Acta Metallurgica Sinica (English Letters) ›› 2023, Vol. 36 ›› Issue (1): 103-117.DOI: 10.1007/s40195-022-01449-9
Previous Articles Next Articles
Ming Su, Xiaoguang Yuan(), Chunyu Yue, Wentao Zheng(
), Yuxiang Wang, Jian Kang
Received:
2022-03-16
Revised:
2022-05-07
Accepted:
2022-06-09
Online:
2023-01-10
Published:
2022-08-28
Contact:
* Xiaoguang Yuan,yuanxg@sut.edu.cn; Wentao Zheng,wenntaozheng@163.com
Ming Su, Xiaoguang Yuan, Chunyu Yue, Wentao Zheng, Yuxiang Wang, Jian Kang. Influence of Liquid Film Characteristics on Hot Cracking Initiation in Al-Cu Alloys at the End of Solidification[J]. Acta Metallurgica Sinica (English Letters), 2023, 36(1): 103-117.
Add to citation manager EndNote|Ris|BibTeX
Fig. 2 Schematic diagram of the experimental system for liquid film shrinkage stress: a isothermal reheating treatment experiment device, b overall experimental system and c size of the specimen
Fig. 6 Microstructures of Al-4Cu alloys after isothermal reheating treatment: a 620 ℃, 20 min; b 620 ℃, 40 min; c 620 ℃, 60 min; a1 630 ℃, 20 min; b1 630 ℃, 40 min; c1 630 ℃, 60 min; a2 640 ℃, 20 min; b2 640 ℃, 40 min; c2 640 ℃, 60 min
Fig. 7 Variation in the a average shape factor, b liquid fraction of Al-4Cu alloys at different temperatures for different isothermal reheating treatment time
Fig. 8 Stress-temperature-time curves after isothermal treatment: a 620 ℃, 20 min; b 620 ℃, 40 min; c 620 ℃, 60 min; a1 630 ℃, 20 min; b1 630 ℃, 40 min; c1 630 ℃, 60 min; a2 640 ℃, 20 min; b2 640 ℃, 40 min; c2 640 ℃, 60 min
Fig. 9 Variations in a the critical temperature, b critical shrinkage stress of the liquid film of hot cracking initiation vs. isothermal treatment temperature and time
Time (min) | 10 | 20 | 30 | 40 | 50 | 60 |
---|---|---|---|---|---|---|
620 | 95.87 | 96.38 | 96.60 | 96.66 | 96.73 | 96.78 |
630 | 96.33 | 96.51 | 96.70 | 96.84 | 96.95 | 97.26 |
640 | 96.76 | 96.91 | 96.95 | 97.43 | 99.60 | - |
Table 1 Critical solid fraction (%) after hot cracking initiation for different isothermal treatment conditions
Time (min) | 10 | 20 | 30 | 40 | 50 | 60 |
---|---|---|---|---|---|---|
620 | 95.87 | 96.38 | 96.60 | 96.66 | 96.73 | 96.78 |
630 | 96.33 | 96.51 | 96.70 | 96.84 | 96.95 | 97.26 |
640 | 96.76 | 96.91 | 96.95 | 97.43 | 99.60 | - |
Time (min) | 10 | 20 | 30 | 40 | 50 | 60 |
---|---|---|---|---|---|---|
620 | Al81Cu19 | Al82Cu18 | Al87Cu13 | Al87Cu13 | Al89Cu11 | Al91Cu9 |
630 | Al84Cu16 | Al89Cu11 | Al90Cu10 | Al90Cu10 | Al91Cu9 | Al93Cu7 |
640 | Al88Cu12 | Al89Cu11 | Al90Cu10 | Al90Cu10 | Al95Cu5 | Al96Cu4 |
Table 2 Stoichiometry numbers of liquid film composition under different isothermal treatment conditions
Time (min) | 10 | 20 | 30 | 40 | 50 | 60 |
---|---|---|---|---|---|---|
620 | Al81Cu19 | Al82Cu18 | Al87Cu13 | Al87Cu13 | Al89Cu11 | Al91Cu9 |
630 | Al84Cu16 | Al89Cu11 | Al90Cu10 | Al90Cu10 | Al91Cu9 | Al93Cu7 |
640 | Al88Cu12 | Al89Cu11 | Al90Cu10 | Al90Cu10 | Al95Cu5 | Al96Cu4 |
Fig. 15 Schematic diagram of the hot cracking formation mechanism a feeding behaviour of thin liquid film in the narrow feeding channel, b feeding behaviour of thick liquid film in the wide feeding channel
[1] |
S. Das, S. Das, K. Das, Compos. Sci. Technol. 67, 746 (2007)
DOI URL |
[2] |
J. Rakhmonov, K. Liu, L. Pan, F. Breton, X. GrantChen, J. Alloys Compd. 827, 154305 (2020)
DOI URL |
[3] | S.M. Li, S. Kumar, D. Apelian, Metall. Mater. Trans. B 44, 614 (2013) |
[4] | S.Y. He, C.J. Li, T.J. Zhan, W.D. Xuan, Z.M. Ren, Acta Metall. Sin. -Engl. Lett. 33, 267 (2020) |
[5] | A. Barros, C. Cruz, A.P. Silva, N. Cheung, A. Garcia, O. Rocha, Acta Metall. Sin. -Engl. Lett. 32, 695 (2019) |
[6] |
T. Nagira, D. Yamashita, M. Kamai, H. Liu, Y. Aoki, H. Fujii, K. Uesugi, A. Takeuchi, Mater. Charact. 167, 110469 (2020)
DOI URL |
[7] | R. Taghiabadi, A. Fayegh, A. Pakbin, M. Nazari, M.H. Ghonchen, Trans. Nonferrous Met. Soc. China 28, 1275 (2018) |
[8] |
F.D. Elia, C. Ravindran, Trans. Indian Inst. Met. 62, 315 (2009)
DOI URL |
[9] |
F.D. Elia, C. Ravindra, D. Sediako, Can. Metall. Q. 53, 151 (2014)
DOI URL |
[10] | H.B. Yang, K. Zhao, J.F. Nie, X.F. Liu, Mater. Sci. Eng. A 774, 138926 (2020) |
[11] | S.G. Shabestari, M.H. Ghoncheh, Metall. Mater. Trans. B 46, 2438 (2015) |
[12] |
J.W. Liu, S. Kou, Acta Mater. 100, 359 (2015)
DOI URL |
[13] |
J.W. Liu, S. Kou, Acta Mater. 110, 84 (2016)
DOI URL |
[14] | D.G. Eskin, L. Katferman, Metall. Mater. Trans. A 38, 1511 (2007) |
[15] | H. Ding, H.Z. Fu, Z.Y. Liu, R.Z. Chen, B.C. Liu, Z.G. Zhong, D.Z. Tang, Acta Metall. Sin. 33, 921 (1997) |
[16] | Y.S. Wang, Q.D. Wang, W.J. Ding, L. Chen, Spec. Cast. Nonferrous Alloys 2, 45 (2000) |
[17] | W.S. Pellini,Foundry 80, 125 (1952) |
[18] | T.W. Clyne, G.J. Davies, Met. Sci. 12, 233 (1978) |
[19] | R. Takai, S. Kimura, R. Kashiuchi, H. Kotaki, M. Yoshida, Mater. Sci. Eng. A 667, 417 (2016) |
[20] | R. Takai, N. Endo, R. Hirohara, T. Tsunoda, M. Yoshida, Int. J. Adv. Manuf. Technol. 100, 125 (2019) |
[21] |
A. Matsushita, H. Mizuno, T. Okane, M. Yoshida, J. Mater. Process. Technol. 263, 321 (2019)
DOI URL |
[22] | R.F. Xu, H.L. Zheng, J. Luo, S.P. Ding, X.L. Tian, Trans. Nonferrous Met. Soc. China 24, 2203 (2014) |
[23] | R.F. Xu, H.L. Tian, Russ. J. Non-Ferrous Met. 55, 44 (2014) |
[24] |
Z.Y. Hou, K.J. Dong, Z.A. Tian, R.S. Liu, Z. Wang, J.G. Wang, Phys. Chem. Chem. Phys. 18, 17461 (2016)
DOI PMID |
[25] | J.G. Lee, Computational Materials Science: An Introduction, 2nd edn. (CRC, Boca Raton, 2016), pp. 1-67 |
[26] |
O.S. Roik, O.V. Samsonnikov, V.P. Kazimirov, V.E. Sokolskii, S.M. Galushko, J. Mol. Liq. 151, 42 (2010)
DOI URL |
[27] | W.Y. Wang, S. Shang, H.Z. Fang, H. Zhang, Y. Wang, S.N. Mathaudhu, X.D. Hui, Z.K. Liu, Metall. Mater. Trans. A 43, 3471 (2012) |
[28] |
Y. Zhou, P.L. Mao, L. Zhou, Z. Wang, F. Wang, Z. Liu, Mater. Lett. 271, 127774 (2020)
DOI URL |
[29] | Y. Zhou, P.L. Mao, L. Zhou, Z. Wang, F. Wang, Z. Liu, J.Magnesium Alloys 8, 1176 (2020) |
[30] | H. Atkinson, D.Y. Zhang, H.B. Dong, Metall. Mater. Trans. A 47, 1 (2016) |
[31] | P.K. Seo, C.G. Kang, J. Mater. Process. Technol. 162, 402 (2005) |
[32] | J.J. Wang, D. Brabazon, A.B. Phillion, G.M. Lu, Metall. Mater. Trans. A 46, 4191 (2015) |
[33] | T.K. Gu, X.F. Bian, J.Y. Qin, C.Y. Xu, Phys. Rev. B 71, 4206 (2005) |
[34] |
Y.P. Shi, M.F. Liu, Y. Chen, X. Wang, W.L. Mo, D.Z. Li, T. Fa, B. Bai, X.L. Wang, X.Q. Chen, J. Alloys Compd. 787, 267 (2019)
DOI URL |
[35] |
J.F. Jiang, Y. Wang, H.V. Atkinson, Mater. Charact. 90, 52 (2014)
DOI URL |
[36] |
C.P. Wang, Z.J. Tang, H.S. Mei, L. Wang, R.Q. Li, Rare Met. 34, 710 (2015)
DOI URL |
[37] | S.C. Chen, X.Q. Lin, K.Z. Zhu, Y.M. Lu, R.H. Ye, Y. Lin, X.Y. Lin, The Chin. J. Process Eng. 17, 144 (2017) |
[38] | X.T. Fu, Heat Treat. 33, 46 (2018) |
[39] | Y. Zhou, P.L. Mao, L. Zhou, Z. Wang, F. Wang, Z. Liu, J. Mater. Process. Technol. (2019). https://doi.org/10.1016/j.jmatprotec.2020.116679 |
[40] | H. Hao, D.M. Maijer, M.A. Wells, A. Phillion, S.L. Cockcroft, Metall. Mater. Trans. A 41, 2067 ( 2010) |
[41] | H.G. Zhong, X.H. Li, B. Wang, T.M. Wu, Y.H. Zhang, B. Liu, Q.J. Zhai, Met. 9, 25 (2018) |
[42] | X.D. Du, F. Wang, Z. Wang, X.X. Li, Z. Liu, P.L. Mao, Acta Metall. Sin. -Engl. Lett. 33, 1259 (2020) |
[43] |
F.D. Elia, C. Ravindra, D. Sediako, R. Donaberger, Can. Metall. Q. 54, 9 (2014)
DOI URL |
[44] | S. Li, D. Apelian, Int. J. Metalcast. 5, 23 (2011) |
[45] | R.F. Dou, A.B. Phillion, Metall. Mater. Trans. A 47, 4218 (2016) |
[46] |
L. Wang, N. Wang, N. Provatas, Acta Mater. 126, 302 (2017)
DOI URL |
[47] |
L.H. Xiong, H.B. Lou, X.D. Wang, T.T. Debela, Q.P. Cao, D.X. Zhang, S.Y. Wang, C.Z. Wang, J.Z. Jiang, Acta Mater. 68, 1 (2014)
DOI URL |
[48] |
M.C. Ulrich, A. Hashibon, J. Svoboda, C. Elsässer, D. Helm, H. Riedel, Acta Mater. 59, 7634 (2011)
DOI URL |
[49] |
W.Y. Wang, J.J. Han, H.Z. Fang, J. Wang, F.Y. Liang, Acta Mater. 97, 75 (2015)
DOI URL |
[50] | J.L. Li, R.S. Chen, Y.Q. Ma, K. Wei, Acta Metall. Sin. -Engl. Lett. 26, 728 (2013) |
[51] | Y.G. Tan, F. Liu, A.W. Zhang, D.W. Han, X.Y. Yao, Acta Metall. Sin. -Engl. Lett. 32, 120 (2019) |
[52] | Y. Hou, Z.Q. Zhang, W.D. Xuan, J. Wang, J.B. Yu, Z.M. Ren, Acta Metall. Sin. -Engl. Lett. 31, 681 (2018) |
[53] | F. Wang, D. Ma, Z. Wang, P.L. Mao, Z. Liu, Acta Metall. Sin. 52, 1115 (2016) |
[54] |
F.D. Elia, C. Ravindran, D. Sediako, K.U. Kainer, N. Hort, Mater. Des. 64, 44 (2014)
DOI URL |
[55] |
R. Takai, T. Tsunoda, Y. Kawada, R. Hirohara, T. Okane, M. Yoshida, Mater. Trans. 59, 1333 (2018)
DOI URL |
[56] | J.P. Macht, D.M. Maijer, A.B. Phillion, Mater. Trans. A 48, 3370 (2017) |
[1] | Ting-Ting Zhang, Wen-Xian Wang, Jun Zhou, Xiao-Qing Cao, Rui-Shan Xie, Yi Wei. Molecular Dynamics Simulations and Experimental Investigations of Atomic Diffusion Behavior at Bonding Interface in an Explosively Welded Al/Mg Alloy Composite Plate [J]. Acta Metallurgica Sinica (English Letters), 2017, 30(10): 983-991. |
[2] | Yun-Li Li, Wen-Ping Wu, Zhi-Gang Ruan. Molecular Dynamics Simulation of the Evolution of Interfacial Dislocation Network and Stress Distribution of a Ni-Based Single-Crystal Superalloy [J]. Acta Metallurgica Sinica (English Letters), 2016, 29(7): 689-696. |
[3] | Qun Zu, Ya-Fang Guo, Shuang Xu, Xiao-Zhi Tang, Yue-Sheng Wang. Molecular Dynamics Simulations of the Orientation Effect on the Initial Plastic Deformation of Magnesium Single Crystals [J]. Acta Metallurgica Sinica (English Letters), 2016, 29(3): 301-312. |
[4] | Yafang GUO, Xiaozhi TANG, Yuesheng WANG, Zhengdao WANG, Sidney YIP. Compression Deformation Mechanisms at the Nanoscale in Magnesium Single Crystal [J]. Acta Metallurgica Sinica (English Letters), 2013, 26(1): 75-84. |
[5] | Honggang QI, Yafang GUO, Xiaozhi TANG, Shuang XU. Atomistic simulation of the structural evolution in magnesium single crystal under c-axis tension [J]. Acta Metallurgica Sinica (English Letters), 2011, 24(6): 487-494. |
[6] | Q.Y.Zhang, E.Bauer-Grosse. REACTION PROBABILITIES OF ENERGETIC SPECIES AT GROWING DIAMOND FILM SURFACES BY MOLECULAR DYNAMICS SIMULATION [J]. Acta Metallurgica Sinica (English Letters), 2002, 15(1): 131-135 . |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||