Acta Metallurgica Sinica (English Letters) ›› 2022, Vol. 35 ›› Issue (9): 1572-1582.DOI: 10.1007/s40195-022-01383-w
Jiawei Tang1,2, Yiren Wang1,2, Yong Jiang1,2(), Jiangang Yao2, Hao Zhang3
Received:
2021-10-25
Revised:
2021-11-27
Accepted:
2021-12-07
Online:
2022-09-10
Published:
2022-01-31
Contact:
Yong Jiang
About author:
Yong Jiang, yjiang@csu.edu.cnJiawei Tang, Yiren Wang, Yong Jiang, Jiangang Yao, Hao Zhang. Solute Segregation to Grain Boundaries in Al: A First-Principles Evaluation[J]. Acta Metallurgica Sinica (English Letters), 2022, 35(9): 1572-1582.
Add to citation manager EndNote|Ris|BibTeX
Fig. 1 SU models of a group of low-Σ symmetric tilt Al GBs with the [110] or [001] tilt axes. The dark blue and light blue balls denote Al atoms on different (110) or (001) planes, respectively. Along the GB planes, three different types of SUs can be identified using yellow, green, and blue shadows
GB structure | θ (deg) | N | γGB (mJ/m2) | |
---|---|---|---|---|
This work | Other calc | |||
Σ3(111)[ | 109.5 | 192 | 71.8 | DFT: 51.4 [ MD: 11 [ |
Σ3(112)[ | 70.5 | 184 | 444.5 | DFT: 384.8 [ MD: 280 [ |
Σ5(210)[ | 53.1 | 160 | 513.5 | DFT: 515.2 [ |
Σ5(310)[ | 36.9 | 152 | 588.9 | DFT: 482.8 [ MD: 440 [ |
Σ9(221)[ | 141.2 | 210 | 511.3 | DFT: 484.7 [ MD: 437 [ |
Σ11(113)[ | 50.5 | 176 | 151.9 | DFT: 155.8 [ MD: 131 [ |
Σ13(320)[ | 67.4 | 200 | 448.6 | DFT: 451.5 [ MD: 420 [ |
Σ13(510)[ | 22.6 | 196 | 625.7 | DFT: 619.7 [ MD: 490 [ |
Table 1 Calculated formation energies of eight low-Σ Al STGBs in comparison with other available calculations in literatures
GB structure | θ (deg) | N | γGB (mJ/m2) | |
---|---|---|---|---|
This work | Other calc | |||
Σ3(111)[ | 109.5 | 192 | 71.8 | DFT: 51.4 [ MD: 11 [ |
Σ3(112)[ | 70.5 | 184 | 444.5 | DFT: 384.8 [ MD: 280 [ |
Σ5(210)[ | 53.1 | 160 | 513.5 | DFT: 515.2 [ |
Σ5(310)[ | 36.9 | 152 | 588.9 | DFT: 482.8 [ MD: 440 [ |
Σ9(221)[ | 141.2 | 210 | 511.3 | DFT: 484.7 [ MD: 437 [ |
Σ11(113)[ | 50.5 | 176 | 151.9 | DFT: 155.8 [ MD: 131 [ |
Σ13(320)[ | 67.4 | 200 | 448.6 | DFT: 451.5 [ MD: 420 [ |
Σ13(510)[ | 22.6 | 196 | 625.7 | DFT: 619.7 [ MD: 490 [ |
Fig. 2 Calculated GB vacancy formation energies versus GB formation energies of all the low-Σ Al STGBs. The red dotted line denotes the bulk vacancy formation energy in Al. The layer numbers in parentheses locate the most energy-favored vacancy sites at these GBs
Fig. 3 Calculated segregation energies of alloying elements at low-Σ Al STGBs. A total of twelve elements are considered, including under-sized elements Ni, Co, Fe and Cu, similar-sized elements Si, Zn, Ag, and Ti, and over-sized elements Mg, Zr, Sc, and Er
Fig. 4 Calculated segregation energies (${\Delta E}_{\mathrm{seg}}$ and ${\Delta E}_{\mathrm{seg}}^{\mathrm{vac}}$) for various solute elements at different Al STGBs without and with GB vacancies, $\mathrm{as}$ marked using blue and red bars, respectively. Right next to the bars are the corresponding segregation sites, including substitutional sites (L0 to L2), interstitial sites (Int), vacancy sites (Vac), as well as the first and second nearest-neighboring sites to the vacancy (1NN and 2NN). The horizontal dashed lines mark the zero segregation energy, above which GB segregation is energetically forbidden
Fig. 6 Predicted solute segregation effects on the work of separation of clean GBs: (a) solute segregation only, (b) vacancy and solute co-segregation
Fig. 7 Valence electron charge density distributions of Σ5(210) GBs: (a) clean GB, (b-d) solute-segregated GBs, (e) vacancy-containing GB, (f-h) solute-segregated vacancy-containing GBs
[1] |
T. Hu, K. Ma, T.D. Topping, B. Saller, A. Yousefiani, J.M. Schoenung, E.J. Lavernia, Scr. Mater. 78-79, 25 (2014)
DOI URL |
[2] |
A.K. Vasudévan, R.D. Doherty, Acta Metall. 35, 1193 (1987)
DOI URL |
[3] |
J. Luo, H. Cheng, K.M. Asl, C.J. Kiely, M.P. Harmer, Science 333, 1730 (2011)
DOI URL |
[4] |
G. Duscher, M.F. Chisholm, U. Alber, M. Rühle, Nat. Mater. 3, 621 (2004)
PMID |
[5] |
Z.F. Zhang, Z.G. Wang, Acta Mater. 51, 347 (2003)
DOI URL |
[6] |
D. Mattissen, D. Raabe, F. Heringhaus, Acta Mater. 47, 1627 (1999)
DOI URL |
[7] |
L. Lu, Y. Shen, X. Chen, L. Qian, K. Lu, Science 304, 422 (2004)
DOI URL |
[8] |
X.Y. Sun, B. Zhang, H.Q. Lin, Y. Zhou, L. Sun, J.Q. Wang, E.H. Han, W. Ke, Corros. Sci. 77, 103 (2013)
DOI URL |
[9] |
R.G. Song, W. Dietzel, B.J. Zhang, W.J. Liu, M.K. Tseng, A. Atrens, Acta Mater. 52, 4727 (2004)
DOI URL |
[10] |
G. Sha, L. Yao, X. Liao, S.P. Ringer, Z. ChaoDuan, T.G. Langdon, Ultramicroscopy 111,500 (2011)
DOI URL |
[11] |
Y. Zhang, S. Jin, P. Trimby, X. Liao, M.Y. Murashkin, R.Z. Valiev, G. Sha, Mater. Sci. Eng. A 752, 223 (2019)
DOI URL |
[12] |
Z. Xiao, J. Hu, Y. Liu, F. Dong, Y. Huang, Mater. Sci. Eng. A 756, 389 (2019)
DOI URL |
[13] | E.A.S. Jar, JOM 22, 54 (1970) |
[14] |
T. Ogura, S. Hirosawa, A. Cerezo, T. Sato, Acta Mater. 58, 5714 (2010)
DOI URL |
[15] |
H. Zhao, F. De Geuser, A. Kwiatkowski da Silva, A. Szczepaniak, B. Gault, D. Ponge, D. Raabe, Acta Mater. 156, 318 (2018)
DOI URL |
[16] | T. Ogura, A. Hirose, T. Sato, Mater. Sci. Forum 638, 297 (2010) |
[17] |
W. Yang, S. Ji, Z. Li, M. Wang, J. Alloys Compd. 624, 27 (2015)
DOI URL |
[18] |
A. Joshi, C.R. Shastry, M. Levy, Metall. Trans. A 12, 1081 (1981)
DOI URL |
[19] |
R.K. Viswanadham, T.S. Sun, J.A.S. Green, Metall. Mater. Trans. A 11, 85 (1980)
DOI URL |
[20] |
T. Pardoen, D. Dumont, A. Deschamps, Y. Brechet, J. Mech. Phys. Solids 51, 637 (2003)
DOI URL |
[21] |
S.P. Knight, N. Birbilis, B.C. Muddle, A.R. Trueman, S.P. Lynch, Corros. Sci. 52, 4073 (2010)
DOI URL |
[22] |
A.C.U. Rao, V. Vasu, M. Govindaraju, K.V.S. Srinadh, Trans. Nonferrous Met. Soc. China 26, 1447 (2016)
DOI URL |
[23] |
J. Zuo, L. Hou, J. Shi, H. Cui, L. Zhuang, J. Zhang, J. Alloys Compd. 716, 220 (2017)
DOI URL |
[24] |
L.L. Liu, Q.L. Pan, X.D. Wang, S.W. Xiong, J. Alloys Compd. 735, 261 (2018)
DOI URL |
[25] |
X.B. Yang, J.H. Chen, G.H. Zhang, L.P. Huang, T.W. Fan, Y. Ding, X.W. Yu, J. Mater. Sci. Technol. 34, 1719 (2018)
DOI |
[26] |
F. Cao, Y. Jiang, T. Hu, D. Yin, Philos. Mag. 98, 464 (2017)
DOI URL |
[27] |
J. Xu, Y. Jiang, L. Yang, J. Li, Comput. Mater. Sci. 122, 22 (2016)
DOI URL |
[28] |
Z. Liu, Q. Qian, Y. Jiang, Y. Wang, Y. Zhu, J. Nie, Mater. Res. Lett. 8, 268 (2020)
DOI URL |
[29] |
P. Lejček, M. Šob, V. Paidar, Prog. Mater. Sci. 87, 83 (2017)
DOI URL |
[30] |
D. Raabe, S. Sandlöbes, J. Millán, D. Ponge, H. Assadi, M. Herbig, P.P. Choi, Acta Mater. 61, 6132 (2013)
DOI URL |
[31] |
A. Khalajhedayati, Z. Pan, T.J. Rupert, Nat. Commun. 7, 10802 (2016)
DOI PMID |
[32] |
D. Raabe, M. Herbig, S. Sandlöbes, Y. Li, D. Tytko, M. Kuzmina, D. Ponge, P.P. Choi, Curr. Opin. Solid State Mater. Sci. 18, 253 (2014)
DOI URL |
[33] | G. Lu and N. Kioussis, Phys. Rev. B 64 (2001) |
[34] |
D. Farkas, J. Phys. Condes. Matter 12, R497 (2000)
DOI URL |
[35] |
A. Suzuki, Y. Mishin, Interface Sci. 11, 425 (2003)
DOI URL |
[36] | P. Ballo, N. Kioussis, G. Lu, Phys. Rev. B 64 (2001) |
[37] |
G. Sha, A. Cerezo, Acta Mater. 52, 4503 (2004)
DOI URL |
[38] | R. Ferragut, A. Dupasquier, M.M. Iglesias, C.E. Macchi, A. Somoza, I.J. Polmear, Mater. Sci. Forum 396-4, 777 (2006) |
[39] |
X. Sauvage, N. Enikeev, R. Valiev, Y. Nasedkina, M. Murashkin, Acta Mater. 72, 125 (2014)
DOI URL |
[40] |
X.Y. Liu, J.B. Adams, Acta Mater. 46, 3467 (1998)
DOI URL |
[41] |
R.G. Song, M.K. Tseng, B.J. Zhang, J. Liu, Z.H. Jin, K.S. Shin, Acta Mater. 44, 3241 (1996)
DOI URL |
[42] |
S. Zhang, O.Y. Kontsevoi, A.J. Freeman, G.B. Olson, Acta Mater. 59, 6155 (2011)
DOI URL |
[43] |
Y. Zhang, G.-H. Lu, T. Wang, S. Deng, X. Shu, M. Kohyama, R. Yamamoto, J. Phys. Condes. Matter 18, 5121 (2006)
DOI URL |
[44] |
D.I. Thomson, V. Heine, M.W. Finnis, N. Marazi, Philos. Mag. Lett. 76, 281 (1997)
DOI URL |
[45] |
D. Zhao, O.M. Løvvik, K. Marthinsen, Y. Li, Acta Mater. 145, 235 (2018)
DOI URL |
[46] | S. Zhang, O.Y. Kontsevoi, A.J. Freeman, G.B. Olson, Phys. Rev. B 84, 134104 (2011) |
[47] |
R. Mahjoub, K.J. Laws, N. Stanford, M. Ferry, Acta Mater. 158, 257 (2018)
DOI URL |
[48] |
C. Wolverton, Acta Mater. 55, 5867 (2007)
DOI URL |
[49] |
G. Kresse, J. Furthmüller, Phys. Rev. B 54, 11169 (1996)
DOI PMID |
[50] |
G. Kresse, D. Joubert, Phys. Rev. B 59, 1758 (1999)
DOI URL |
[51] |
J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)
DOI PMID |
[52] |
R.W. Balluffi, A. Brokman, A.H. King, Acta Metall. 30, 1453 (1982)
DOI URL |
[53] |
H. Gleiter, Phys. Status Solidi B 45, 9 (2006)
DOI URL |
[54] |
M. Rajagopalan, M.A. Bhatia, M.A. Tschopp, D.J. Srolovitz, K.N. Solanki, Acta Mater. 73, 312 (2014)
DOI URL |
[55] | C. Schmidt, M. W. Finnis, F. Ernst, V. Vitek, Philos. Mag. A 77 (1998) |
[56] |
J. Xu, J. Liu, S. Li, B. Liu, Y. Jiang, Phys. Chem. Chem. Phys. 18, 17930 (2016)
DOI PMID |
[57] |
V. Yamakov, D. Wolf, S.R. Phillpot, A.K. Mukherjee, H. Gleiter, Nat. Mater. 1, 45 (2002)
DOI URL |
[58] |
T. Uesugi, K. Higashi, J. Mater. Sci. 46, 4199 (2011)
DOI URL |
[59] |
M.A. Tschopp, D.L. McDowell, Philos. Mag. 87, 3871 (2007)
DOI URL |
[60] |
M.A. Tschopp, S.P. Coleman, D.L. McDowell, Integr. Mater. Manuf. Innov. 4, 176 (2015)
DOI URL |
[61] |
I. Adlakha, M.A. Bhatia, M.A. Tschopp, K.N. Solanki, Philos. Mag. 94, 3445 (2014)
DOI URL |
[62] | F. Sansoz, J.F. Molinari, Acta Mater. 53, 1931 (2005) |
[63] | G. Lu, E. Kaxiras, Phys. Rev. Lett. 94, 155501 (2005) |
[64] |
R.W. Siegel, S.M. Chang, R.W. Balluffi, Acta Metall. 28, 249 (1980)
DOI URL |
[65] |
P.A. Thorsen, J.B. Bilde-Sørensen, B.N. Singh, Scr. Mater. 51, 557 (2004)
DOI URL |
[66] |
X. Wu, Y. You, X. Kong, J. Chen, G.N. Luo, G. Lu, C.S. Liu, Z. Wang, Acta Mater. 120, 315 (2016)
DOI URL |
[67] |
L.E. Karkina, I.N. Karkin, A.R. Kuznetsov, I.K. Razumov, P.A. Korzhavyi, Y.N. Gornostyrev, Comput. Mater. Sci. 112, 18 (2016)
DOI URL |
[68] |
M. Zhao, H. Song, J. Li, G. He, Y. Gui, Comput. Mater. Sci. 102, 78 (2015)
DOI URL |
[69] |
H. Jia, B. Ruben, L. Cao, H. Song, M. Knut, Y. Li, Acta Mater. 155, 199 (2018)
DOI URL |
[70] |
C. Zhang, D. Yin, Y. Jiang, Y. Wang, Comput. Mater. Sci. 162, 171 (2019)
DOI URL |
[71] | C. Zhang, Y. Jiang, F. Cao, T. Hu, D. Yin, J. Mater. Sci. Technol. 35 (2018) |
[72] | C. Zhang, Y. Jiang, X. Guo, K. Song, Acta Metall. Sin. -Engl. Lett. 33, 39 (2020) |
[73] |
M. Zhang, T. Liu, C. He, J. Ding, E. Liu, C. Shi, J. Li, N. Zhao, J. Alloys Compd. 658, 946 (2016)
DOI URL |
[74] |
S.P. Wen, K.Y. Gao, Y. Li, H. Huang, Z.R. Nie, Scr. Mater. 65, 592 (2011)
DOI URL |
[75] |
G. Tong, Y. Zhang, X. Liu, Mater. Sci. Eng. A 598, 293 (2014)
DOI URL |
[76] |
J. Liu, P. Yao, N. Zhao, C. Shi, H. Li, X. Li, D. Xi, S. Yang, J. Alloys Compd. 657, 717 (2016)
DOI URL |
[77] |
Z. Cvijović, M. Rakin, M. Vratnica, I. Cvijović, Eng. Fract. Mech. 75, 2115 (2008)
DOI URL |
[78] |
L. Li, T. Zhou, H. Li, C. Chen, B. Xiong, L. Shi, Trans. Nonferrous Met. Soc. China 16, 532 (2006)
DOI URL |
[79] | C.J. Hung, S.K. Nayak, Y. Sun, C. Fennessy, V.K. Vedula, S. Tulyani, S.W. Lee, S.P. Alpay, R.J. Hebert, Mater. Des. 192, 108699 (2020) |
[80] | D. McLean, Grain boundaries in metals (Oxford University Press, London, 1957), p. 116 |
[81] |
V.I. Razumovskiy, S.V. Divinski, L. Romaner, Acta Mater. 147, 122 (2018)
DOI URL |
[82] |
F. Teng, G.Q. Lan, Y. Jiang, M. Song, S.J. Liu, C.P. Wu, D.Q. Yi, RSC Adv. 7, 48230 (2017)
DOI URL |
[1] | Hao-Jie Yan, Jun-Jie Xia, Lian-Kui Wu, Fa-He Cao. Hot Corrosion Behavior of Ti45Al8.5Nb Alloy: Effect of Anodization and Pre-oxidation [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(9): 1531-1546. |
[2] | Yong Zhao, Haijun Su, Guangrao Fan, Chenglin Liu, Taiwen Huang, Wenchao Yang, Jun Zhang, Lin Liu, Hengzhi Fu. Tailoring Microstructure and Microsegregation in a Directionally Solidified Ni-Based SX Superalloy by a Weak Transverse Static Magnetic Field [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(7): 1164-1174. |
[3] | Chenchen Xiong, Jing Bai, Yansong Li, Jianglong Gu, Xinzeng Liang, Ziqi Guan, Yudong Zhang, Claude Esling, Xiang Zhao, Liang Zuo. First-Principles Investigation on Phase Stability, Elastic and Magnetic Properties of Boron Doping in Ni-Mn-Ti Alloy [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(7): 1175-1183. |
[4] | Xiangbin Han, Shuangbao Wang, Bo Wei, Shuai Pan, Guizhen Liao, Weizhou Li, Yuezhou Wei. Influence of Sc Addition on Precipitation Behavior and Properties of Al-Cu-Mg Alloy [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(6): 948-960. |
[5] | Xinzeng Liang, Jing Bai, Jianglong Gu, Ziqi Guan, Haile Yan, Yudong Zhang, Claude Esling, Xiang Zhao, Liang Zuo. Composition-Dependent of 6 M Martensite Structure and Magnetism in Cu-Alloyed Ni-Mn-In-Co by First-Principles Calculations [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(6): 1034-1042. |
[6] | Yujian Wang, Shuo Chu, Zhijun Wang, Junjie Li, Jincheng Wang. On Ti6Al4V Microsegregation in Electron Beam Additive Manufacturing with Multiphase-Field Simulation Coupled with Thermodynamic Data [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(3): 425-438. |
[7] | L. M. Liu, Y. X. Lai, C. L. Wu, Z. Zhang, J. H. Chen. Anisotropic Inter-granular Corrosion Behaviors and Microstructures of AlMgSiCu Alloy Sheets Made by Thermal-Mechanical Treatments [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(2): 275-284. |
[8] | Jing Wang, Wei Li, Xiaodong Zhu, Li You, Laiqi Zhang. Characterization of the Trace Phosphorus Segregation and Mechanical Properties of Dual-Phase Steels [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(2): 341-352. |
[9] | Zhenhao Li, Ling Qin, Baisong Guo, Junping Yuan, Zhiguo Zhang, Wei Li, Jiawei Mi. Characterization of the Convoluted 3D Intermetallic Phases in a Recycled Al Alloy by Synchrotron X-ray Tomography and Machine Learning [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(1): 115-123. |
[10] | Chao-Min Zhang, Pan Xie, Yong Jiang, Sheng Zhan, Wen-Quan Ming, Jiang-Hua Chen, Ke-Xing Song, Hao Zhang. Double-Shelled L12 Nano-structures in Quaternary Al-Er-Sc-Zr Alloys: Origin and Critical Significance [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(9): 1277-1284. |
[11] | Yulun Wu, Rui Hu, Jieren Yang, Keren Zhang, Xuyang Wang. Active Eutectoid Decomposition of α → γ + τ1 and the Morphological Evolution in a Ru-Containing TiAl Alloy [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(8): 1042-1050. |
[12] | Zijian Zhou, Rui Zhang, Chuanyong Cui, Yizhou Zhou, Xiaofeng Sun. Effects of Homogenization Treatment on the Microsegregation of a Ni-Co Based Superalloy Produced by Directional Solidification [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(7): 943-954. |
[13] | Zhihui Li, Jinxing Yang, Jiemin Wang, Jixin Chen, Hao Zhang, Cong Cui, Xiaohui Wang, Zhonghai Ji, Yongheng Zhang, Meishuan Li. Raman Spectroscopy of Layered Compound YbB2C2 [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(7): 1021-1027. |
[14] | Shiyu He, Qi Qian, Zhe Huang, Yuxiang Gong, Jiajing Chen, Yiren Wang, Yong Jiang. Nucleation of Y-Si-O Nano-clusters in Multi-microalloyed Nano-structured Ferritic Alloys: a First-principles Study [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(7): 955-962. |
[15] | Chongfeng Sun, Shengqi Xi, Xiaofeng Dang, Jianping Li, Yongchun Guo, Zhong Yang, Yaping Bai. Formation of Fe-19 wt%Cr-9 wt%Ni Nanocrystalline Alloy with Excellent Corrosion Resistance: Phase Transition and Microstructure [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(6): 825-833. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||