeng Liu, Zhiming Li. Microstructure Modification and Ductility Improvement for TaMoNbZrTiAl Refractory High Entropy Alloys via Increasing Ti Content [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(7): 1186-1200. |
[4] |
Chao Wang, Xi Zhao, Yayun He, Dingxia Zheng.
Implementation of Balanced Strength and Toughness of VW93A Rare-Earth Magnesium Alloy with Regulating the Overlapping Structure of Lamellar LPSO Phase and |
[5] | Rui Li, Lei Guo, Yu Liu, Qingsong Xu, Qing Peng. Irradiation Resistance of CoCrCuFeNi High Entropy Alloy under Successive Bombardment [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(9): 1482-1492. |
[6] | Mingfeng Liu, Jiantao Wang, Yongpeng Shi, Heyu Zhu, Yan Sun, Peitao Liu, Xing-Qiu Chen. Ab initio Molecular Dynamics Study of Local Atomic Structure Evolution of U-Zr Alloy Melts upon Solidification [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(9): 1549-1558. |
[7] | Wenjing Lou, Lin Cheng, Runsheng Wang, Chengyang Hu, Kaiming Wu. Atomistic Investigation of the Influence of Hydrogen on Mechanical Response during Nanoindentation in Pure Iron [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(7): 1179-1192. |
[8] | Shuang Ma, Junyu Zhang, Xudong Wang, Rie Y. Umetsu, Li Jiang, Wei Zhang, Man Yao. Structural Origins for Enhanced Thermal Stability and Glass-Forming Ability of Co-B Metallic Glasses with Y and Nb Addition [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(6): 962-972. |
[9] | Xueru Fan, Lei Xie, Qiang Li, Chuntao Chang, Hongxiang Li. Improved Plasticity of Fe25Co25Ni25(Si0.3B0.7)25 High Entropy Bulk Metallic Glass through the Addition of Cu [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(3): 417-425. |
[10] | Linshuo Dong, Feiyang Wang, Hong-Hui Wu, Mengjie Gao, Penghui Bai, Shuize Wang, Guilin Wu, Junheng Gao, Xiaoye Zhou, Xinping Mao. Enhanced Hydrogen Embrittlement Resistance via Cr Segregation in Nanocrystalline Fe-Cr Alloys [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(12): 1925-1935. |
[11] | Peng Zhang, Ming Chen, Qiang Zhu, Linfu Zhang, Guohua Fan, Heyong Qin, Qiang Tian. Micro Defects Evolution of Nickel-Based Single Crystal Superalloys during Shear Deformation: A Molecular Dynamics Study [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(12): 2089-2099. |
[12] | Ming Su, Xiaoguang Yuan, Chunyu Yue, Wentao Zheng, Yuxiang Wang, Jian Kang. Influence of Liquid Film Characteristics on Hot Cracking Initiation in Al-Cu Alloys at the End of Solidification [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(1): 103-117. |
[13] | Hai-Feng Zhang, Hai-Le Yan, Feng Fang, Nan Jia. Orientation-Dependent Mechanical Responses and Plastic Deformation Mechanisms of FeMnCoCrNi High-entropy Alloy: A Molecular Dynamics Study [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(11): 1511-1526. |
[14] | Xiusong Huang, Lehua Liu, Weibing Liao, Jianjun Huang, Huibin Sun, Chunyan Yu. Characterization of Nucleation Behavior in Temperature-Induced BCC-to-HCP Phase Transformation for High Entropy Alloy [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(11): 1546-1556. |
[15] | Ren Li, Jing Ren, Guo-Jia Zhang, Jun-Yang He, Yi-Ping Lu, Tong-Min Wang, Ting-Ju Li. Novel (CoFe2NiV0.5Mo0.2)100-xNbx Eutectic High-Entropy Alloys with Excellent Combination of Mechanical and Corrosion Properties [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(8): 1046-1056. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||