Acta Metallurgica Sinica (English Letters) ›› 2024, Vol. 37 ›› Issue (10): 1643-1656.DOI: 10.1007/s40195-024-01728-7
Chao Xiang1,2, En-Hou Han1,2(), Zhiming Zhang1, Huameng Fu3, Haifeng Zhang3, Jianqiu Wang2, Guodong Hu4,5
Received:
2023-12-18
Revised:
2024-02-21
Accepted:
2024-03-13
Online:
2024-10-10
Published:
2024-06-20
Contact:
En-Hou Han, ehhan@icost.ac.cn.Chao Xiang, En-Hou Han, Zhiming Zhang, Huameng Fu, Haifeng Zhang, Jianqiu Wang, Guodong Hu. Microstructure, Mechanical Properties and Corrosion Resistance of the Mo0.5V0.5NbTiZrx High-Entropy Alloys with Low Thermal Neutron Sections[J]. Acta Metallurgica Sinica (English Letters), 2024, 37(10): 1643-1656.
Add to citation manager EndNote|Ris|BibTeX
Fig. 1 a ΔHmix-δ; b ΔSmix-δ; c Ω-δ plots for the MoVNbTiZrx, Mo0.5VNbTiZrx, Mo0.5V0.5NbTiZrx, Mo0.5VNb0.5TiZrx, and Mo0.5V0.5Nb0.5TiZrx (x = 0, 0.25, 0.5, 0.75, 1.0, 1.5 and 2.0) alloy systems. The content of Zr increases from left to right in each plot
Element | ρ (g/cm3) | r (Å) | Tm (°C) | a (Å) | HV (kgf/mm2) | σA (barn) |
---|---|---|---|---|---|---|
Mo | 10.28 | 1.36 | 2623 | 3.147 | 156 | 2.48 |
V | 6.11 | 1.32 | 1910 | 3.024 | 64 | 5.08 |
Nb | 8.57 | 1.43 | 2477 | 3.301 | 135 | 1.15 |
Ti | 4.51 | 1.46 | 1668 | 3.276 | 99 | 6.09 |
Zr | 6.51 | 1.6 | 1855 | 3.582 | 92 | 0.185 |
Table 1 Density (ρ), atomic radius (r), melting point (Tm), lattice constant (a), Vickers hardness (HV), Young’s modulus (E), thermal neutron absorption cross section (σA) of the pure Mo, V, Nb, Ti, and Zr elements [3,40,41,50]
Element | ρ (g/cm3) | r (Å) | Tm (°C) | a (Å) | HV (kgf/mm2) | σA (barn) |
---|---|---|---|---|---|---|
Mo | 10.28 | 1.36 | 2623 | 3.147 | 156 | 2.48 |
V | 6.11 | 1.32 | 1910 | 3.024 | 64 | 5.08 |
Nb | 8.57 | 1.43 | 2477 | 3.301 | 135 | 1.15 |
Ti | 4.51 | 1.46 | 1668 | 3.276 | 99 | 6.09 |
Zr | 6.51 | 1.6 | 1855 | 3.582 | 92 | 0.185 |
Fig. 2 a Non-equilibrium solidification simulation for the Mo0.5V0.5NbTiZrx (x = 0, 0.25, 0.5, 0.75, 1.0, 1.5, and 2.0) alloys using Scheil-Gulliver models. Calculated equilibrium phase diagrams for the b Zr0, c Zr0.25, d Zr0.5, e Zr0.75, f Zr1.0, g Zr1.5, and h Zr2.0 alloys
Alloy | Tliq (°C) | Tsol (°C) | Tdec (°C) | (Tsol−Tdec)/Tdec | Phase constitution and volume fraction |
---|---|---|---|---|---|
Zr0 | 2162 | 1997 | 595 | 0.62 | BCC#1 (0.78) + HCP (0.22) |
Zr0.25 | 2110 | 1897 | 795 | 0.55 | BCC#1 (0.58) + BCC#2 (0.38) + HCP (0.04) |
Zr0.5 | 2066 | 1835 | 926 | 0.43 | BCC#1 (0.49) + BCC#2 (0.51) |
Zr0.75 | 2027 | 1797 | 1011 | 0.38 | BCC#1 (0.44) + BCC#2 (0.56) |
Zr1.0 | 1991 | 1773 | 1069 | 0.34 | BCC#1 (0.40) + BCC#2 (0.60) |
Zr1.5 | 1929 | 1746 | 1140 | 0.30 | BCC#1 (0.34) + BCC#2 (0.66) |
Zr2.0 | 1877 | 1733 | 1177 | 0.28 | BCC#1 (0.29) + BCC#2 (0.71) |
Table 2 Calculated liquidus temperature (Tliq), solidus temperature (Tsol), decomposition temperature (Tdec), the ratio ((Tsol−Tdec)/Tdec)) value, equilibrium phase constitution and volume fraction at 500 °C of the Mo0.5V0.5NbTiZrx (x = 0, 0.25, 0.5, 0.75, 1.0, 1.5 and 2.0) alloys
Alloy | Tliq (°C) | Tsol (°C) | Tdec (°C) | (Tsol−Tdec)/Tdec | Phase constitution and volume fraction |
---|---|---|---|---|---|
Zr0 | 2162 | 1997 | 595 | 0.62 | BCC#1 (0.78) + HCP (0.22) |
Zr0.25 | 2110 | 1897 | 795 | 0.55 | BCC#1 (0.58) + BCC#2 (0.38) + HCP (0.04) |
Zr0.5 | 2066 | 1835 | 926 | 0.43 | BCC#1 (0.49) + BCC#2 (0.51) |
Zr0.75 | 2027 | 1797 | 1011 | 0.38 | BCC#1 (0.44) + BCC#2 (0.56) |
Zr1.0 | 1991 | 1773 | 1069 | 0.34 | BCC#1 (0.40) + BCC#2 (0.60) |
Zr1.5 | 1929 | 1746 | 1140 | 0.30 | BCC#1 (0.34) + BCC#2 (0.66) |
Zr2.0 | 1877 | 1733 | 1177 | 0.28 | BCC#1 (0.29) + BCC#2 (0.71) |
Fig. 3 Composition versus temperature of a BCC#1 phase and b BCC#2 phase of the Zr0.25 alloy. Composition versus temperature of c BCC#1 phase and d BCC#2 phase of the Zr1.5 alloy
Fig. 4 a X-ray diffraction patterns of the Mo0.5V0.5NbTiZrx (x = 0, 0.25, 0.5, 0.75, 1.0, 1.5 and 2.0) alloys after HIP and annealing at 1200 °C for 24 h, b the enlarged (110) peaks of the BCC phase
Fig. 5 SEM backscattered electron images of the annealed Mo0.5V0.5NbTiZrx alloys with lower (left) and higher (right) magnifications: a Zr0, b Zr0.25, c Zr0.5, d Zr0.75, e Zr1.0, f Zr1.5, g Zr2.0
Alloy | Region | Mo | V | Nb | Ti | Zr |
---|---|---|---|---|---|---|
Zr0 | Nominal | 16.67 | 16.67 | 33.33 | 33.33 | - |
Overall | 16.32 ± 0.19 | 16.25 ± 0.51 | 34.03 ± 0.21 | 33.40 ± 0.48 | - | |
Dendrite | 22.29 ± 0.32 | 14.16 ± 0.27 | 35.33 ± 0.54 | 28.22 ± 0.23 | - | |
Interdendrite | 18.03 ± 0.36 | 17.76 ± 0.54 | 32.14 ± 0.51 | 32.07 ± 0.24 | - | |
Zr0.25 | Nominal | 15.38 | 15.38 | 30.77 | 30.77 | 7.70 |
Overall | 14.74 ± 0.45 | 14.85 ± 0.37 | 30.04 ± 0.13 | 29.98 ± 0.42 | 10.39 ± 0.08 | |
Zr0.5 | Nominal | 14.28 | 14.28 | 28.58 | 28.58 | 14.28 |
Overall | 16.26 ± 0.18 | 13.60 ± 0.52 | 30.21 ± 0.49 | 25.38 ± 0.06 | 14.55 ± 0.43 | |
Zr0.75 | Nominal | 13.33 | 13.33 | 26.67 | 26.67 | 20.00 |
Overall | 13.67 ± 0.19 | 12.01 ± 0.11 | 26.78 ± 0.23 | 26.05 ± 0.27 | 21.48 ± 0.23 | |
Zr1.0 | Nominal | 12.50 | 12.50 | 25.00 | 25.00 | 25.00 |
Overall | 12.33 ± 0.35 | 11.40 ± 0.48 | 24.90 ± 0.09 | 24.87 ± 0.53 | 26.49 ± 0.35 | |
Zr1.5 | Nominal | 11.11 | 11.11 | 22.22 | 22.22 | 33.34 |
Overall | 9.90 ± 0.31 | 10.66 ± 0.11 | 20.78 ± 0.30 | 21.94 ± 0.30 | 36.72 ± 0.39 | |
Zr2.0 | Nominal | 10.00 | 10.00 | 20.00 | 20.00 | 40.00 |
Overall | 9.29 ± 0.73 | 9.64 ± 0.45 | 19.22 ± 0.18 | 19.30 ± 0.27 | 42.55 ± 0.13 |
Table 3 Chemical composition (in at%) of the annealed Mo0.5V0.5NbTiZrx alloys measured by EDS
Alloy | Region | Mo | V | Nb | Ti | Zr |
---|---|---|---|---|---|---|
Zr0 | Nominal | 16.67 | 16.67 | 33.33 | 33.33 | - |
Overall | 16.32 ± 0.19 | 16.25 ± 0.51 | 34.03 ± 0.21 | 33.40 ± 0.48 | - | |
Dendrite | 22.29 ± 0.32 | 14.16 ± 0.27 | 35.33 ± 0.54 | 28.22 ± 0.23 | - | |
Interdendrite | 18.03 ± 0.36 | 17.76 ± 0.54 | 32.14 ± 0.51 | 32.07 ± 0.24 | - | |
Zr0.25 | Nominal | 15.38 | 15.38 | 30.77 | 30.77 | 7.70 |
Overall | 14.74 ± 0.45 | 14.85 ± 0.37 | 30.04 ± 0.13 | 29.98 ± 0.42 | 10.39 ± 0.08 | |
Zr0.5 | Nominal | 14.28 | 14.28 | 28.58 | 28.58 | 14.28 |
Overall | 16.26 ± 0.18 | 13.60 ± 0.52 | 30.21 ± 0.49 | 25.38 ± 0.06 | 14.55 ± 0.43 | |
Zr0.75 | Nominal | 13.33 | 13.33 | 26.67 | 26.67 | 20.00 |
Overall | 13.67 ± 0.19 | 12.01 ± 0.11 | 26.78 ± 0.23 | 26.05 ± 0.27 | 21.48 ± 0.23 | |
Zr1.0 | Nominal | 12.50 | 12.50 | 25.00 | 25.00 | 25.00 |
Overall | 12.33 ± 0.35 | 11.40 ± 0.48 | 24.90 ± 0.09 | 24.87 ± 0.53 | 26.49 ± 0.35 | |
Zr1.5 | Nominal | 11.11 | 11.11 | 22.22 | 22.22 | 33.34 |
Overall | 9.90 ± 0.31 | 10.66 ± 0.11 | 20.78 ± 0.30 | 21.94 ± 0.30 | 36.72 ± 0.39 | |
Zr2.0 | Nominal | 10.00 | 10.00 | 20.00 | 20.00 | 40.00 |
Overall | 9.29 ± 0.73 | 9.64 ± 0.45 | 19.22 ± 0.18 | 19.30 ± 0.27 | 42.55 ± 0.13 |
Fig. 9 a Engineering stress-strain curves, and b yield strength (σ0.2), compressive strength (σp), and fracture strain (εf) for the Mo0.5V0.5NbTiZrx (x = 0, 0.25, 0.5, 0.75, 1.0, 1.5 and 2.0) alloys
Fig. 10 Fracture morphologies of a-c Zr0 alloy, and d-f Zr0.25 alloy. Both alloys show a mixed fracture mode of transgranular fracture and intergranular fracture, and slip bands are seen from c and f
Fig. 11 Fracture morphologies of a Zr0.5; b Zr0.75; c Zr1.0; d Zr1.5; and e Zr2.0 alloys. These five alloys also exhibit a mixed fracture mode of transgranular and intergranular fractures. However, the slip bands are not observed
Fig. 12 Weight gain of the Zr0, Zr0.25, Zr0.5, Zr0.75, Zr1.0, Zr1.5 and Zr2.0 alloys after corrosion tests in superheated steam at 400 °C and 10.3 MPa for 30 days. The results were compared with the Zr-4 alloy
Fig. 13 Surface and cross-sectional morphologies of the Zr0, Zr0.5, Zr1.0, and Zr2.0 alloys after corrosion tests in superheated steam at 400 °C and 10.3 MPa for 30 days a-c Zr0 alloy, d-f Zr0.5 alloy, g-i Zr1.0 alloy, j-l Zr2.0 alloy
[1] | J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, S.Y. Chang, Adv. Eng. Mater. 6, 299 (2004) |
[2] | B. Cantor, I.T.H. Chang, P. Knight, A.J.B. Vincent, Mater. Sci. Eng. A 375-377, 213 (2004) |
[3] | O.N. Senkov, G.B. Wilks, D.B. Miracle, C.P. Chuang, P.K. Liaw, Intermetallics 18,1758 (2010) |
[4] | N.D. Stepanov, D.G. Shaysultanov, G.A. Salishchev, M.A. Tikhonovsky, Mater. Lett. 142, 153 (2015) |
[5] | Z.M. Li, K.G. Pradeep, Y. Deng, D. Raabe, C.C. Tasan, Nature 534,227 (2016) |
[6] |
B. Gludovatz, A. Hohenwarter, D. Catoor, E.H. Chang, E.P. George, R.O. Ritchie, Science 345,1153 (2014)
DOI PMID |
[7] |
T. Yang, Y.L. Zhao, Y. Tong, Z.B. Jiao, J. Wei, J.X. Cai, X.D. Han, D. Chen, A. Hu, J.J. Kai, K. Lu, Y. Liu, C.T. Liu, Science 362,933 (2018)
DOI PMID |
[8] | S.J. Sun, Y.Z. Tian, X.H. An, H.R. Lin, J.W. Wang, Z.F. Zhang, Mater. Today Nano 4, 46 (2018) |
[9] | Q.Y. Zhou, S. Sheikh, P. Ou, D.C. Chen, Q. Hu, S. Guo, Electrochem. Commun. 98, 63 (2019) |
[10] | K.F. Quiambao, S.J. McDonnell, D.K. Schreiber, A.Y. Gerard, K.M. Freedy, P. Lu, J.E. Saal, G.S. Frankel, J.R. Scully, Acta Mater. 164, 362 (2019) |
[11] | S.S. Nene, M. Frank, K. Liu, S. Sinha, R.S. Mishra, B.A. McWilliams, K.C. Cho, Scr. Mater. 166, 168 (2019) |
[12] | C. Xiang, J.Z. Wang, H.M. Fu, E.H. Han, H.F. Zhang, J.Q. Wang, Z.M. Zhang, J. Chi. Soc. Corr. Prot. 36, 107 (2016) |
[13] | N.A.P.K. Kumar, C. Li, K.J. Leonard, H. Bei, S.J. Zinkle, Acta Mater. 113, 230 (2016) |
[14] | T. Nagase, P.D. Rack, J.H. Noh, T. Egami, Intermetallics 59,32 (2015) |
[15] | T. Yang, C.Y. Lu, G. Velisa, K. Jin, P.Y. Xiu, Y.W. Zhang, H.B. Bei, L.M. Wang, Scr. Mater. 158, 57 (2019) |
[16] | T. Egami, M. Ojha, O. Khorgolkhuu, D.M. Nicholson, G.M. Stocks, JOM 67,2345 (2015) |
[17] | Y.P. Lu, H.F. Huang, X.Z. Gao, C.L. Ren, J. Gao, H.Z. Zhang, S.J. Zheng, Q.Q. Jin, Y.H. Zhao, C.Y. Lu, T.M. Wang, T. Li, J. Mater. Sci. Technol. 35, 369 (2018) |
[18] | J.W. Yeh, Ann. Chim. Sci. Mat. 31, 633 (2006) |
[19] | Z.G. Duan, H.L. Yang, Y. Satoh, K. Murakami, S. Kano, Z.S. Zhao, J.J. Shen, H. Abe, Nucl. Eng. Des. 316, 131 (2017) |
[20] | S.J. Zinkle, G.S. Was, Acta Mater. 61, 735 (2013) |
[21] | W. Steurer, Mater. Charact. 162, 110179 (2020) |
[22] | O.N. Senkov, D.B. Miracle, J. Alloys Compd. 658, 603 (2016) |
[23] | D.J.M. King, S.C. Middleburgh, A.G. McGregor, M.B. Cortie, Acta Mater. 104, 172 (2016) |
[24] | M. Wu, S. Wang, H. Huang, D. Shu, B. Sun, Mater. Lett. 262, 127175 (2020) |
[25] | O.N. Senkov, C. Zhang, A.L. Pilchak, E.J. Payton, C. Woodward, F. Zhang, J. Alloys Compd. 783, 729 (2019) |
[26] | F.Q. Zhang, C. Xiang, E.H. Han, Z.J. Zhang, Acta Metall. Sin. -Engl. Lett. 35, 1641 (2022) |
[27] |
C. Xiang, E.H. Han, Z.M. Zhang, H.M. Fu, J.Q. Wang, H.F. Zhang, G.D. Hu, Intermetallics 104,143 (2019)
DOI |
[28] | Y. Zhang, Y.J. Zhou, J.P. Lin, G.L. Chen, P.K. Liaw, Adv. Eng. Mater. 10, 534 (2008) |
[29] | X. Yang, Y. Zhang, Mater. Chem. Phys. 132, 233 (2012) |
[30] | Y. Zhang, X. Yang, P.K. Liaw, JOM 64,830 (2012) |
[31] | Y.D. Wu, Y.H. Cai, X.H. Chen, T. Wang, J.J. Si, L. Wang, Y.D. Wang, X.D. Hui, Mater. Des. 83, 651 (2015) |
[32] | O.N. Senkov, S. Rao, K.J. Chaput, C. Woodward, Acta Mater. 151, 201 (2018) |
[33] | N.Y. Yurchenko, N.D. Stepanov, S.V. Zherebtsov, M.A. Tikhonovsky, G.A. Salishchev, Mater. Sci. Eng. A 704, 82 (2017) |
[34] | G. Chen, Y. Xiao, X. Ji, X. Liang, Y. Hu, Z. Cai, J. Liu, Y. Tong, Metals 11,1315 (2021) |
[35] | T. Li, J. Miao, Y. Lu, T. Wang, T. Li, Int. J. Refract. Met. Hard Mater. 103, 105762 (2022) |
[36] | S. Wang, S. Lu, M. Wu, D. Wang, G. Zhu, C. Yang, D. Shu, B. Sun, L. Vitos, Mater. Sci. Eng. A 832, 142476 (2022) |
[37] | J. Chen, P. Niu, Y. Liu, Y. Lu, X. Wang, Y. Peng, J. Liu, Mater. Des. 94, 39 (2016) |
[38] | N.Y. Yurchenko, N.D. Stepanov, A.O. Gridneva, M.V. Mishunin, G.A. Salishchev, S.V. Zherebtsov, J. Alloys Compd. 757, 403 (2018) |
[39] | https://www.ncnr.nist.gov/resources/n-lengths/elements/, (Accessed 28 January 2024). |
[40] | https://www.webelements.com, (Accessed 28 January 2024). |
[41] | O.N. Senkov, D.B. Miracle, Mater. Res. Bull. 36, 2183 (2001) |
[42] | C. Xiang, H.M. Fu, Z.M. Zhang, E.H. Han, H.F. Zhang, J.Q. Wang, G.D. Hu, J. Alloys Compd. 818, 153352 (2020) |
[43] |
O.N. Senkov, J.D. Miller, D.B. Miracle, C. Woodward, Nat. Commun. 6, 6529 (2015)
DOI PMID |
[44] | D.B. Miracle, O.N. Senkov, Acta Mater. 122, 448 (2017) |
[45] | M.C. Troparevsky, J.R. Morris, P.R.C. Kent, A.R. Lupini, G.M. Stocks, Phys. Rev. 5, 011041 (2015) |
[46] | J.W. Yeh, JOM 65,1759 (2013) |
[47] | H.F. Sheng, M. Gong, L.M. Peng, Mater. Sci. Eng. A 567, 14 (2013) |
[48] | A. Munitz, M.J. Kaufman, M. Nahmany, N. Derimow, R. Abbaschian, Mater. Sci. Eng. A 714, 146 (2017) |
[49] | O.N. Senkov, S.V. Senkova, C. Woodward, D.B. Miracle, Acta Mater. 61, 1545 (2013) |
[50] | O.N. Senkov, C.F. Woodward, Mater. Sci. Eng. A 529, 311 (2011) |
[51] | G.H. Gulliver, J. Inst. Met. 9, 120 (1913) |
[52] | E. Scheil, Z. Metallkd. 34, 70 (1942) |
[53] | M.C. Gao, Design of high-entropy alloys, in High-entropy Alloys: fundamentals and applications. ed. by M.C. Gao, J.W. Yeh, P.K. Liaw, Y. Zhang (Springer, Cham, 2016), p. 375 |
[54] | S. Guo, C. Ng, J. Lu, C.T. Liu, J. Appl. Phys. 109, 103505 (2011) |
[55] | Y. Tong, G. Velisa, S. Zhao, W. Guo, T. Yang, K. Jin, C. Lu, H. Bei, J.Y.P. Ko, D.C. Pagan, Y. Zhang, L. Wang, F.X. Zhang, Materialia 2,73 (2018) |
[56] | N.G. Jones, L.R. Owen, J. Mater. Res. 33, 2954 (2018) |
[57] | B. Zhang, Y. Mu, M.C. Gao, W.J. Meng, S.M. Guo, MRS Commun. 7, 78 (2017) |
[58] | Z.D. Han, H.W. Luan, X. Liu, N. Chen, X.Y. Li, Y. Shao, K.F. Yao, Mater. Sci. Eng. A 712, 380 (2018) |
[59] | W.M. Choi, S. Jung, Y.H. Jo, S. Lee, B.J. Lee, Met. Mater. Int. 23, 839 (2017) |
[60] | T.M. Butler, M.L. Weaver, J. Alloys Compd. 691, 119 (2017) |
[61] | S. Gorsse, F. Tancret, J. Mater. Res. 33, 2899 (2018) |
[62] |
D.J.M. King, S.T.Y. Cheung, S.A. Humphry-Baker, C. Parkin, A. Couet, M.B. Cortie, G.R. Lumpkin, S.C. Middleburgh, A.J. Knowles, Acta Mater. 166, 435 (2019)
DOI |
[63] | M.C. Gao, C.S. Carney, Ö.N. Doğan, P.D. Jablonksi, J.A. Hawk, D.E. Alman, JOM 67,2653 (2015) |
[64] | I. Toda-Caraballo, P.E.J. Rivera-Diaz-del-Castillo, Intermetallics 71,76 (2016) |
[65] | J.W. Yeh, JOM 67,2254 (2015) |
[66] | Y. Zhang, T.T. Zuo, Z. Tang, M.C. Gao, K.A. Dahmen, P.K. Liaw, Z.P. Lu, Prog. Mater. Sci. 61, 1 (2014) |
[67] | Z. Wang, Q. Fang, J. Li, B. Liu, Y. Liu, J. Mater. Sci. Technol. 34, 349 (2018) |
[68] | H. Wang, Q. He, X. Gao, Y. Shang, W. Zhu, W. Zhao, Z. Chen, H. Gong, Y. Yang, Adv. Mater. 36, 2305453 (2024) |
[69] | R.E. Smallman, A.H.W. Ngan, Chapter 9 - Plastic Deformation and Dislocation Behaviour, in Modern physical metallurgy (Eighth Edition). ed. by R.E. Smallman, A.H.W. Ngan (Butterworth-Heinemann, Oxford, 2014), p.357 |
[70] | J. Yan, W. Fang, J. Huang, J. Zhang, R. Chang, X. Zhang, B. Liu, J. Feng, F. Yin, Mater. Sci. Eng. A 814, 141181 (2021) |
[71] | K. Ming, X. Bi, J. Wang, Int. J. Plast. 113, 255 (2019) |
[72] | Y.M. Wang, C.H. Zhang, W.G. Zhu, X.K. Zeng, Titanium Ind. Prog. 39, 42 (2022) |
[1] | Hongwei Yan, Yong’an Zhang, Wei Xiao, Boyu Xue, Rui Liu, Xiwu Li, Zhihui Li, Baiqing Xiong. Experimental and DFT Investigations of AlNbTiVZr High Entropy Alloys with Excellent Mechanical Properties [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(9): 1480-1490. |
[2] | Zirui Chen, Liyuan Wang, Jiayu Zhao, Guanhua Cui, Zhuo Gao, Zhiyuan Fan, Xiaohui Shi, Junwei Qiao. Microstructure and Mechanical Properties of the Ti62Nb12Mo12Ta12W2 Refractory High Entropy Alloy Prepared through Spark Plasma Sintering [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(8): 1387-1398. |
[3] | Shasha Qu, Yingju Li, Bingyu Lu, Cuiping Wang, Yuansheng Yang. Effects of Boron Addition on the Microstructure and Mechanical Properties of γ′-Strengthened Directionally Solidified CoNi-Base Superalloy [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(8): 1438-1452. |
[4] | Guan-Cheng Gu, Zhao-Jing Han, Ze-Yu Chen, Zhao-Xuan Li, Sheng-Bao Xia, Zheng-Ning Li, Hua Jin, Wei-Wei Xu, Xing-Jun Liu. Theoretical Exploration of Alloying Effects on Stabilities and Mechanical Properties of γʹ Phase in Novel Co-Al-Nb-Base Superalloys [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(7): 1238-1248. |
[5] | Qi-Yu Liao, Da-Zhi Zhao, Qi-Chi Le, Wen-Xin Hu, Yan-Chao Jiang, Wei-Yang Zhou, Liang Ren, Dan-Dan Li, Zhao-Yang Yin. Effect of Artificial Cooling Extrusion on Microstructure and Mechanical Properties of Mg-Zn-Y Alloys [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(7): 1115-1127. |
[6] | Ziyue Xu, Huan Liu, Luyao Li, Chao Sun, Xi Tan, Baishan Chen, Qiangsheng Dong, Yuna Wu, Jinghua Jiang, Jiang Ma. Effect of Room Temperature Ultrasonic Vibration Compression on the Microstructure Evolution and Mechanical Properties of AZ91 Alloy [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(7): 1135-1146. |
[7] | Xiaoxue Wang, Jingjing Guo, Zihao Zeng, Peng Zhou, Rongqiao Wang, Xiuchun Liu, Kai Gao, Jingli Sun, Yong Yuan, Fuhui Wang. A Semi-Mechanistic Model for Predicting the Service Life of Composite Coatings on VW63Z Magnesium Alloy [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(7): 1161-1176. |
[8] | Ivana Cvijović-Alagić, Slađana Laketić, Miloš Momčilović, Jovan Ciganović, Jelena Bajat, Vesna Kojić. Impact of Microstructural and Surface Modifications on the Ti-45Nb Alloy’s Response to Bio-Environment [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(7): 1215-1230. |
[9] | Bishan Cheng, Depeng Li, Baikang Xing, Ruiqing Hou, Pingli Jiang, Shijie Zhu, Shaokang Guan. Effect of Ca Micro-Alloying on the Microstructure and Anti-Corrosion Property of Mg0.5Zn0.2Ge Alloy [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(7): 1147-1160. |
[10] | Xiaofeng Ding, Zehao Wu, Tong Li, Jianxun Chen, Yuanhua Shuang, Baosheng Liu. Effect of Three-High Rotary Piercing Process on Microstructure, Texture and Mechanical Properties of Magnesium Alloy Seamless Tube [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(6): 953-968. |
[11] | Hong-Wei Zhang, Li-Wei Lan, Zhe-Yu Yang, Chang-Chun Li, Wen-Xian Wang. Microstructure Evolution and Nanomechanical Behavior of Micro-Area in Molten Pool of Selective Laser Melting (CoCrNi)82Al9Ti9 High-Entropy Alloy [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(6): 1019-1033. |
[12] | Huanzhi Zhang, Tianxin Li, Qianqian Wang, Zhenbo Zhu, Hefei Huang, Yiping Lu. Effects of Nitrogen Doping on Microstructures and Irradiation Resistance of Ti-Zr-Nb-V-Mo Refractory High-Entropy Alloy [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(6): 1007-1018. |
[13] | Iman Ansarian, Reza Taghiabadi, Saeid Amini, Mohammad Hossein Mosallanejad, Luca Iuliano, Abdollah Saboori. Improvement of Surface Mechanical and Tribological Characteristics of L-PBF Processed Commercially Pure Titanium through Ultrasonic Impact Treatment [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(6): 1034-1046. |
[14] | Peng Chen, Wenhao Chen, Jiaxin Chen, Zhiyu Chen, Yang Tang, Ge Liu, Bensheng Huang, Zhiqing Zhang. Microstructure Evolution and Mechanical Properties of Friction Stir Welded Al-Cu-Li Alloy [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(5): 855-871. |
[15] | Xiang Kong, Yu Wang, Hong Xu, Haotian Fan, Yuewu Zheng, Beibei Xie. NbB2 Modified Al-Cu Alloys Fabricated by Freeze-Ablation Casting under High Cooling Rate Solidification [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(5): 921-938. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||