Acta Metallurgica Sinica (English Letters) ›› 2021, Vol. 34 ›› Issue (11): 1546-1556.DOI: 10.1007/s40195-021-01282-6
Previous Articles Next Articles
Xiusong Huang1, Lehua Liu2, Weibing Liao1, Jianjun Huang1, Huibin Sun1, Chunyan Yu1()
Received:
2021-04-17
Revised:
2021-05-12
Accepted:
2021-05-17
Online:
2021-07-19
Published:
2021-07-19
Contact:
Chunyan Yu
About author:
Chunyan Yu, yuchunyan@szu.edu.cnXiusong Huang, Lehua Liu, Weibing Liao, Jianjun Huang, Huibin Sun, Chunyan Yu. Characterization of Nucleation Behavior in Temperature-Induced BCC-to-HCP Phase Transformation for High Entropy Alloy[J]. Acta Metallurgica Sinica (English Letters), 2021, 34(11): 1546-1556.
Add to citation manager EndNote|Ris|BibTeX
Fig. 1 a Initial atom model, b corresponding partial pair correlation functions gij(r) for the BCC solid solution of HfNbTaTiZr HEA. As the atoms distribute randomly in the BCC lattice, the gij(r) curves of all the element pairs overlap with each other in Fig. 1b
Fig. 2 a Atomic potential energy, atom fractions, b atom structures during relaxing at 800 K. In order to clearly show the HCP and ‘unknown’ type atoms, BCC type atoms were set invisible in the subfigures (2-5) in Fig. 2b
Fig. 3 a Element distribution, b corresponding partial pair correlation functions gij(r), c structure distribution, d atom fractions in HCP and BCC phases at the final moment 2050 ps
Fig. 9 a Number of HCP and ‘unknown’ type atoms during cooling the atom structure obtained at 90 ps at 800 K (Fig. 5b). Atom types at b 600 K, c 300 K, d 10 K. e Potential energy of the atoms during MD/MC relaxing at 10 K. f Element distribution and atom type after MD/MC relaxing for 50 ps at 10 K
Fig. 10 Distribution functions of the bond length at a 800 K, b 600 K, c 300 K, d 10 K. In the figure, ‘all’ means all atoms while cooling the atoms obtained at 90 ps at 800 K and ‘HCP’ means HCP type atoms while cooling the atoms obtained at 2050 ps at 800 K
[1] |
J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, S.Y. Chang, Adv. Eng. Mater. 6, 299 (2004)
DOI URL |
[2] |
D.B. Miracle, O.N. Senkov, Acta Mater. 122, 448 (2017)
DOI URL |
[3] |
Y. Zhang, T.T. Zuo, Z. Tang, M.C. Gao, K.A. Dahmen, P.K. Liaw, Z.P. Lu, Prog. Mater. Sci. 61, 1 (2014)
DOI URL |
[4] |
F. Otto, A. Dlouhý, K.G. Pradeep, M. Kuběnová, D. Raabe, G. Eggeler, E.P. George, Acta Mater. 112, 40 (2016)
DOI URL |
[5] |
Y.D. Wu, Y.H. Cai, T. Wang, J.J. Si, J. Zhu, Y.D. Wang, X.D. Hui, Mater. Lett. 130, 277 (2014)
DOI URL |
[6] |
S. Jeon, T. Heo, S.Y. Hwang, J. Ciston, W.C. Lee, Science 371, 498 (2021)
DOI URL |
[7] | X.S. Huang, X.X. Dong, L.H. Liu, P.J. Li, J. Non-Cryst, Solids, 503-504 503-504, 182 (2019) |
[8] | X.S. Huang, X.X. Dong, C.M. Yang, F. Tian, L.H. Liu, G.Q. Chen, P.J. Li, J. Non-Cryst, Solids 473, 47 (2017) |
[9] | H. Li, W. Du, Y. Liu, Acta Metall. Sin. -Engl. Lett. 33, 741 (2020) |
[10] | P. Wang, Y.Q. Bu, J.B. Liu, Q.Q. Li, H.T. Wang, W. Yang, Mater. Today 7, 64 (2020) |
[11] |
K. Hsieh, Y. Lin, C. Lu, J. Yang, P.K. Liaw, C. Kuo, Comp. Mater. Sci. 184, 109864 (2020)
DOI URL |
[12] |
Y.M. Qi, X.H. Chen, M.L. Feng, Appl. Phys. A 126, 529 (2020)
DOI URL |
[13] |
Y.M. Qi, M. Zhao, M.L. Feng, J. Alloy. Compd. 851, 156923 (2021)
DOI URL |
[14] |
Q.H. Fang, Y. Chen, J. Li, C. Jiang, B. Liu, Y. Liu, P.K. Liaw, Int. J. Plasticity 114, 161 (2019)
DOI URL |
[15] |
S. Guo, Y. Zhang, H. Chen, X. Li, M. Wang, Vacuum 184, 109953 (2021)
DOI URL |
[16] |
M. Jafary-Zadeh, Z.H. Aitken, R. Tavakoli, Y.W. Zhang, J. Alloy. Compd. 748, 679 (2018)
DOI URL |
[17] |
A. Sharma, S.A. Deshmukh, P.K. Liaw, G. Balasubramanian, Scr. Mater. 141, 54 (2017)
DOI URL |
[18] |
M. Wang, S. Guo, X. Lin, W.D. Huang, Mater. Lett. 285, 129206 (2021)
DOI URL |
[19] |
K. Zhang, S.P. Pan, W.Q. Tang, Y.T. Zhang, B.C. Wei, J. Alloy. Compd. 753, 636 (2018)
DOI URL |
[20] |
W.P. Huhn, M. Widom, JOM-US 65, 1772 (2013)
DOI URL |
[21] | T. Kostiuchenko, F. Koermann, J. Neugebauer, A. Shapeev, N.P.J. Comput, Mater. 5, 55 (2019) |
[22] |
L.J. Santodonato, P.K. Liaw, R.R. Unocic, H. Bei, J.R. Morris, Nat. Commun. 9, 4520 (2018)
DOI PMID |
[23] |
X.S. Huang, L.H. Liu, X.B. Duan, W.B. Liao, J.J. Huang, H.B. Sun, C.Y. Yu, Mater. Des. 202, 109560 (2021)
DOI URL |
[24] |
P. Srinivasan, A.I. Duff, T.A. Mellan, M.H.F. Sluiter, L. Nicola, A. Simone, Model. Simul. Mater. Sci. Eng. 27, 65013 (2019)
DOI URL |
[25] |
W.M. Choi, Y.H. Jo, S.S. Sohn, S. Lee, B.J. Lee, N.P.J. Comput, Mater. 4, 1 (2018)
DOI URL |
[26] |
O.N. Senkov, J.M. Scott, S.V. Senkova, D.B. Miracle, C.F. Woodward, J. Alloy. Compd. 509, 6043 (2011)
DOI URL |
[27] |
O.N. Senkov, J.M. Scott, S.V. Senkova, F. Meisenkothen, D.B. Miracle, C.F. Woodward, J. Mater. Sci. 47, 4062 (2012)
DOI URL |
[28] |
S.Y. Chen, Y. Tong, K.K. Tseng, J.W. Yeh, J.D. Poplawsky, J.G. Wen, M.C. Gao, G. Kim, W. Chen, Y. Ren, R. Feng, W.D. Li, P.K. Liaw, Scr. Mater. 158, 50 (2019)
DOI URL |
[29] |
N.D. Stepanov, N.Y. Yurchenko, S.V. Zherebtsov, M.A. Tik-honovsky, G.A. Salishchev, Mater. Lett. 211, 87 (2018)
DOI URL |
[30] |
O.N. Senkov, A.L. Pilchak, S.L. Semiatin, Metall. Mater. Trans. A 49, 2876 (2018)
DOI URL |
[31] |
B. Schuh, B. Völker, J. Todt, N. Schell, L. Perrière, J. Li, J.P. Couzinié, A. Hohenwarter, Acta Mater. 142, 201 (2018)
DOI URL |
[32] |
O.N. Senkov, S.L. Semiatin, J. Alloy. Compd. 649, 1110 (2015)
DOI URL |
[33] | S. Plimpton, J. Comput. Phys. 117, 1 (1995) |
[34] |
P. Erhart, A. Stukowski, A. Caro, E. Martinez, L. Zepeda-Ruiz, B. Sadigh, Phys. Rev. B 85, 184203 (2012)
DOI URL |
[35] |
A. Stukowski, Model. Simul. Mater. Sci. Eng. 18, 015012 (2010)
DOI URL |
[36] |
A. Stukowski, Model. Simul. Mater. Sci. Eng. 20, 45021 (2012)
DOI URL |
[37] |
J.D. Honeycutt, H.C. Andersen, J. Phys. Chem. 91, 4950 (1987)
DOI URL |
[38] |
Q.J. Li, H. Sheng, E. Ma, Nat. Commun. 10, 3563 (2019)
DOI URL |
[39] | H.L. Hong, Q. Wang, C. Dong, P.K. Liaw, Sci. Rep.-UK 4, 7065 (2014) |
[40] |
Y. Tan, M. Su, Z. Xie, Z. Chen, Y. Gong, L. Zheng, Z. Shi, G. Mo, Y. Li, L. Li, H. Wang, L. Dai, Intermetallics 129, 107050 (2021)
DOI URL |
[41] | F.Y. Tian, Q.M. Hu, L. Vitos, Y.D. Wang, J. Shen, N.X. Chen, H.Q. Song, Phys. Rev. Mater. 1, 23404 (2017) |
[42] |
S. Karthika, T.K. Radhakrishnan, P. Kalaichelvi, Cryst. Growth Des. 16, 6663 (2016)
DOI URL |
[43] |
L. Liu, P. Lazor, X.D. Li, High Pressure Res. 39, 533 (2019)
DOI URL |
[44] |
W.Y. Wang, J. Wang, D.Y. Lin, C.X. Zou, Y.D. Wu, Y.J. Hu, S. Shang, K.A. Darling, Y.G. Wang, X.D. Hui, J.S. Li, L.J. Kecskes, P.K. Liaw, Z. Liu, J. Phase Equilib. Diff. 38, 404 (2017)
DOI URL |
[45] |
Y. Wu, F. Zhang, X.Y. Yuan, H.L. Huang, X.C. Wen, Y.H. Wang, M.Y. Zhang, H.H. Wu, X.J. Liu, H. Wang, S.H. Jiang, Z.P. Lu, J. Mater. Sci. Technol. 62, 214 (2021)
DOI |
[46] |
Q.Q. Ding, Y. Zhang, X. Chen, X.Q. Fu, D.K. Chen, S.J. Chen, L. Gu, F. Wei, H.B. Bei, Y.F. Gao, M.R. Wen, J. Li, Z. Zhang, T. Zhu, R.O. Ritchie, Q. Yu, Nature 574, 223 (2019)
DOI URL |
[47] |
X.F. Chen, Q. Wang, Z.Y. Cheng, M.L. Zhu, H. Zhou, P. Jiang, L.L. Zhou, Q.Q. Xue, F.P. Yuan, J. Zhu, X.L. Wu, E. Ma, Nature 592, 712 (2021)
DOI URL |
[48] |
Z.F. Lei, X.J. Liu, Y. Wu, H. Wang, S.H. Jiang, S.D. Wang, X.D. Hui, Y.D. Wu, B. Gault, P. Kontis, D. Raabe, L. Gu, Q.H. Zhang, H.W. Chen, H.T. Wang, J. Liu, K. An, Q.S. Zeng, T.G. Nieh, Z.P. Lu, Nature 563, 546 (2018)
DOI URL |
[49] | W.Y. Wang, S.L. Shang, Y. Wang, F.B. Han, K.A. Darling, Y.D. Wu, X. Xie, O.N. Senkov, J.S. Li, X.D. Hui, K.A. Dahmen, P.K. Liaw, L.J. Kecskes, Z.K. Liu, N.P.J. Comput, Mater. 3, 23 (2017) |
[50] |
S. Maiti, W. Steurer, Acta Mater. 106, 87 (2016)
DOI URL |
[51] |
W.R. Jian, Z.C. Xie, S.Z. Xu, Y.Q. Su, X.H. Yao, I.J. Beyerlein, Acta Mater. 199, 352 (2020)
DOI URL |
[52] |
P.T. Hung, M. Kawasaki, J.K. Han, J.L. Lábár, J. Gubicza, Mater. Charact. 168, 110550 (2020)
DOI URL |
[53] |
K.B. Zhang, Z.Y. Fu, Intermetallics 22, 24 (2012)
DOI URL |
[54] |
Y. Su, X. Wang, Q. Su, G. Du, Y. Ren, K. Ståhl, Q. Cao, D. Zhang, J. Jiang, J. Alloy. Compd. 859, 157802 (2021)
DOI URL |
[55] |
Y. Peng, F. Wang, Z.R. Wang, A.M. Alsayed, Z.X. Zhang, A.G. Yodh, Y.L. Han, Nat. Mater. 14, 101 (2015)
DOI PMID |
[56] |
H.C. Wang, Y.J. Li, E. Detemple, G. Eggeler, Scr. Mater. 187, 350 (2020)
DOI URL |
[57] |
H.W. Luan, Y. Shao, J.F. Li, W.L. Mao, Z.D. Han, C.L. Shao, K.F. Yao, Scr. Mater. 179, 40 (2020)
DOI URL |
[58] |
X.D. Xu, P. Liu, S. Guo, A. Hirata, T. Fujita, T.G. Nieh, C.T. Liu, M.W. Chen, Acta Mater. 84, 145 (2015)
DOI URL |
[59] |
C. Lee, G. Song, M.C. Gao, R. Feng, P. Chen, J. Brechtl, Y. Chen, K. An, W. Guo, J.D. Poplawsky, S. Li, A.T. Samaei, W. Chen, A. Hu, H. Choo, P.K. Liaw, Acta Mater. 160, 158 (2018)
DOI URL |
[1] | Leipeng Duan, Kang Wang, Engang Wang, Peng Jia. Precipitation of α-Fe from Fe84-xSi4B12+x (x = 1, 3) Amorphous Alloys Under High Magnetic Field Annealing [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(8): 1163-1172. |
[2] | Yan Song, Hongxiang Jiang, Lili Zhang, Shixin Li, Jiuzhou Zhao, Jie He. A Model Describing Solidification Microstructure Evolution in an Inoculated Aluminum Alloys [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(6): 861-871. |
[3] | Ren Li, Jing Ren, Guo-Jia Zhang, Jun-Yang He, Yi-Ping Lu, Tong-Min Wang, Ting-Ju Li. Novel (CoFe2NiV0.5Mo0.2)100-xNbx Eutectic High-Entropy Alloys with Excellent Combination of Mechanical and Corrosion Properties [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(8): 1046-1056. |
[4] | Ning Li, Cun-Lei Jia, Zhi-Wei Wang, Li-Hui Wu, Ding-Rui Ni, Zheng-Kun Li, Hua-Meng Fu, Peng Xue, Bo-Lv Xiao, Zong-Yi Ma, Yi Shao, Yun-Long Chang. Achieving a High-Strength CoCrFeNiCu High-Entropy Alloy with an Ultrafine-Grained Structure via Friction Stir Processing [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(7): 947-956. |
[5] | Hamid Ashrafi, Morteza Shamanian, Rahmatollah Emadi, Ehsan Ghassemali. Void Formation and Plastic Deformation Mechanism of a Cold-Rolled Dual-Phase Steel During Tension [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(2): 299-306. |
[6] | Xin He, Jianbo Zhang, Yuanyi Peng, Jingan Li, Jian Ding, Chang Liu, Xingchuan Xia, Xueguang Chen, Yongchang Liu. Microstructure Evolution of Primary γ′ Phase in Ni3Al-Based Superalloy [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(12): 1709-1726. |
[7] | Dan-Hui Hou, Song-Mao Liang, Rong-Shi Chen, Chuang Dong, En-Hou Han. Effects of Sb Content on Solidification Pathways and Grain Size of AZ91 Magnesium Alloy [J]. Acta Metallurgica Sinica (English Letters), 2015, 28(1): 115-121. |
[8] | Zhongwei CHEN,Cuiying MA,Jing ZHAO . Eutectic nucleation in Al-7 wt pct Si-Mg casting alloys [J]. Acta Metallurgica Sinica (English Letters), 2012, 25(5): 340-346. |
[9] | Gang WANG, Dechang ZENG, Zhongwu LIU. Nucleation barrier height in undercooled metallic melts [J]. Acta Metallurgica Sinica (English Letters), 2012, 25(4): 256-264. |
[10] | Renguo GUAN, Zhanyong ZHAO,Runze CHAO, Hongqian HUANG,Chunming LIU. Heat transfer and grain refining mechanism during melt treatment by cooling sloping plate [J]. Acta Metallurgica Sinica (English Letters), 2012, 25(4): 320-328. |
[11] | Keijiro HIRAGA, Byung-Nam KIM, Koji MORITA, Hidehiro YOSHIDA, Yoshio SAKKA, Masaaki TABUCHI. High-strain-rate superplasticity in oxide ceramics: a trial of microstructural design based on creep-cavitation mechanisms [J]. Acta Metallurgica Sinica (English Letters), 2011, 24(3): 195-204. |
[12] | . Rheocasting of A356 alloy by Low Superheat Pouring with a Shearing Field [J]. Acta Metallurgica Sinica (English Letters), 2006, 19(5): 328-334 . |
[13] | Z. Zhang, W.H. Leng , J.Q. Zhang. STUDY OF THE INFLUENCE OF pH ON THE ELECTROCRYSTALLIZATION OF ZINC [J]. Acta Metallurgica Sinica (English Letters), 2005, 18(4): 497-504 . |
[14] | X.G.Zhou, X.M.Zhao, Y.B.Xu, D.Wu. CALCULATION OF TRANSFORMATION VOLUME FRACTION TO HQ590 HOT ROLLED STRIP STEEL DURING CONTINUOUS COOLING [J]. Acta Metallurgica Sinica (English Letters), 2004, 17(5): 754-760 . |
[15] | K.J.Kim. EFFECTS OF MODIFICATION OF THE CARBIDE CHARACTERISTICS THROUGH GRAIN BOUNDARY SERRATION ON CREEP-FATIGUE LIFE IN AUSTENITIC STAINLESS STEELS [J]. Acta Metallurgica Sinica (English Letters), 2004, 17(5): 632-638 . |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||