Acta Metallurgica Sinica (English Letters) ›› 2022, Vol. 35 ›› Issue (12): 1973-1982.DOI: 10.1007/s40195-022-01437-z
Previous Articles Next Articles
Tao Ying1, Mingdi Yu1, Yiwen Chen1, Huan Zhang1, Jingya Wang1(), Xiaoqin Zeng1(
)
Received:
2022-03-29
Revised:
2022-05-07
Accepted:
2022-05-24
Online:
2022-12-10
Published:
2022-07-08
Contact:
Jingya Wang,Xiaoqin Zeng
About author:
Xiaoqin Zeng, xqzeng@sjtu.edu.cnTao Ying, Mingdi Yu, Yiwen Chen, Huan Zhang, Jingya Wang, Xiaoqin Zeng. Dominant Deformation Mechanisms in Mg-Zn-Ca Alloy[J]. Acta Metallurgica Sinica (English Letters), 2022, 35(12): 1973-1982.
Add to citation manager EndNote|Ris|BibTeX
Fig. 1 Schematic illustrations of the supercells used to calculate the GSFE for different slip systems: a basal slip plane; b prismatic slip plane; c pyramidal I slip plane; d pyramidal II slip plane
Fig. 7 Slip trace analysis of Mg-Zn-Ca alloy after 8% tensile strain: a IPF map; b SEM image of part of the deformed region with identified slip traces; c corresponding {0001} pole figure. The solid lines represent the relevant slip plane traces with maximum Schmid factors, as simulated by the MTEX Toolbox
Fig. 8 Slip trace analysis of Mg-Zn-Ca alloy after 11% tensile strain: a IPF map; b SEM image of part of the deformed region with slip traces; c corresponding {0001} pole figure. The solid lines represent the relevant slip plane traces with maximum Schmid factors, as simulated by the MTEX Toolbox
Fig. 9 Boundary misorientation maps of Mg–Zn–Ca alloy deformed under a 8% strain and b 11% strain. The red and black lines represent {10 $\stackrel{\mathrm{-}}{1}$ 2} tensile twin boundaries and grain boundaries, respectively
Fig. 11 Schematic models of atomic occupancies in the Mg-Zn-Ca alloy determined by calculating the cohesive energy for different slip systems: a basal slip; b prismatic slip; c pyramidal I slip; and d pyramidal II slip
Fig. 12 Calculated GSFE curves for a basal slip; b prismatic slip; c pyramidal I?<?a?>?slip; d pyramidal I?<?c?+?a?>?slip; and e pyramidal II?<?c?+?a?>?slip
[1] |
T.M. Pollock, Science 328, 986 (2010)
DOI PMID |
[2] |
H. Li, J. Wen, Y. Liu, J. He, H. Shi, P. Tian, Adv. Eng. Mater. 22, 2000213 (2020)
DOI URL |
[3] | A.A. Luo, JOM 54, 42 (2002) |
[4] |
H. Yoshinaga, R. Horiuchi, Trans. JIM 4, 1 (1963)
DOI URL |
[5] |
R.E. Reed-Hill, W.D. Robertson, JOM 9, 496 (1957)
DOI URL |
[6] |
T. Obara, H. Yoshinga, S. Morozumi, Acta Metall. 21, 845 (1973)
DOI URL |
[7] | B.Y. Liu, F. Liu, N. Yang, X.B. Zhai, L. Zhang, Y. Yang, B. Li, J. Li, E. Ma, J.F. Nie, Z.W. Shan, Science. 364, 73 (2019) |
[8] |
G. Liu, J. Zhang, G. Xi, R. Zuo, S. Liu, Acta Mater. 141, 1 (2017)
DOI URL |
[9] |
H. Somekawa, M. Yamaguchi, Y. Osawa, A. Singh, M. Itakura, T. Tsuru, T. Mukai, Philos. Mag. 95, 869 (2015)
DOI URL |
[10] |
R. Ahmad, B. Yin, Z. Wu, W.A. Curtin, Acta Mater. 172, 161 (2019)
DOI URL |
[11] | Z. Wu, R. Ahmad, B. Yin, S. Sandlobes, W.A. Curtin, Science 359, 447 (2018) |
[12] |
R.K. Sabat, A.P. Brahme, R.K. Mishra, K. Inal, S. Suwas, Acta Mater. 161, 246 (2018)
DOI URL |
[13] |
S. Sandlobes, Z. Pei, M. Friak, L.F. Zhu, F. Wang, S. Zaefferer, D. Raabe, J. Neugebauer, Acta Mater. 70, 92 (2014)
DOI URL |
[14] |
W.B. Hutchinson, M.R. Barnett, Scr. Mater. 63, 737 (2010)
DOI URL |
[15] | J. Yang, J. Peng, M. Li, E.A. Nyberg, F.S. Pan, Acta Metall. Sin. -Engl. Lett. 30, 53 (2017) |
[16] | F.W. Jiao, L. Jin, J. Dong, F.H. Wang, Acta Metall. Sin. Engl. Lett. 32, 263 (2019) |
[17] |
G. Zhu, L. Wang, H. Zhou, J. Wang, Y. Shen, P. Tu, H. Zhu, W. Liu, P. Jin, X. Zeng, Int. J. Plast. 120, 164 (2019)
DOI URL |
[18] |
S.R. Agnew, J.A. Horton, M.H. Yoo, Metall. Mater. Trans. A 33, 851 (2002)
DOI URL |
[19] |
S. Sandlobes, M. Friak, S. Zaefferer, A. Dick, S. Yi, D. Letzig, Z. Pei, L.F. Zhu, J. Neugebauer, D. Raabe, Acta Mater. 60, 3011 (2012)
DOI URL |
[20] |
Y. Chino, M. Kado, M. Mabuchi, Mater. Sci. Eng. A 494, 343 (2008)
DOI URL |
[21] |
S. Sandlobes, M. Friak, J. Neugebauer, D. Raabe, Mater. Sci. Eng. A 576, 61 (2013)
DOI URL |
[22] |
L. Wang, Z. Huang, H. Wang, A. Maldar, S. Yi, J.S. Park, P. Kenesei, E. Lilleodden, X. Zeng, Acta Mater. 155, 138 (2018)
DOI URL |
[23] |
A. Akhtar, E. Teghtsoonian, Acta Metall. 17, 1351 (1969)
DOI URL |
[24] |
N. Stanford, M.R. Barnett, Int. J. Plast. 47, 165 (2013)
DOI URL |
[25] |
J. Wang, G. Zhu, L. Wang, E. Vasilev, J.-S. Park, G. Sha, X. Zeng, M. Knezevic, J. Mater. Sci. Technol. 84, 27 (2021)
DOI |
[26] |
Q. Kang, H. Jiang, Y. Zhang, Z. Xu, H. Li, Z. Xia, J. Alloy. Compd. 742, 1019 (2018)
DOI URL |
[27] |
Z.R. Zeng, M.Z. Bian, S.W. Xu, C.H.J. Davies, N. Birbilis, J.F. Nie, Mater. Sci. Eng. A 674, 459 (2016)
DOI URL |
[28] |
J. Hofstetter, S. Ruedi, I. Baumgartner, H. Kilian, B. Mingler, E. Povoden-Karadeniz, S. Pogatscher, P.J. Uggowitzer, J.F. Loffler, Acta Mater. 98, 423 (2015)
DOI URL |
[29] | K.B. Nie, Z.H. Zhu, P. Munroe, K.K. Deng, J.G. Han, Acta Metall. Sin. -Engl. Lett. 33, 922 (2020) |
[30] | J. Luo, H. Yan, N. Zheng, R.S. Chen, Acta Metall. Sin. -Engl. Lett. 29, 205 (2016) |
[31] | T. Tu, X.H. Chen, J. Chen, C.Y. Zhao, F.S. Pan, Acta Metall. Sin. -Engl. Lett. 32, 23 (2019) |
[32] |
J. Wang, Y. Chen, Z. Chen, J. Llorca, X. Zeng, Acta Mater. 217, 117151 (2021)
DOI URL |
[33] |
M. Yuasa, M. Hayashi, M. Mabuchi, Y. Chino, Acta Mater. 65, 207 (2014)
DOI URL |
[34] | J.A. Yan, C.Y. Wang, S.Y. Wang, Phys (B - Condens. Matter Mater. Phys, Rev, 2004). https://doi.org/10.1103/PhysRevB.70.014402 |
[35] |
A.A. Kaya, Front. Mater. 7, 1 (2020)
DOI URL |
[36] |
J.A. Yasi, L.G. Hector, D.R. Trinkle, Acta Mater. 58, 5704 (2010)
DOI URL |
[37] |
J.L. Li, D. Wu, R.S. Chen, E.H. Han, Acta Mater. 159, 31 (2018)
DOI URL |
[38] |
C.M. Cepeda-Jimenez, J.M. Molina-Aldareguia, M.T. Peez-Prado, Acta Mater. 84, 443 (2015)
DOI URL |
[39] |
F. Bachmann, R. Hielscher, H. Schaeben, Solid State Phenom. 160, 63 (2010)
DOI URL |
[40] |
J.P.J. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)
DOI PMID |
[41] |
P.E. Blochl, Phys. Rev. B 50, 17953 (1994)
DOI URL |
[42] |
T. Zheng, Y. Hu, C. Zhang, T. Zhao, F. Pan, A. Tang, Mater. Charact. 179, 111299 (2021)
DOI URL |
[43] |
H. Pan, R. Kang, J. Li, H. Xie, Z. Zeng, Q. Huang, C. Yang, Y. Ren, G. Qin, Acta Mater. 186, 278 (2020)
DOI URL |
[44] |
S. Sandlobes, S. Zaefferer, I. Schestakow, S. Yi, R. Gonzalez-Martinez, Acta Mater. 59, 429 (2011)
DOI URL |
[45] |
S.R. Agnew, M.H. Yoo, C.N. Tome, Acta Mater. 49, 4277 (2001)
DOI URL |
[46] |
A. Tehranchi, B. Yin, W.A. Curtin, Acta Mater. 151, 56 (2018)
DOI URL |
[1] | Tou-Wen Fan,Xiu-Bo Yang,Jiang-Hua Chen,Ling-Hong Liu,Ding-Wan Yuan,Yong Zhang,Cui-Lan Wu. Application of the Peierls-Nabarro Model to Symmetric Tilt Low-Angle Grain Boundary with Full <a> Dislocation in Pure Magnesium [J]. Acta Metallurgica Sinica (English Letters), 2016, 29(11): 1053-1063. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||