Acta Metallurgica Sinica (English Letters) ›› 2023, Vol. 36 ›› Issue (5): 771-788.DOI: 10.1007/s40195-023-01533-8
Previous Articles Next Articles
Yong Zhao1, Bi-Jun Xie2, Jin-Long Zhang1, Qin-Qiang Wang1, Bin Xu2, Jiang Guo1(), Zhu-Ji Jin1, Ren-Ke Kang1, Dian-Zhong Li2
Received:
2022-11-06
Revised:
2022-12-12
Accepted:
2022-12-26
Online:
2023-02-06
Published:
2023-02-06
Contact:
Jiang Guo
Yong Zhao, Bi-Jun Xie, Jin-Long Zhang, Qin-Qiang Wang, Bin Xu, Jiang Guo, Zhu-Ji Jin, Ren-Ke Kang, Dian-Zhong Li. Effects of Surface Roughness on Interface Bonding Performance for 316H Stainless Steel in Hot-Compression Bonding[J]. Acta Metallurgica Sinica (English Letters), 2023, 36(5): 771-788.
Add to citation manager EndNote|Ris|BibTeX
C | Mn | Si | Cr | Ni | P | S | Mo | Fe |
---|---|---|---|---|---|---|---|---|
0.07 | 1.70 | 0.35 | 17.69 | 11.59 | 0.04 | 0.02 | 2.91 | Bal. |
Table 1 Chemical composition of 316H stainless steel (wt%)
C | Mn | Si | Cr | Ni | P | S | Mo | Fe |
---|---|---|---|---|---|---|---|---|
0.07 | 1.70 | 0.35 | 17.69 | 11.59 | 0.04 | 0.02 | 2.91 | Bal. |
Main elements | Other elements | |
---|---|---|
36-grit sandpaper | Al, O | Si, Ti, Fe |
Other sandpapers | Mg, O, Si | C, Al, Ca |
Table 2 Abrasive elements of different sandpapers
Main elements | Other elements | |
---|---|---|
36-grit sandpaper | Al, O | Si, Ti, Fe |
Other sandpapers | Mg, O, Si | C, Al, Ca |
Fig. 3 3D topographies of the surface to be bonded ground by a 36-grit sandpaper, b 180-grit sandpaper, c 400-grit sandpaper, d 1200-grit sandpaper, or e polished
Fig. 5 Cross-sectional morphologies of bonding joints compressed by samples with different surface roughness: a 1.364-2.060 μm Sa, b 0.479-0.698 μm Sa, c 0.189-0.264 μm Sa, d, e 0.020-0.023 μm Sa, f 0.001-0.003 μm Sa
Fig. 7 Cross-sectional specimens derived from bonding joints compressed by samples with different roughness: a 1.364-2.060 μm Sa, b 0.479-0.698 μm Sa, c 0.189-0.264 μm Sa, d enlarge view of a, e enlarge view of b, f enlarge view of c, g 0.020-0.023 μm Sa, h 0.001-0.003 μm Sa, i enlarge view of g, j enlarge view of h
Fig. 9 Morphology and element distribution of the oxide particle on the cross-sectional specimen derived from bonding joints compressed by the sample ground with 36-grit sandpaper: a SEM image, b element distribution, c O distribution, d Cr distribution, e Mn distribution, f result of point scanning
Fig. 10 Morphology and element distribution of the abrasive on the cross-sectional specimen derived from bonding joints compressed by the sample ground with 36-grit sandpaper: a SEM image, b element distribution, c Al distribution, d O distribution
Fig. 11 Morphology and element distribution of the oxide particle on the cross-sectional specimen derived from bonding joints compressed by the sample ground with 180-grit sandpaper: a SEM image, b element distribution, c O distribution, d Cr distribution, e Mn distribution, f result of point scanning
Fig. 12 Morphology and element distribution of the abrasive on the cross-sectional specimen derived from bonding joints compressed by the sample ground with 180-grit sandpaper: a SEM image, b element distribution, c O distribution, d Si distribution, e Mg distribution
Fig. 13 Morphology and element distribution of the abrasive on the cross-sectional specimen derived from bonding joints compressed by the sample ground with 400-grit sandpaper: a SEM image, b element distribution
Fig. 14 Morphology and element of the oxide particle on the cross-sectional specimen derived from bonding joints compressed by the sample ground with 400-grit sandpaper: a SEM image, b result of point scanning
Fig. 15 Morphology and element of the oxide particle on the cross-sectional specimen derived from bonding joints compressed by the sample ground with 1200-grit sandpaper: a SEM image, b result of point scanning
Fig. 16 Morphology and element of the oxide particle on the cross-sectional specimen derived from bonding joints compressed by the sample after polishing: a SEM image, b result of point scanning
Ultimate tensile strength (MPa) | Elongation (%) | |
---|---|---|
T1 | 591.44 | 37.54 |
T2 | 594.01 | 83.27 |
T3 | 592.76 | 91.76 |
T4 | 587.27 | 78.81 |
T5 | 593.75 | 100.60 |
Table 3 Engineering stress-strain values of tensile specimens
Ultimate tensile strength (MPa) | Elongation (%) | |
---|---|---|
T1 | 591.44 | 37.54 |
T2 | 594.01 | 83.27 |
T3 | 592.76 | 91.76 |
T4 | 587.27 | 78.81 |
T5 | 593.75 | 100.60 |
Surface processing methods | Surface area (μm2) | Entire surface area (μm2) |
---|---|---|
Ground by 36-grit sandpaper | 792,321.3 | 67,347,310.6 |
Ground by 180-grit sandpaper | 764,191.3 | 64,956,262.2 |
Ground by 400-grit sandpaper | 756,315.4 | 64,286,804.8 |
Ground by 1200-grit sandpaper | 753,761.1 | 64,069,695.2 |
Polished by polishing liquid | 753,681.2 | 64,062,904.6 |
Table 4 Oxide scale volume of surface processed by different methods
Surface processing methods | Surface area (μm2) | Entire surface area (μm2) |
---|---|---|
Ground by 36-grit sandpaper | 792,321.3 | 67,347,310.6 |
Ground by 180-grit sandpaper | 764,191.3 | 64,956,262.2 |
Ground by 400-grit sandpaper | 756,315.4 | 64,286,804.8 |
Ground by 1200-grit sandpaper | 753,761.1 | 64,069,695.2 |
Polished by polishing liquid | 753,681.2 | 64,062,904.6 |
[1] |
M.O. Acar, M.E. Fitzpatrick, Mater. Sci. Eng. A 701, 203 (2017)
DOI URL |
[2] | M. Sarvghad, S.D. Maher, D. Collard, M. Tassan, G. Will, T.A. Steinberg, Energy Storage Mater. 14, 179 (2018) |
[3] | L.L. Zhao, S.T. Wei, D.B. Gao, S.P. Lu, Acta Metall. Sin. -Engl. Lett. 34, 986 (2021) |
[4] |
A.D. Warren, I.J. Griffiths, R.L. Harniman, P.E.J. Flewitt, T.B. Scott, Mater. Sci. Eng. A 635, 59 (2015)
DOI URL |
[5] |
X.L. Li, L.T. Chang, C.P. Liu, B. Leng, X.X. Ye, F.F. Han, X.M. Yang, Corros. Sci. 191, 109784 (2021)
DOI URL |
[6] |
R.C. Kerr, A.W. Woods, M.G. Worster, H.E. Huppert, Nature 340, 357 (1989)
DOI |
[7] | B. He, L. Cui, D.P. Wang, H.J. Li, C.X. Liu, Acta Metall. Sin. -Engl. Lett. 33, 135 (2020) |
[8] | P. He, J.H. Zhang, J.C. Feng, Y.Y. Qian, Acta Metall. Sin. -Engl. Lett. 13, 162 (2000) |
[9] | Y.Q. Lai, S. Chen, X.L. Ren, Y.Y. Qiao, N. Zhao, Acta Metall. Sin. -Engl. Lett. 35, 1912 (2022) |
[10] |
X.J. Zhang, T.S. Wang, Z.C. Zhu, L. Zhu, J. Iron Steel Res. Int. 29, 2016 (2022)
DOI |
[11] | M.Y. Sun, B. Xu, D.Z. Li, Y.Y. Li, U.S. Patent 10,413,964 B2, 17 Sept 2019. |
[12] |
B.J. Xie, Z.X. Yu, H.Y. Jiang, B. Xu, C.Y. Wang, J.Y. Zhang, M.Y. Sun, D.Z. Li, Y.Y. Li, J. Mater. Sci. Technol. 96, 199 (2022)
DOI URL |
[13] |
J.Q. Yu, W.B. Zhou, G.Q. Zhao, J. Manuf. Process. 65, 299 (2021)
DOI URL |
[14] |
D.Z. Xu, L.G. Meng, C.R. Zhang, X. Chen, X.G. Zhang, Mater. Charact. 189, 111997 (2022)
DOI URL |
[15] |
X. Xu, X.W. Ma, S.B. Yu, G.Q. Zhao, Y.X. Wang, X.X. Chen, Mater. Charact. 167, 110486 (2020)
DOI URL |
[16] | D.S. Qian, W.T. Li, J.D. Deng, F. Wang, M. Wu, J. Mater. Res. Technol. 18, 2140 (2022) |
[17] |
Y.P. Wang, Y.H. Liu, S.D. Pay, B. Lan, J. Jiang, J. Mater. Process. Technol. 295, 117191 (2021)
DOI URL |
[18] | W.F. Liu, B.J. Xie, M.Y. Sun, B. Xu, Y.F. Cao, D.Z. Li, Acta Metall. Sin. -Engl. Lett. 35, 1837 (2022) |
[19] |
B.J. Xie, M.Y. Sun, B. Xu, C.Y. Wang, H.Y. Jiang, D.Z. Li, Y.Y. Li, Corros. Sci. 147, 41 (2019)
DOI URL |
[20] |
G.G. Zhang, R.S. Chandel, J. Mater. Sci. 40, 1793 (2005)
DOI URL |
[21] |
G.Q. Wu, Z.F. Li, G.X. Luo, H.Y. Li, Z. Huang, Mater. Sci. Eng. A 452-453, 529 (2007)
DOI URL |
[22] |
V.R. Saranam, B. Mullany, A. Tabei, S. Srenevas, C. Evans, B.K. Paul, J. Mater. Process. Technol. 296, 117173 (2021)
DOI URL |
[23] |
C. Zhang, H. Li, M.Q. Li, Appl. Surf. Sci. 371, 407 (2016)
DOI URL |
[24] |
X. Shao, X.L. Guo, Y.F. Han, W.J. Lu, J. Qin, D. Zhang, Mater. Des. 65, 1001 (2015)
DOI URL |
[25] |
C. Zhang, H. Li, M.Q. Li, J. Mater. Sci. Technol. 32, 259 (2016)
DOI |
[26] |
C. Zhang, M.Q. Li, H. Li, J. Mater. Sci. Technol. 34, 1449 (2018)
DOI |
[27] | D.M. Guo, J. Mech. Eng. 58, 225 (2022) |
[28] | D.M. Guo, China Mech. Eng. 29, 757 (2018) |
[29] | B.J. Xie, Dissertation, University of Chinese Academy of Sciences (2020) |
[30] | L.Y. Zhou, Dissertation, University of Science and Technology of China (2019) |
[31] |
Y. Zhao, Z.J. Jin, B. Xu, Q.Q. Wang, J. Feng, X.R. Li, R.K. Kang, Z.C. Wei, J. Guo, Mater. Des. 210, 110025 (2021)
DOI URL |
[1] | Wei-Feng Liu, Bi-Jun Xie, Ming-Yue Sun, Bin Xu, Yan-Fei Cao, Dian-Zhong Li. Interfacial Oxides Evolution of High-Speed Steel Joints by Hot-Compression Bonding [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(11): 1837-1848. |
[2] | Valeria Bongiorno, Paolo Piccardo, Simone Anelli, Roberto Spotorno. Influence of Surface Finishing on High-Temperature Oxidation of AISI Type 444 Ferritic Stainless Steel Used in SOFC Stacks [J]. Acta Metallurgica Sinica (English Letters), 2017, 30(8): 697-711. |
[3] | Li Wang, Wei-Guo Jiang, Xiang-Wei Li, Jia-Sheng Dong, Wei Zheng, Hui Feng, Lang-Hong Lou. Effect of Surface Roughness on the Oxidation Behavior of a Directionally Solidified Ni-Based Superalloy at 1,100 °C [J]. Acta Metallurgica Sinica (English Letters), 2015, 28(3): 381-385. |
[4] | A.V.Parian, H.G.Chun, A.R.Shuourov, S.V.Panin, N.V.Pykhtin. NUMERICAL CHARACTERIZATION OF CURRENT-INDUCED CHANGESIN SURFACE MORPHOLOGY OF THIN Ag FILMS [J]. Acta Metallurgica Sinica (English Letters), 2003, 16(4): 249-255 . |
[5] | M.H. Li, G.H. Yu, F.W. Zhu. STUDY OF THE EXCHANGE BIAS FIELD OF NiFe/FeMn BILAYERS [J]. Acta Metallurgica Sinica (English Letters), 2002, 15(2): 238-242 . |
[6] | TANG Hong, QIAO Guiwen, CHUANG YuchiInstitute of Metal Research, Chinese Academy of Sciences, Shenyang, ChinaXIANYU Ze, WANG JinxingNortheastern University, Shenyang, China. MAGNETIZATION BEHAVIOUR FOR TEXTURED BULK YBaCuO POLYCRYSTALLINE SUPERCONDUCTORS [J]. Acta Metallurgica Sinica (English Letters), 1994, 7(3): 161-166. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||