Acta Metallurgica Sinica (English Letters) ›› 2024, Vol. 37 ›› Issue (9): 1590-1600.DOI: 10.1007/s40195-024-01723-y
Previous Articles Next Articles
Z. C. Meng1,2, K. G. Wang3, T. Ali4, D. Li1,2, C. G. Bai1,2(), D. S. Xu1,2, S. J. Li1,2, A. H. Feng4(
), G. J. Cao5, J. H. Yao6,7, Q. B. Fan6,7, H. Wang3(
), R. Yang1,2
Received:
2023-07-06
Revised:
2024-02-25
Accepted:
2024-02-26
Online:
2024-09-10
Published:
2024-07-10
Contact:
C. G. Bai, cgbai@imr.ac.cn;A. H. Feng, aihanfeng@tongji.edu.cn;H. Wang, haowang7@usst.edu.cn
Z. C. Meng, K. G. Wang, T. Ali, D. Li, C. G. Bai, D. S. Xu, S. J. Li, A. H. Feng, G. J. Cao, J. H. Yao, Q. B. Fan, H. Wang, R. Yang. Atomistic Investigation of Shock-Induced Amorphization within Micro-shear Bands in Hexagonal Close-Packed Titanium[J]. Acta Metallurgica Sinica (English Letters), 2024, 37(9): 1590-1600.
Add to citation manager EndNote|Ris|BibTeX
Fig. 1 Evolution of shear strain over time during shock loading along [0001]α direction. a-d Depicting the shock times of 0, 3.2, 5.3, and 7 ps, respectively. These four figures are sliced from the center of the x-axis, resulting in two-dimensional images
Fig. 2 Temperature of the simulation cell and the distribution of atomic kinetic energy under shock. a Curve of the system temperature over the shock time, calculated according to theorem of equipartition of energy (KE=3/2kBT). The horizontal segment of the curve indicates the stage when the piston has not impacted the bulk. b-d Distribution of atomic kinetic energy over time, with corresponding shock times of 5, 6, and 7 ps. The unit of the scale bar is eV
Fig. 3 Six components of strain tensor under shock at 7 ps. a-f Showing the six strain components in the YZ plane, while g-l exhibiting those in the XZ plane. All figures are sliced at the center of the system
Fig. 4 a Atomic displacement under shock at 7 ps. b and c Showing the direction of local atomic motion in the yellow box and red box in a, respectively. In order to clarify the atomic displacement clearly, the atoms are deleted, leaving only the displacement vector of each atom. The unit of the scale bar is Å
Fig. 5 Formation and distribution of the dislocations under shock loading. The atoms with a shear strain less than 0.3 are invisible in a-d. The blue ellipse in b marks a dislocation-barren area, while the yellow and red ellipses in c and d mark areas of dislocation entanglement and dislocation entanglement, respectively. e Dislocations entangle around the SFs
Fig. 6 Three color developing styles under shock loading at 7 ps. a CNA, b potential energy, c shear strain. The black and red dashed lines represent the position of the shock front and the dislocation-barren area in Fig. 5b, respectively. The unit of the scale bar is eV in b, and all three screenshots are sliced from center of the x-axis
Fig. 7 RDFs of simulation cell. a Representing the RDFs of green dashed box in Fig. 6a, with the inset d showing the decrease in value r corresponding to the first peak of RDFs. b showing the RDFs of different region 1, 2 and 3 with region 1 (R1) containing all crystalline atoms, region 2 (R2) containing crystalline atoms and some disordered atoms at shock front, and region 3 (R3) primarily containing the most distorted atoms post-shock. c Displaying the RDF of the shear band, with the morphology of shear band shown in the inset
Fig. 8 Evolution of dislocations and SFs with time under shock loading. Only the atoms with FCC structure are visible in a-f. e Showing the SFs surrounded by entangled dislocation lines, while f indicating the leading partials at the front of each SF. These figures are not sliced
Fig. 9 Instability of atoms at the shock front. The color rendering style on the left represents CNA, and on the right, shear strain. a-d Representing shock time of 3.8, 4.8, 5.8, 7 ps, respectively, with HCP atoms not being visible. e Showing the atoms at the shock front deviate from the HCP structure of the matrix in (0001)α plane. The position of the shock front is marked by the black dotted line
[1] | G. Lütjering, J. Williams,Titanium, 2nd edn. (Springer, Berlin, Heidelberg, New York, 2007) |
[2] | C. Leyens, M. Peters,Titanium and Titanium Alloys (Chemical Industry Press, Beijing, 2005), pp.1-30 |
[3] | Q.L. Zeng, M.X. Chen, X.Q. Yu, W. Qi, S.X. Zhu, H. Yang, H.S. Chen, Int. J. Plast. 171, 103782 (2023) |
[4] | K. Jiang, J.G. Li, X.K. Kan, F. Zhao, B. Hou, Q.M. Wei, T. Suo, Int. J. Plast. 162, 103550 (2023) |
[5] | W. An, C.Z. Liu, Q.l. Xiong, Z.H. Li, X.C. Huang, T. Suo, Int. J. Plast. 165, 103616 (2023) |
[6] | G.G. Goviazin, D. Rittel, Int. J. Impact Eng. 180, 104702 (2023) |
[7] | C. Zener, J.H. Hollomon, Trans. ASME 33, 163 (1944) |
[8] | R.F. Recht, J. Appl. Mech. 31, 189 (1964) |
[9] | R.S. Culver,Thermal Instability Strain in Dynamic Plastic Deformation (Springer, New York, 1973), pp. 519-530 |
[10] | R.C. Batra, C.H. Kim, Int. J. Plast. 8, 425 (1992) |
[11] | D. Rittel, Z.G. Wang, M. Merzer, Phys. Rev. Lett. 96, 075502 (2006) |
[12] | A. Vinogradov, M. Seleznev, I.S. Yasnikov, Scr. Mater. 130, 138 (2017) |
[13] | X.J. Zhu, Q.B. Fan, D.D. Wang, H.C. Gong, Y. Gao, J.J. Yuan, K. Chen, F. Qian, Mater. Sci. Eng. A 842, 143084 (2022) |
[14] | F.Y. Chen, P.C. Guo, Z.H. Jiang, X. Liu, T.J. Song, C. Xie, Acta Metall. Sin. (Engl. Lett.) 36, 281 (2022) |
[15] | S. Zhao, R. Flanagan, E. Hahn, B. Kad, B. Remington, C. Wehrenberg, R. Cauble, K. More, M.A. Meyers, Acta Mater. 158, 206 (2018) |
[16] | S. Zhao, B. Kad, C.E. Wehrenberg, B.A. Remington, E.N. Hahn, K.L. More, M.A. Meyers, Proc. Natl. Acad. Sci. USA 9791 (2017) |
[17] | W. Shi, S. Lu, J. Shen, B. Chen, J. Umeda, Q. Wei, K. Kondoh, Y. Li, Mater. Sci. Eng. A 830, 142321 (2022) |
[18] | A.V. Pavlenko, A.V. Dobromyslov, N.I. Taluts, S.N. Malyugina, S.S. Mokrushin, Mater. Today Commun. 31, 103245 (2022) |
[19] | J.C. Dai, X.H. Min, L. Wang, Mater. Sci. Eng. A 857, 144108 (2022) |
[20] | L. Li, W. Jia, V. Ji, Surf. Coat. Technol. 450, 129010 (2022) |
[21] | X.R. Guan, Q. Chen, S.J. Qu, G.J. Cao, H. Wang, A.H. Feng, D.L. Chen, J. Mater. Sci. Technol. 150, 104 (2023) |
[22] | D.J. Magagnosc, J.T. Lloyd, C.S. Meredith, A.L. Pilchak, B.E. Schuster, Int. J. Plast. 141, 102992 (2021) |
[23] | Y. Guo, Q. Ruan, S. Zhu, Q. Wei, J. Lu, B. Hu, X. Wu, Y. Li, J. Mech. Phys. Solids 135, 103811 (2020) |
[24] | V.I. Levitas, Y. Ma, E. Selvi, J. Wu, J.A. Patten, Phys. Rev. B 85, 940 (2012) |
[25] | H.P. Chen, R. Kalia, E. Kaxiras, G. Lu, A. Nakano, K.I. Nomura, A. Duin, P. Vashishta, Z. Yuan, Phys. Rev. Lett.Rev. Lett. 104, 155502 (2019) |
[26] | M. Chen, J.W. Mccauley, K.J. Hemker, Science 299, 1563 (2003) |
[27] | G.J. Ackland, Philos. Mag. 66, 917 (1992) |
[28] | H.C. Çekil, M. Özdemir, Comput. Mater. Sci. 201, 110872 (2022) |
[29] | H. Zong, Y. Luo, X. Ding, T. Lookman, G.J. Ackland, Acta Mater. 162, 126 (2019) |
[30] | S. Plimpton, J. Comput. Phys. 117, 1 (1993) |
[31] | S. Alexander, Model. Simul. Mater. Sci. Eng. 18, 2154 (2010) |
[32] | S. Alexander, B. Vasily, A. Athanasios, Model. Simul. Mater. Sci. Eng. 20, 085007 (2012) |
[33] | F. Shimizu, S. Ogata, J. Li, Mater. Trans. 48, 2923 (2007) |
[34] | D. Chandler, J.K. Percus, Phys. Today 41, 114 (1988) |
[35] | S. Zhao, B. Kad, B.A. Remington, J.C. Lasalvia, C.E. Wehrenberg, K.D. Behler, M.A. Meyers, P. Natl, Acad. Sci. USA 113, 12088 (2016) |
[36] | F. Nabarro, Mater. Sci. Eng. A 234, 67 (1997) |
[37] | K.M. Reddy, A. Hirata, P. Liu, T. Fujita, T. Goto, M.W. Chen, Scr. Mater. 76, 9 (2014) |
[38] | H. Ikeda, Y. Qi, T. Çagin, K. Samwer, W.L. Johnson, W.A. Goddard, Phys. Rev. Lett. 82, 2900 (1999) |
[39] | Q. Cheng, H.A. Wu, Y. Wang, X.X. Wang, Comput. Mater. Sci. 45, 419 (2009) |
[40] | S. Han, L. Zhao, Q. Jiang, J. Lian, Sci. Rep. 2, 493 (2012) |
[41] | E. Ma, Scr. Mater. 49, 941 (2003) |
[42] | Y.S. Guo, B. Jia, Q. Zhou, W. Chen, Y.P. Ren, Q. Zhou, R. Liu, A. Arab, C. Ran, P.W. Chen, Mater. Sci. Eng. A 863, 144542 (2023) |
[1] | Jie Lu, Yanhui Li, Shuang Ma, Wanping Li, Feng Bao, Zhengwang Zhu, Qiaoshi Zeng, Haifeng Zhang, Man Yao, Wei Zhang. Novel Soft Magnetic Co-Based Ternary Co-Er-B Bulk Metallic Glasses [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(9): 1633-1642. |
[2] | Ruoyu Liu, Wenshu Li, Xiayang Yu, Lanyi Liu, Bingfeng Wang. Mechanical Properties and Microstructure of the Shear Band Formed at Cryogenic Temperature in the NiCrFe Medium-Entropy Alloy [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(8): 1377-1386. |
[3] | Ziyue Xu, Huan Liu, Luyao Li, Chao Sun, Xi Tan, Baishan Chen, Qiangsheng Dong, Yuna Wu, Jinghua Jiang, Jiang Ma. Effect of Room Temperature Ultrasonic Vibration Compression on the Microstructure Evolution and Mechanical Properties of AZ91 Alloy [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(7): 1135-1146. |
[4] | Fanchao Meng, Rui Zhang, Shuai Wang, Fengbo Sun, Run Chen, Lujun Huang, Lin Geng. Fatigue Crack Initiation and Propagation Dominated by Crystallographic Factors in TiB/near α-Ti Composite [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(5): 763-776. |
[5] | Jin-Kai Zhang, Cui-Ju Wang, Yi-Dan Fan, Chao Xu, Kai-Bo Nie, Kun-Kun Deng. Effect of Tip Content on the Work Hardening and Softening Behavior of Mg-Zn-Ca Alloy [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(3): 551-560. |
[6] | Yu-Hang Chu, Liang-Yu Chen, Bo-Yuan Qin, Wenbin Gao, Fanmin Shang, Hong-Yu Yang, Lina Zhang, Peng Qin, Lai-Chang Zhang. Unveiling the Contribution of Lactic Acid to the Passivation Behavior of Ti-6Al-4V Fabricated by Laser Powder Bed Fusion in Hank’s Solution [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(1): 102-118. |
[7] | Yan Wen, Xuan Sun, Jian Zhou, Bingliang Liu, Haojie Guo, Yuxin Li, Fei Yin, Liqiang Wang, Lechun Xie, Lin Hua. Influence of Electroshocking Treatment on Microstructure and Mechanical Properties of Ti-6.5Al-3.5Mo-1.5Zr-0.3Si Thin-Wall Specimen Manufactured by Laser Melting Deposition [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(1): 145-158. |
[8] | Jiaxin Li, Haozhang Zhong, Bojun Cao, Zhaoyang Ran, Jia Tan, Liang Deng, Yongqiang Hao, Jinglong Yan. Comparative Study of 3D-Printed Porous Titanium Alloy with Rod Designs of Three Different Geometric Structures for Orthopaedic Implantation [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(1): 54-66. |
[9] | W.L. Zhang, W. Li, L.B. Fu, X. Peng, J. Sun, S.M. Jiang, J. Gong, C. Sun. Hot Corrosion Behavior of Hf-Doped NiAl Coating in the Mixed Salt of Na2SO4 + K2SO4 at 900 °C [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(9): 1409-1420. |
[10] | Mingfeng Liu, Jiantao Wang, Yongpeng Shi, Heyu Zhu, Yan Sun, Peitao Liu, Xing-Qiu Chen. Ab initio Molecular Dynamics Study of Local Atomic Structure Evolution of U-Zr Alloy Melts upon Solidification [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(9): 1549-1558. |
[11] | Wenjing Lou, Lin Cheng, Runsheng Wang, Chengyang Hu, Kaiming Wu. Atomistic Investigation of the Influence of Hydrogen on Mechanical Response during Nanoindentation in Pure Iron [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(7): 1179-1192. |
[12] | Shuang Ma, Junyu Zhang, Xudong Wang, Rie Y. Umetsu, Li Jiang, Wei Zhang, Man Yao. Structural Origins for Enhanced Thermal Stability and Glass-Forming Ability of Co-B Metallic Glasses with Y and Nb Addition [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(6): 962-972. |
[13] | Qiu-Yue Jia, Yu-Min Wang, Xu Zhang, Guo-Xing Zhang, Qing Yang, Li-Na Yang, Xu Kong, Xiao-Fang Li, Rui Yang. Multiscale Failure Mechanism Analysis of SiC Fiber-Reinforced TC17 Composite Subjected to Transverse Tensile Loading at Elevated Temperature [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(6): 1007-1022. |
[14] | Jianan Hu, Mengmeng Yang, Wenlong Xiao, Hao Wang, Dehai Ping, Chengze Liu, Shewei Xin, Songquan Wu, Kai Zhang, Yi Yang, Lai-Chang Zhang, Aijun Huang. Formation of Face-Centered Cubic Phase in Ti35 Alloy Under In Situ Heating Transmission Electron Microscopy [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(3): 486-494. |
[15] | Linshuo Dong, Feiyang Wang, Hong-Hui Wu, Mengjie Gao, Penghui Bai, Shuize Wang, Guilin Wu, Junheng Gao, Xiaoye Zhou, Xinping Mao. Enhanced Hydrogen Embrittlement Resistance via Cr Segregation in Nanocrystalline Fe-Cr Alloys [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(12): 1925-1935. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||