Acta Metallurgica Sinica (English Letters) ›› 2022, Vol. 35 ›› Issue (11): 1849-1861.DOI: 10.1007/s40195-022-01427-1
Previous Articles Next Articles
F. Shi1, L. Yan1, J. Hu1, L. F. Wang1, T. Z. Li1, W. Li1, X. J. Guan1, C. M. Liu3, X. W. Li1,2()
Received:
2021-12-30
Revised:
2022-04-05
Accepted:
2022-04-07
Online:
2022-11-10
Published:
2022-07-09
Contact:
X. W. Li, xwli@mail.neu.edu.cn
F. Shi, L. Yan, J. Hu, L. F. Wang, T. Z. Li, W. Li, X. J. Guan, C. M. Liu, X. W. Li. Improving Intergranular Stress Corrosion Cracking Resistance in a Fe-18Cr-17Mn-2Mo-0.85N Austenitic Stainless Steel Through Grain Boundary Character Distribution Optimization[J]. Acta Metallurgica Sinica (English Letters), 2022, 35(11): 1849-1861.
Add to citation manager EndNote|Ris|BibTeX
Cr | Mn | Mo | N | C | S | P | Al | Fe |
---|---|---|---|---|---|---|---|---|
18.36 | 16.52 | 2.32 | 0.85 | 0.023 | 0.0013 | 0.0041 | 0.0008 | Bal. |
Table 1 Chemical composition of the experimental steel (wt%)
Cr | Mn | Mo | N | C | S | P | Al | Fe |
---|---|---|---|---|---|---|---|---|
18.36 | 16.52 | 2.32 | 0.85 | 0.023 | 0.0013 | 0.0041 | 0.0008 | Bal. |
Specimen | ∑3 (%) | ∑9 (%) | ∑27 (%) | Other low CSL grain boundaries (%) | Total SBs (%) |
---|---|---|---|---|---|
BM | 41.39 | 2.53 | 0.85 | 2.46 | 46.91 |
r5%-a1223K/24 h | 61.71 | 7.27 | 4.68 | 1.54 | 75.20 |
r7%-a1223K/24 h | 48.61 | 6.04 | 3.42 | 1.10 | 59.17 |
r10%-a1223K/24 h | 45.71 | 4.03 | 2.43 | 2.67 | 54.84 |
r5%-a1423K/10 min | 58.99 | 6.08 | 3.43 | 0.99 | 69.49 |
r7%-a1423K/10 min | 53.72 | 6.00 | 2.66 | 1.32 | 63.70 |
r10%-a1423K/10 min | 50.98 | 3.37 | 1.64 | 2.04 | 58.03 |
r5%-a1223K/72 h | 51.60 | 4.31 | 1.94 | 0.79 | 58.64 |
r5%-a1423K/72 h | 72.40 | 6.02 | 3.43 | 1.00 | 82.85 |
Table 2 Proportions of various SBs for the BM and specimens after different TMP treatments
Specimen | ∑3 (%) | ∑9 (%) | ∑27 (%) | Other low CSL grain boundaries (%) | Total SBs (%) |
---|---|---|---|---|---|
BM | 41.39 | 2.53 | 0.85 | 2.46 | 46.91 |
r5%-a1223K/24 h | 61.71 | 7.27 | 4.68 | 1.54 | 75.20 |
r7%-a1223K/24 h | 48.61 | 6.04 | 3.42 | 1.10 | 59.17 |
r10%-a1223K/24 h | 45.71 | 4.03 | 2.43 | 2.67 | 54.84 |
r5%-a1423K/10 min | 58.99 | 6.08 | 3.43 | 0.99 | 69.49 |
r7%-a1423K/10 min | 53.72 | 6.00 | 2.66 | 1.32 | 63.70 |
r10%-a1423K/10 min | 50.98 | 3.37 | 1.64 | 2.04 | 58.03 |
r5%-a1223K/72 h | 51.60 | 4.31 | 1.94 | 0.79 | 58.64 |
r5%-a1423K/72 h | 72.40 | 6.02 | 3.43 | 1.00 | 82.85 |
Fig. 3 TEM micrographs showing the evolution of deformation microstructures in the high-nitrogen ASS cold-rolled by 5% a, b, 7% c, d and 10% e, f reduction, respectively
Fig. 4 IPF a-f, GBCD a’-f’ and GHABs a’’-f’’ maps of the high-nitrogen ASS cold-rolled by 5% and then annealed at 1423 K for different time of 0 min a-a’’, 3 min b-b’’, 6 min c-c’’, 10 min d-d’’, 30 min e-e’’ and 72 h f-f’’
Specimen | Fraction of precipitates (%) for 1 h | Fraction of precipitates (%) for 2 h |
---|---|---|
BM | 3.1 ± 0.4 | 8.5 ± 0.7 |
r5%-a1423K/72 h | 0.2 ± 0.05 | 0.4 ± 0.08 |
Table 3 Fraction of precipitates for the BM and r5%-a1423K/72 h specimens sensitized at 1123 K for different time
Specimen | Fraction of precipitates (%) for 1 h | Fraction of precipitates (%) for 2 h |
---|---|---|
BM | 3.1 ± 0.4 | 8.5 ± 0.7 |
r5%-a1423K/72 h | 0.2 ± 0.05 | 0.4 ± 0.08 |
Specimen | tf (h) | σf (MPa) | δf (%) |
---|---|---|---|
BM | 14.8 | 970.9 | 29.13 |
r5%-a1423K/72 h | 18.3 | 902 | 36.05 |
Table 4 Experimental data of the BM and r5%-a1423K/72 h specimens after SSRT
Specimen | tf (h) | σf (MPa) | δf (%) |
---|---|---|---|
BM | 14.8 | 970.9 | 29.13 |
r5%-a1423K/72 h | 18.3 | 902 | 36.05 |
Fig. 10 SEM micrographs showing the microstructures in the near fracture zone for BM a and r5%-a1423K/72 h b specimens after SSRT in a NACE/A solution environment
Fig. 11 Analysis of intergranular cracks under IGSCC tests in the GBCD-optimized high-nitrogen ASS: a, c fore scattered detector (FSD); b, d corresponding grain boundary map
Fig. 12 Analysis of a transgranular crack under IGSCC tests in the GBCD-optimized high-nitrogen ASS: a fore scattered detector (FSD); b corresponding grain boundary map
Fig. 13 Comparisons of the TJ fraction a and the probability for crack arrest b proposed by Kumar et al. [38] and Palumbo et al. [4] between the BM and r5%-a1423K/72 h specimens
[1] |
J. Gao, J.B. Tan, X.Q. Wu, S. Xia, Corros. Sci. 152, 190 (2019)
DOI URL |
[2] |
T. Watanabe, J. Mater. Sci. 46, 4095 (2011)
DOI URL |
[3] |
K. Deepak, S. Mandal, C.N. Athreya, D.I. Kim, B.D. Boer, V.S. Sarma, Corros. Sci. 106, 293 (2016)
DOI URL |
[4] |
G. Palumbo, P.J. King, K.T. Aust, U. Erb, P.C. Lichtenberger, Scr. Metall. Mater. 25, 1775 (1991)
DOI URL |
[5] | T. Watanabe, S. Tsurekawa, Mater. Sci. Eng. A 387, 447 (2004) |
[6] | T. Watanabe, Res. Mech. 11, 47 (1984) |
[7] | C.L. Hu, S. Xia, H. Li, T.G. Liu, B.X. Zhou, W.J. Chen, N. Wang, Corros. Sci. 53, 1880 (2011) |
[8] |
M. Shimada, H. Kokawa, Z.J. Wang, Y.S. Sato, I. Karibe, Acta Mater. 50, 2331 (2002)
DOI URL |
[9] |
H. Kokawa, M. Shimada, M. Michiuchi, Z.J. Wang, Y.S. Sato, Acta Mater. 55, 5401 (2007)
DOI URL |
[10] |
M. Michiuchi, H. Kokawa, Z.J. Wang, Y.S. Sato, K. Sakai, Acta Mater. 54, 5179 (2006)
DOI URL |
[11] |
E.A. West, G.S. Was, J. Nucl. Mater. 392, 264 (2009)
DOI URL |
[12] |
T.G. Liu, S. Xia, Q. Bai, B.X. Zhou, L.F. Zhang, Y.H. Lu, T. Shoji, J. Nucl. Mater. 498, 290 (2018)
DOI URL |
[13] |
T.G. Liu, S. Xia, D.H. Du, Q. Bai, L.F. Zhang, Y.H. Lu, Mater. Lett. 234, 201 (2019)
DOI URL |
[14] | P. Lin, G. Palumbo, U. Erb, K.T. Aust, Scr. Mater. 33, 1387 (1995) |
[15] |
A. Telang, A.S. Gill, D. Tammana, X.S. Wen, M. Kumar, S. Teysseyre, S.R. Mannava, D. Qian, V.K. Vasudevan, Mater. Sci. Eng. A 648, 280 (2015)
DOI URL |
[16] |
E.M. Lehockey, A.M. Brennenstuhl, I. Thompson, Corros. Sci. 46, 2383 (2004)
DOI URL |
[17] |
V.Y. Gertsman, S.M. Bruemmer, Acta Mater. 49, 1589 (2001)
DOI URL |
[18] |
A. Telang, A.S. Gill, M. Kumar, S. Teysseyre, D. Qian, S.R. Mannava, V.K. Vasudevan, Acta Mater. 113, 180 (2016)
DOI URL |
[19] |
S. Xia, H. Li, T.G. Liu, B.X. Zhou, J. Nucl. Mater. 416, 303 (2011)
DOI URL |
[20] |
H.Y. Ha, T.H. Lee, C.S. Oh, S.J. Kim, Scr. Mater. 61, 121 (2009)
DOI URL |
[21] |
J.W. Simmons, Mater. Sci. Eng. A 207, 159 (1996)
DOI URL |
[22] |
Y.S. Yoon, H.Y. Ha, T.H. Lee, S. Kim, Corros. Sci. 80, 28 (2014)
DOI URL |
[23] |
H. Baba, T. Kodama, Y. Katada, Corros. Sci. 44, 2393 (2002)
DOI URL |
[24] |
I. Olefjord, L. Wegrelius, Corros. Sci. 38, 1203 (1996)
DOI URL |
[25] |
M.G. Pujar, U.K. Mudali, S.S. Singh, Corros. Sci. 53, 4178 (2011)
DOI URL |
[26] | M. Metikoš-Huković, R. Babić, Z. Grubač, Ž Petrović, N. Lajci, Corros. Sci. 53, 2176 (2011) |
[27] | H.B. Li, Z.H. Jiang, Z.R. Zhang, Y. Cao, Y. Yang, Int. J. Min. Met. Mater. 16, 654 (2009) |
[28] |
M. Ogawa, K. Hiraoka, Y. Katada, M. Sagara, S. Tsukamoto, ISIJ Int. 42, 1391 (2002)
DOI URL |
[29] |
F. Shi, L.J. Wang, W.F. Cui, C.M. Liu, J. Iron Steel Res. Int. 15, 72 (2008)
DOI URL |
[30] |
F. Shi, Y. Qi, C.M. Liu, J. Mater. Sci. Technol. 27, 1125 (2011)
DOI URL |
[31] | H. Kokawa, W.Z. Jin, Z.J. Wang, M. Michiuchi, Y.S. Sato, W. Dong, Y. Katada, Mater. Sci. Forum 539, 4962 (2007) |
[32] | F. Shi, R.H. Gao, X.J. Guan, C.M. Liu, X.W. Li, Acta Metall. Sin. -Engl. Lett. 33, 789 (2020) |
[33] |
F. Shi, P.C. Tian, N. Jia, Z.H. Ye, Y. Qi, C.M. Liu, X.W. Li, Corros. Sci. 107, 49 (2016)
DOI URL |
[34] | F. Shi, X.W. Li, Y.T. Hu, C. Su, C.M. Liu, Acta Metall. Sin. -Engl. Lett. 26, 497 (2013) |
[35] |
D.G. Brandon, Acta Metall. 14, 1479 (1966)
DOI URL |
[36] |
X.J. Guan, F. Shi, H.M. Ji, X.W. Li, Mater. Sci. Eng. A 765, 138299 (2019)
DOI URL |
[37] |
X.J. Guan, F. Shi, Z.P. Jia, X.W. Li, Mater. Charact. 170, 110689 (2020)
DOI URL |
[38] |
S. Tokita, H. Kokawa, Y.S. Sato, H.T. Fujii, Mater. Charact. 131, 31 (2017)
DOI URL |
[39] |
V. Randle, Acta Metall. Mater. 42, 1769 (1994)
DOI URL |
[40] |
B.W. Reed, M. Kumar, Scr. Mater. 54, 1029 (2006)
DOI URL |
[41] |
B.R. Kumar, S.K. Das, B. Mahato, A. Das, S.G. Chowdhury, Mater. Sci. Eng. A 454-455, 239 (2007)
DOI URL |
[42] |
X.Y. Fang, W.G. Wang, Z.X. Cai, C.X. Qin, B.X. Zhou, Mater. Sci. Eng. A 527, 1571 (2010)
DOI URL |
[43] | F. Shi, L.J. Wang, W.F. Cui, C.M. Liu, Acta Metall. Sin. -Engl. Lett. 20, 95 (2007) |
[44] |
H.U. Hong, B.S. Rho, S.W. Nam, Mater. Sci. Eng. A 318, 285 (2001)
DOI URL |
[45] |
M. Kurban, U. Erb, K.T. Aust, Scr. Mater. 54, 1053 (2006)
DOI URL |
[46] | M. Kumar, W.E. King, A.J. Schwartz, Acta Mater. 48, 2081 (2000) |
[47] |
C.A. Schuh, M. Kumar, W.E. King, Acta Mater. 51, 687 (2003)
DOI URL |
[48] |
A. Toppo, V. Shankar, R.P. George, J. Philip, Corrosion 76,591 (2020)
DOI URL |
[1] | Feng Shi, Ruo-Han Gao, Xian-Jun Guan, Chun-Ming Liu, Xiao-Wu Li. Application of Grain Boundary Engineering to Improve Intergranular Corrosion Resistance in a Fe–Cr–Mn–Mo–N High-Nitrogen and Nickel-Free Austenitic Stainless Steel [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(6): 789-798. |
[2] | Pengfei Gao, Weijian Chen, Feng Li, Beijia Ning, Zhengzhi Zhao. Quasi-Situ Characterization of Deformation in Low-Carbon Steel with Equiaxed and Lamellar Microstructure Treated by the Quenching and Partitioning Process [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(12): 1657-1665. |
[3] | Zhiying Zheng, Linjiang Chai, Kang Xiang, Weijiu Huang, Yongfeng Wang, Liangliang Liu, Lin Tian. Typical Microstructural Characteristics of Ti-5Al-5Mo-5V-3Cr-1Fe Metastable β Ti Alloy Forged in α+β Region [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(12): 1601-1608. |
[4] | Jian Tu1, Kun-Feng Zhou, Zhi-Ming Zhou, Can Huang, Zhi-Gang Chen. Effects of Ausforming Procedure and Following Annealing Treatment on Microstructural Characteristics in Cobalt [J]. Acta Metallurgica Sinica (English Letters), 2018, 31(4): 415-422. |
[5] | Qiang Wang, Song Zhang, Chun-Hua Zhang, Chen-Liang Wu, Ling Ren, Jian-Qiang Wang, Jiang Chen. Functionally Graded Stainless Steel Fabricated by Direct Laser Deposition: Anisotropy of Mechanical Properties and Hardness [J]. Acta Metallurgica Sinica (English Letters), 2018, 31(1): 19-26. |
[6] | Saeed Hasani, Ali Shafyei, Morteza Shamanian, Peiman Behjati, Hossein Mostaan, Timu Juuti, Jerzy A. Szpunar. Correlation Between Magnetic Properties and Allotropic Phase Transition of Fe-Co-V Alloy [J]. Acta Metallurgica Sinica (English Letters), 2015, 28(8): 1055-1058. |
[7] | Feng SHI, Xiaowu LI,Yutong HU, Chuan SU, Chunming LIU. Optimization of Grain Boundary Character Distribution in Fe-18Cr-18Mn-0.63N High-Nitrogen Austenitic Stainless Steel [J]. Acta Metallurgica Sinica (English Letters), 2013, 26(5): 497-502. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||