Acta Metallurgica Sinica (English Letters) ›› 2023, Vol. 36 ›› Issue (5): 758-770.DOI: 10.1007/s40195-022-01487-3
Previous Articles Next Articles
Jin-Wang Liu, Xian Luo(), Bin Huang, Yan-Qing Yang, Wen-Jie Lu, Xiao-Wei Yi, Hong Wang
Received:
2022-07-10
Revised:
2022-09-05
Accepted:
2022-09-06
Online:
2022-11-21
Published:
2022-11-21
Contact:
Xian Luo
Jin-Wang Liu, Xian Luo, Bin Huang, Yan-Qing Yang, Wen-Jie Lu, Xiao-Wei Yi, Hong Wang. Nano-Twinning and Martensitic Transformation Behaviors in 316L Austenitic Stainless Steel During Large Tensile Deformation[J]. Acta Metallurgica Sinica (English Letters), 2023, 36(5): 758-770.
Add to citation manager EndNote|Ris|BibTeX
Fig. 2 a IPF-mapping, b phase distribution map, c KAM map of the sample after heat treatment. The color bar in c shows the extent of stress concentration
Fig. 3 a, b IPF-mapping and band contrast (BC) map of 316L stainless steel at engineering strain of 0.2 showing the deformed twin bundle, c, d IPF-mapping and BC map of 316L stainless steel at engineering strain of 0.4 showing the deformed twin bundle and martensite (white area in the IPF-mapping), e IPF-distribution of grain orientation in the RD direction (RD∥tensile direction) at different engineering strains
Fig. 4 BC map a, IPF-mapping (white area is martensite) b, phase distribution map c and KAM map (gray area is martensite) d for engineering strain of 0.2, respectively; e the maps (IPF-mapping and KAM map) of the rectangular frame in b, and the pole map at the cross position of the twin (showing the angular axis relationship between the twin and the matrix). Figure 4 is a local magnification of the white rectangular box in Fig. 3a. Here we call the larger twin Twin1 as primary twin and the smaller twin Twin2 as secondary twin
Fig. 5 IPF-mapping (white areas are martensite) a, phase distribution map b and KAM maps (gray areas are martensite) c for the sample with engineering strain of 0.4, respectively; d local magnification of the rectangular frame in (a); e local amplification of IPF-mapping of the white square in (d). Figure 5 is a local magnification of the white rectangular box in Fig. 3c
Fig. 6 TEM analysis results when the engineering strain is 0.2: a bright field (BF)-TEM image, b SAED pattern obtained along the [011] axis of the twin part in (a)
Fig. 7 TEM analysis results when the engineering strain is 0.2: a BF-TEM image, b-d HRTEM images of the rectangular areas in (a) and corresponding fast fourier transform (FFT) patterns. Twin1 is called the primary twin, and Twin2 is called the secondary twin
Fig. 8 a, b BF-TEM images at engineering strain of 0.4 and selective area diffraction patterns (SAED) along the [011] axis, respectively; c dark field (DF) -TEM images of crossed twins and martensite; d, e HRTEM image of the white rectangular box in (a) and the corresponding FFT pattern, respectively
Fig. 9 a Strain hardening rate curve, b-d schematic diagrams of the microstructure evolution of 316L stainless steel during strain. A-B-C in b represents three different grain orientations, A: < 111 > //RD, B: < 001 > //RD, C: < 110 > //RD. Note that the strain here is true strain (the true strains 0.18 and 0.34 corresponding to engineering strains 0.2 and 0.4, respectively)
[1] |
B.D. Cooman, Y. Estrin, S.K. Kim, Acta Mater. 142, 283 (2017)
DOI URL |
[2] |
O. Bouaziz, S. Allain, P.C. Scott, P. Cugy, D. Barbier, Curr. Opin. Solid State Mat. Sci. 15, 141 (2011)
DOI URL |
[3] |
E.I. Galindo-Nava, P.E.J. Rivera-Díaz-del-Castillo, Acta Mater. 128, 120 (2017)
DOI URL |
[4] |
C. Gauss, I. Filho, M. Sandim, P.A. Suzuki, H. Sandim, Mater. Sci. Eng. A 651, 507 (2015)
DOI URL |
[5] |
Y.F. Shen, Y.D. Wang, X.P. Liu, X. Sun, R.L. Peng, S.Y. Zhang, L. Zuo, P.K. Liaw, Acta Mater. 61, 6093 (2013)
DOI URL |
[6] |
H. Zhi, C. Zhang, S. Antonov, H. Yu, Y. Su, Acta Mater. 195, 371 (2020)
DOI URL |
[7] |
M. Kang, W. Woo, Y.K. Lee, B.S. Seong, Mater. Lett. 76, 93 (2012)
DOI URL |
[8] |
Q. Xie, Y. Chen, P. Yang, Z. Zhao, Y.D. Wang, K. An, Scripta Mater. 150, 168 (2018)
DOI URL |
[9] |
S. Allain, J.P. Chateau, O. Bouaziz, Mater. Sci. Eng. A 387-389, 143 (2004)
DOI URL |
[10] |
L. Rémy, Metall. Trans. A 12, 387 (1981)
DOI URL |
[11] |
T.H. Lee, E. Shin, C.S. Oh, H.Y. Ha, S.J. Kim, Acta Mater. 58, 3173 (2010)
DOI URL |
[12] |
S.K. Mishra, S.M. Tiwari, A.M. Kumar, L.G. Hector, Metall. Mater. Trans. A 43, 1598 (2012)
DOI URL |
[13] |
L. Remy, A. Pineau, Mater. Sci. Eng. 28, 99 (1977)
DOI URL |
[14] | S. Vercammen, B.C.D. Cooman, N. Akdut, B. Blanpain, P. Wollants, Steel Res. Int. 14, 370 (2003) |
[15] | L. Chen, Z. Yang, X. Qin, Acta Metall. Sin. Engl. Lett. 26, 1 (2013) |
[16] |
H. Jacques, Scripta Mater. 63, 961 (2010)
DOI URL |
[17] |
S. Mishra, M. Yadava, K.N. Kulkarni, N.P. Gurao, Acta Mater. 178, 99 (2019)
DOI URL |
[18] |
L. Remy, Acta Metall. 26, 443 (1978)
DOI URL |
[19] |
S.L. Wong, M. Madivala, U. Prahl, F. Roters, D. Raabe, Acta Mater. 118, 140 (2016)
DOI URL |
[20] |
J.W. Christian, S. Mahajan, Prog. Mater. Sci. 39, 1 (1995)
DOI URL |
[21] | J. Narayan, Y.T. Zhu, Appl. Phys. Lett. 92, 1275 (2008) |
[22] | M. Niewczas, Dislocations in Solids, vol. 13 (Elsevier, 2007), pp.263-364 |
[23] |
Y.T. Zhu, J. Narayan, J.P. Hirth, S. Mahajan, X.L. Wu, X.Z. Liao, Acta Mater. 57, 3763 (2009)
DOI URL |
[24] |
Q. Xie, Z. Pei, J. Liang, D. Yu, Z. Zhao, P. Yang, R. Li, M. Eisenbach, K. An, Acta Mater. 161, 273 (2018)
DOI URL |
[25] |
T.H. Ahn, S.B. Lee, K.T. Park, K.H. Oh, H.N. Han, Mater. Sci. Eng. A 598, 56 (2014)
DOI URL |
[26] |
J. Liu, Y. Jin, X. Fang, C. Chen, Q. Feng, X. Liu, Y. Chen, T. Suo, F. Zhao, T. Huang, Sci. Rep. 6, 35345 (2016)
DOI |
[27] |
Y. Tomita, T. Iwamoto, Int. J. Mech. Sci. 37, 1295 (1995)
DOI URL |
[28] |
X.L. Wu, M.X. Yang, F.P. Yuan, L. Chen, Y.T. Zhu, Acta Mater. 112, 337 (2016)
DOI URL |
[29] |
X.S. Yang, S. Sun, H.H. Ruan, S.Q. Shi, T.Y. Zhang, Acta Mater. 136, 347 (2017)
DOI URL |
[30] | S.I. Baik, Y.W. Kim, Materials 10, 100677 (2020) |
[31] |
D. Goodchild, W.T. Roberts, D.V. Wilson, Acta Metall. 18, 1137 (1970)
DOI URL |
[32] |
I.R. Souza Filho, A. Dutta, D.R. Almeida Junior, W. Lu, M.J.R. Sandim, D. Ponge, H.R.Z. Sandim, D. Raabe, Acta Mater. 197, 123 (2020)
DOI URL |
[33] |
K.H. Kwon, B.C. Suh, S.I. Baik, Y.W. Kim, N.J. Kim, Sci. Technol. Adv. Mater. 14, 014204 (2013)
DOI URL |
[34] |
Z.Y. Tang, R.D.K. Misra, M. Ma, N. Zan, Z.Q. Wu, H. Ding, Mater. Sci. Eng. A 624, 186 (2015)
DOI URL |
[35] |
J.K. Hwang, I.C. Yi, I.H. Son, J.Y. Yoo, B. Kim, A. Zargaran, N.J. Kim, Mater. Sci. Eng. A 644, 41 (2015)
DOI URL |
[36] | S. Martin, C. Ullrich, D. Rafaja, Mater. Today Proc. 2, S643 (2015) |
[37] |
M. Soleimani, A. Kalhor, H. Mirzadeh, Mater. Sci. Eng. A 795, 140023 (2020)
DOI URL |
[38] |
D. Molnar, X. Sun, S. Lu, W. Li, G. Engberg, L. Vitos, Mater. Sci. Eng. A 759, 490 (2019)
DOI URL |
[39] |
R.E. Schramm, R.P. Reed, Metall. Trans. A 6, 1345 (1975)
DOI URL |
[40] |
K.S. Cheong, E.P. Busso, J. Mech. Phys. Solids 54, 671 (2006)
DOI URL |
[41] | B. Gwalani, W. Fu, M. Olszta, J. Silverstein, D.R. Yadav, P. Manimunda, A. Guzman, K. Xie, A. Rohatgi, S. Mathaudhu, Materials 18, 101146 (2021) |
[42] |
M. Kamaya, Mater. Charact. 60, 125 (2009)
DOI URL |
[43] |
M. Kamaya, A.J. Wilkinson, J.M. Titchmarsh, Nucl. Eng. Des. 235, 713 (2005)
DOI URL |
[44] |
X. Ma, C. Huang, J. Moering, M. Ruppert, H.W. Höppel, M. Göken, J. Narayan, Y. Zhu, Acta Mater. 116, 43 (2016)
DOI URL |
[45] |
A. Harte, M. Atkinson, M. Preuss, J. Fonseca, Acta Mater. 195, 555 (2020)
DOI URL |
[46] |
R.R. Shen, P. Efsing, Ultramicroscopy 184, 156 (2017)
DOI URL |
[47] |
L. Meng, P. Yang, Q. Xie, H. Ding, Z. Tang, Scripta Mater. 56, 931 (2007)
DOI URL |
[48] |
E. Bouyne, H.M. Flower, T.C. Lindley, A. Pineau, Scripta Mater. 39, 295 (1998)
DOI URL |
[49] |
J. Xie, H. Fu, Z. Zhang, Y. Jiang, Intermetallics 23, 20 (2012)
DOI URL |
[50] |
K.R. Limmer, J.E. Medvedeva, D. Aken, N.I. Medvedeva, Comp. Mater. Sci. 99, 253 (2015)
DOI URL |
[1] | Yakui Chen, Dong Wu, Dianzhong Li, Yiyi Li, Shanping Lu. Effects of Stabilization Heat Treatment on Microstructure and Mechanical Properties of Si-Bearing 15Cr-9Ni-Nb Austenitic Stainless Steel Weld Metal [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(4): 637-649. |
[2] | E. E. Timofeeva, E. Yu. Panchenko, A. S. Eftifeeva, A. I. Tagiltsev, N. Yu. Surikov, A. B. Tokhmetova, E. I. Yanushonite, M. V. Zherdeva, I. Karaman, Yu. I. Chumlyakov. Cyclic Stability of Superelasticity in [001]-Oriented Quenched Ni44Fe19Ga27Co10 and Ni39Fe19Ga27Co15 Single Crystals [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(4): 650-660. |
[3] | X. J. Guan, Z. P. Jia, M. A. Nozzari Varkani, X. W. Li. Effect of Grain Boundary Engineering on the Work Hardening Behavior of AL6XN Super-Austenitic Stainless Steel [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(4): 681-693. |
[4] | Yu Zhang, Jing Bai, Ziqi Guan, Xinzeng Liang, Yansong Li, Jianglong Gu, Yudong Zhang, Claude Esling, Xiang Zhao, Liang Zuo. Phase Stability, Magnetic Properties, and Martensitic Transformation of Ni2−xMn1+x+ySn1−y Heusler Alloy with Excess Mn by First-Principles Calculations [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(3): 513-528. |
[5] | Xue Yin, Yan-Kun Dou, Xin-Fu He, Ke Jin, Cheng-Long Wang, Ya-Guang Dong, Cun-Yong Wang, Yun-Fei Xue, Wen Yang. Effects of Nb Addition on Charpy Impact Properties of TiVTa Refractory High-Entropy Alloy [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(3): 405-416. |
[6] | Ke Wang, Honghui Li, Yu Zhou, Jingfeng Wang, Renlong Xin, Qing Liu. Dislocation Slip and Crack Nucleation Mechanism in Dual-Phase Microstructure of Titanium Alloys: A Review [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(3): 353-365. |
[7] | Renxian Yang, Xin Cai, Leigang Zheng, Xiaoqiang Hu, Dianzhong Li. Enhancement Mechanism of Cerium in 316LN Austenitic Stainless Steel During Creep at 700 °C [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(3): 507-512. |
[8] | Yun Zhang, Chen Jiang, Shaoheng Sun, Wei Xu, Quan Yang, Yongjun Zhang, Shiwei Tian, Xiaoge Duan, Zhe Xu, Haitao Jiang. Microstructural Evolution during Tensile Deformation in TRC-ZA21 Magnesium Alloy with Different Loading Directions and Strain Rates [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(2): 192-214. |
[9] | Zuohua Wang, Haidong Sun, Peng Wang, Ning Liu, Pinwen Zhu, Dongli Yu, Hongwang Zhang. {112} 〈111〉 Twins or Twinned Variants Induced by Martensitic Transformation? [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(1): 133-140. |
[10] | Sihan Chen, Tian Liang, Guangcai Ma, Chengwu Zheng, Deli Chen, Yingche Ma, Kui Liu. High-Temperature Plasticity Enhanced by Multiple Secondary Phases in a High-Si Austenitic Stainless Steel [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(9): 1519-1530. |
[11] | Wenbin Tian, Dong Wu, Yiyi Li, Shanping Lu. Precipitation Behavior and Mechanical Properties of a 16Cr-25Ni Superaustenitic Stainless Steel Weld Metal During Post-weld Heat Treatment [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(4): 577-590. |
[12] | Sheng Huang, Xiaoyu Zhang, Dichen Li, Qingyu Li. Microstructure and Mechanical Properties of B-Bearing Austenitic Stainless Steel Fabricated by Laser Metal Deposition In-Situ Alloying [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(3): 453-465. |
[13] | Tao Ying, Mingdi Yu, Yiwen Chen, Huan Zhang, Jingya Wang, Xiaoqin Zeng. Dominant Deformation Mechanisms in Mg-Zn-Ca Alloy [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(12): 1973-1982. |
[14] | F. Shi, L. Yan, J. Hu, L. F. Wang, T. Z. Li, W. Li, X. J. Guan, C. M. Liu, X. W. Li. Improving Intergranular Stress Corrosion Cracking Resistance in a Fe-18Cr-17Mn-2Mo-0.85N Austenitic Stainless Steel Through Grain Boundary Character Distribution Optimization [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(11): 1849-1861. |
[15] | Jian-Bin Zhan, Yan-Jin Lu, Jin-Xin Lin. On the Martensitic Transformation Temperatures and Mechanical Properties of NiTi Alloy Manufactured by Selective Laser Melting: Effect of Remelting [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(9): 1223-1233. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||