Acta Metallurgica Sinica (English Letters) ›› 2022, Vol. 35 ›› Issue (4): 577-590.DOI: 10.1007/s40195-021-01274-6
Previous Articles Next Articles
Wenbin Tian1,2, Dong Wu1, Yiyi Li1,3, Shanping Lu1()
Received:
2021-02-02
Revised:
2021-05-04
Accepted:
2021-05-06
Online:
2021-07-08
Published:
2021-07-08
Contact:
Shanping Lu
About author:
Shanping Lu, shplu@imr.ac.cnWenbin Tian, Dong Wu, Yiyi Li, Shanping Lu. Precipitation Behavior and Mechanical Properties of a 16Cr-25Ni Superaustenitic Stainless Steel Weld Metal During Post-weld Heat Treatment[J]. Acta Metallurgica Sinica (English Letters), 2022, 35(4): 577-590.
Add to citation manager EndNote|Ris|BibTeX
Materials | C | Si | Mn | S | P | N | Cr | Ni | Mo | Fe |
---|---|---|---|---|---|---|---|---|---|---|
Filler metal | 0.088 | 0.37 | 1.42 | 0.0019 | 0.005 | 0.17 | 16.08 | 25.4 | 6.18 | Bal. |
Weld metal | 0.086 | 0.39 | 1.40 | 0.0022 | 0.006 | 0.11 | 15.86 | 25.5 | 6.31 | Bal. |
Table 1 Chemical composition of experimental materials (wt%)
Materials | C | Si | Mn | S | P | N | Cr | Ni | Mo | Fe |
---|---|---|---|---|---|---|---|---|---|---|
Filler metal | 0.088 | 0.37 | 1.42 | 0.0019 | 0.005 | 0.17 | 16.08 | 25.4 | 6.18 | Bal. |
Weld metal | 0.086 | 0.39 | 1.40 | 0.0022 | 0.006 | 0.11 | 15.86 | 25.5 | 6.31 | Bal. |
Welding current | 170 A |
---|---|
Welding voltage | 14 V |
Welding speed | 0.09 m/min |
Wire feed rate | 0.9 m/min |
Shielding gas | 99.999% Argon |
Gas flow rate | 15 L/min |
Interpass temperature | 20 °C—60 °C |
Table 2 Welding parameters
Welding current | 170 A |
---|---|
Welding voltage | 14 V |
Welding speed | 0.09 m/min |
Wire feed rate | 0.9 m/min |
Shielding gas | 99.999% Argon |
Gas flow rate | 15 L/min |
Interpass temperature | 20 °C—60 °C |
Fig. 4 Microstructure characterization of as-welded weld metal: OM images of a fully austenitic microstructure and b precipitate distribution, c SEM micrograph of interdendritic precipitates, d corresponding EDS semiquantitative result
Fig. 6 TEM characterization of primary precipitates in as-welded weld metal: a HAADF-STEM micrograph of M6C carbide and b corresponding SAED pattern, c HAADF-STEM micrograph of M23C6 carbide, d corresponding SAED pattern, e STEM-EDS mappings of M23C6 carbide
Fig. 9 TEM characterization of needlelike precipitates (confirmed as M2X carbonitrides): a BF micrograph, b DF micrograph, c SAED pattern of M2X, d corresponding EDS result (elemental carbon and nitrogen were detected in the spectrum but not listed in the chart because the content of light elements were not accurate)
Fig. 10 TEM characterization of secondary M23C6 carbides in the grain boundary: a HAADF-STEM micrograph, b STEM-EDS mapping of Cr-rich M23C6, c STEM-EDS mapping of Cr-rich M23C6, d, e: the corresponding SAED patterns of (b) and (c), respectively
Condition | Interdendritic region | Grain boundary |
---|---|---|
As-welded | M6C | Primary M23C6 |
690 °C/4-12 h | M6C, M2X, secondary M23C6 | Primary and secondary M23C6 |
Table 3 Formation and distribution of precipitates in the weld metal during PWHT
Condition | Interdendritic region | Grain boundary |
---|---|---|
As-welded | M6C | Primary M23C6 |
690 °C/4-12 h | M6C, M2X, secondary M23C6 | Primary and secondary M23C6 |
Fig. 12 Room temperature tensile property of SASS weld metal: a comparison (as-welded) with typical base metal of DMW [9, 46,47,48], b evolution among different conditions (as-welded and PWHT)
Fig. 15 SEM fractography and dimple patterns of the weld metal after impact fracture: a, e as-welded, b, f 690 °C/4 h, c, g 690 °C/8 h, d, h 690 °C/12 h
[1] |
K. Aoto, P. Dufour, Y. Hongyi, J.P. Glatz, Y.I. Kim, Y. Ashurko, R. Hill, N. Uto, Prog. Nucl. Energy. 77, 247 (2014)
DOI URL |
[2] |
G.L. Fiorini, A. Vasile, Nucl. Eng. Des. 241, 3461 (2011)
DOI URL |
[3] |
D. Hahn, Y.I. Kim, C.B. Lee, S.O. Kim, J.H. Lee, Y.B. Lee, B.H. Kim, H.Y. Jeong, Nucl. Eng. Technol. 39, 193 (2007)
DOI URL |
[4] |
H.Y. Lee, S.H. Lee, J.B. Kim, J.H. Lee, Int. J. Fatigue. 29, 1868 (2007)
DOI URL |
[5] |
T. Jayakumar, M.D. Mathew, K. Laha, R. Sandhya, Nucl. Eng. Des. 265, 1175 (2013)
DOI URL |
[6] |
C.E. Sessions, S.D. Reynolds, M.A. Hebbar, J.F. Lewis, J.H. Kiefer, Nucl. Technol. 55, 270 (1981)
DOI URL |
[7] |
M. Konomura, M. Ichimiya, J. Nucl. Mater. 371, 250 (2007)
DOI URL |
[8] | A.K. Bhaduri, S. Venkadesan, P. Rodriguez, P.G. Mukunda, Int. J. Press. Vessels Pip. 58, 251 (1994) |
[9] |
A. Kulkarni, D.K. Dwivedi, M. Vasudevan, J. Mater. Process. Technol. 274, 116280 (2019)
DOI URL |
[10] |
H. Ming, J. Wang, E.H. Han, Mater. Charact. 139, 186 (2018)
DOI URL |
[11] |
D.W. Rathod, R.K.R. Singh, S. Pandey, S. Aravindan, P.K. Singh, Mater. Sci. Eng. A 702, 289 (2017)
DOI URL |
[12] |
T. Suzuki, I. Mutoh, T. Yagi, Y. Ikenaga, J. Nucl. Mater. 139, 97 (1986)
DOI URL |
[13] |
T. Furukawa, S. Kato, E. Yoshida, J. Nucl. Mater. 392, 249 (2009)
DOI URL |
[14] |
A.K. Bhaduri, I. Gowrisankar, V. Seetharaman, S. Venkadesan, P. Rodriguez, Mater. Sci. Technol. 4, 1020 (1988)
DOI URL |
[15] |
M. Sireesha, V. Shankar, S.K. Albert, S. Sundaresan, Mater. Sci. Eng. A 292, 74 (2000)
DOI URL |
[16] |
K.D. Ramkumar, J.L.N. Varma, G. Chaitanya, A. Choudhary, N. Arivazhagan, S. Narayanan, Mater. Sci. Eng. A 636, 1 (2015)
DOI URL |
[17] |
M. Qian, J.N. DuPont, Corros. Sci. 52, 3548 (2010)
DOI URL |
[18] |
L. Brissonneau, J. Nucl. Mater. 423, 67 (2012)
DOI URL |
[19] |
Z. Fei, Z. Pan, D. Cuiuri, H. Li, W. Huang, Z. Peng, Int. J. Adv. Manuf. Technol. 108, 3207 (2020)
DOI URL |
[20] |
T. Koutsoukis, A. Redjaïmia, G. Fourlaris, Mater. Sci. Eng. A 561, 477 (2013)
DOI URL |
[21] |
K.D. Adams, J.N. DuPont, A.R. Marder, J. Mater. Eng. Perform. 16, 123 (2007)
DOI URL |
[22] |
J. Anburaj, S.S.M. Nazirudeen, R. Narayanan, B. Anandavel, A. Chandrasekar, Mater. Sci. Eng. A 535, 99 (2012)
DOI URL |
[23] |
J.S. Ogborn, D.L. Olson, M.J. Cieslak, Mater. Sci. Eng. A 203, 134 (1995)
DOI URL |
[24] |
A.K. Bhaduri, S.K. Ray, P. Rodriguez, Mater. Sci. Technol. 13, 356 (1997)
DOI URL |
[25] |
J. Moon, J.J. Lee, C.H. Lee, J. Nucl. Mater. 542, 152499 (2020)
DOI URL |
[26] |
J.M. Bai, Y. Yuan, P. Zhang, J.B. Yan, Mater. Sci. Eng. A 784, 138943 (2020)
DOI URL |
[27] |
S. Heino, B. Karlsson, Acta Mater. 49, 339 (2001)
DOI URL |
[28] |
E. Keehan, L. Karlsson, H.O. Andrén, H.K.D.H. Bhadeshia, Sci. Technol. Weld. Join. 11, 19 (2006)
DOI URL |
[29] |
A. Kulkarni, D.K. Dwivedi, M. Vasudevan, Mater. Sci. Eng. A 790, 139685 (2020)
DOI URL |
[30] |
G. Dak, C. Pandey, J. Manuf. Process. 58, 377 (2020)
DOI URL |
[31] |
Y. Li, X. Fan, H. Cui, F. Lu, X. Tang, Sci. Technol. Weld. Join. 26, 37 (2021)
DOI URL |
[32] | J.K. Kim, H.J. Park, D.N. Shim, Acta Metall. Sin.-Engl. Lett. 29, 1107 (2016) |
[33] |
C. Lee, S. Roh, C. Lee, S. Hong, Mater. Chem. Phys. 207, 91 (2018)
DOI URL |
[34] | M.K. Chen, J. Xie, D.L. Shu, G.C. Hou, S.L. Xun, J.J. Yu, L.R. Liu, X.F. Sun, Y.Z. Zhou, Acta Metall. Sin.-Engl. Lett. 33, 1699 (2020) |
[35] |
Z. Qiu, B. Wu, H. Zhu, Z. Wang, A. Hellier, Y. Ma, H. Li, O. Muransky, D. Wexler, Mater. Des. 195, 109007 (2020)
DOI URL |
[36] |
J. Zhang, L. Yu, Z. Ma, Y. Liu, C. Liu, H. Li, H. Wang, Metall. Mater. Trans. A 51, 4549 (2020)
DOI URL |
[37] |
A. Zieliński, G. Golański, M. Sroka, Mater. Sci. Eng. A 796, 139944 (2020)
DOI URL |
[38] |
T.H. Lee, H.Y. Suh, S.K. Han, J.S. Noh, J.H. Lee, J. Nucl. Mater. 479, 85 (2016)
DOI URL |
[39] | M.S.A. Rahman, N.A.A. Raheem, M.R. El Koussy, Acta Metall. Sin.-Engl. Lett. 27, 259 (2014) |
[40] | M. Manikandan, N. Arivazhagan, M.N. Rao, G.M. Reddy, Acta Metall. Sin.-Engl. Lett. 28, 208 (2015) |
[41] | Y.L. Ji, W. Zhang, X.Y. Chen, J.G. Li, Acta Metall. Sin.-Engl. Lett. 29, 382 (2016) |
[42] |
E.S. Lee, W.J. Park, J.Y. Jung, S. Ahn, Metall. Mater. Trans. A 29, 1395 (1998)
DOI URL |
[43] | Z.F. Xu, J.S. Dong, L. Jiang, Z.J. Li, X.T. Zhou, Acta Metall. Sin.-Engl. Lett. 28, 951 (2015) |
[44] |
D. Tytko, P.P. Choi, J. Klöwer, A. Kostka, G. Inden, D. Raabe, Acta Mater. 60, 1731 (2012)
DOI URL |
[45] | C.Z. Zhu, Y. Yuan, J.M. Bai, P. Zhang, J.B. Yan, C.Y. You, Y.F. Gu, Mater. Sci. Eng. A 740-741, 71(2019) |
[46] |
K. Karthick, S. Malarvizhi, V. Balasubramanian, S.A. Krishnan, G. Sasikala, S.K. Albert, Nucl. Eng. Technol. 50, 116 (2018)
DOI URL |
[47] |
A. Kulkarni, D.K. Dwivedi, M. Vasudevan, Mater. Sci. Eng. A 731, 309 (2018)
DOI URL |
[48] |
V.D. Vijayanand, M. Vasudevan, V. Ganesan, P. Parameswaran, K. Laha, A.K. Bhaduri, Metall. Mater. Trans. A 47, 2804 (2016)
DOI URL |
[49] |
T. Liu, J.S. Dong, L. Wang, Z.J. Li, X.T. Zhou, L.H. Lou, J. Zhang, J. Mater. Sci. Technol. 31, 269 (2015)
DOI |
[50] | R. Sridhar, K. Devendranath Ramkumar, N. Arivazhagan, Acta Metall. Sin.-Engl. Lett. 27, 1018 (2014) |
[1] | Wen-Ting Zhu, Jun-Jun Cui, Zhen-Ye Chen, Yang Zhao, Li-Qing Chen. Correlation of Microstructure Feature with Impact Fracture Behavior in a TMCP Processed High Strength Low Alloy Construction Steel [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(4): 527-536. |
[2] | Zijian Yu, Xi Xu, Baotian Du, Kang Shi, Ke Liu, Shubo Li, Xiuzhu Han, Tao Xiao, Wenbo Du. Precipitate Characteristics and Mechanical Performance of Cast Mg-6RE-1Zn-xCa-0.3Zr (x = 0 and 0.4 wt%) Alloys [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(4): 596-608. |
[3] | Yunmian Xiao, Yongqiang Yang, Shibiao Wu, Jie Chen, Di Wang, Changhui Song. Microstructure and Mechanical Properties of AlSi10Mg Alloy Manufactured by Laser Powder Bed Fusion Under Nitrogen and Argon Atmosphere [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(3): 486-500. |
[4] | Sheng Huang, Xiaoyu Zhang, Dichen Li, Qingyu Li. Microstructure and Mechanical Properties of B-Bearing Austenitic Stainless Steel Fabricated by Laser Metal Deposition In-Situ Alloying [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(3): 453-465. |
[5] | Hao Tang, Yaoxiang Geng, Shunuo Bian, Junhua Xu, Zhijie Zhang. An Ultra-High Strength Over 700 MPa in Al-Mn-Mg-Sc-Zr Alloy Fabricated by Selective Laser Melting [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(3): 466-474. |
[6] | Xiaodong Wang, Chaoyue Chen, Ruixin Zhao, Longtao Liu, Sansan Shuai, Tao Hu, Jiang Wang, Zhongming Ren. Selective Laser Melting of Carbon-Free Mar-M509 Co-Based Superalloy: Microstructure, Micro-Cracks, and Mechanical Anisotropy [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(3): 501-516. |
[7] | Pei Wang, Sijie Yu, Jaskarn Shergill, Anil Chaubey, Jürgen Eckert, Konda Gokuldoss Prashanth, Sergio Scudino. Selective Laser Melting of Al-7Si-0.5 Mg-0.5Cu: Effect of Heat Treatment on Microstructure Evolution, Mechanical Properties and Wear Resistance [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(3): 389-396. |
[8] | Jing Wang, Wei Li, Xiaodong Zhu, Li You, Laiqi Zhang. Characterization of the Trace Phosphorus Segregation and Mechanical Properties of Dual-Phase Steels [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(2): 341-352. |
[9] | Naying An, Sansan Shuai, Tao Hu, Chaoyue Chen, Jiang Wang, Zhongming Ren. Application of Synchrotron X-Ray Imaging and Diffraction in Additive Manufacturing: A Review [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(1): 25-48. |
[10] | Mehran Dadkhah, Mohammad Hossein Mosallanejad, Luca Iuliano, Abdollah Saboori. A Comprehensive Overview on the Latest Progress in the Additive Manufacturing of Metal Matrix Composites: Potential, Challenges, and Feasible Solutions [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(9): 1173-1200. |
[11] | Guoliang Ma, Yong Zhao, Hongzhi Cui, Xiaojie Song, Mingliang Wang, Kwangmin Lee, Xiaohua Gao, Qiang Song, Canming Wang. Addition Al and/or Ti Induced Modifications of Microstructures, Mechanical Properties, and Corrosion Properties in CoCrFeNi High-Entropy Alloy Coatings [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(8): 1087-1102. |
[12] | Jiafen Song, Zishu Chai, Jian Zheng, Qingfeng Wu, Feng He, Zenan Yang, Junjie Li, Jincheng Wang, Haiou Yang, Zhijun Wang. Design Fe-based Eutectic Medium-Entropy Alloys Fe2NiCrNbx [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(8): 1103-1108. |
[13] | Y. D. Liu, J. H. Liu, W. S. Gu, H. L. Li, W. H. Li, Z. L. Pei, J. Gong, C. Sun. Oxidation, Mechanical and Tribological Behaviors of the Ni/cBN Abrasive Coating-Coated Titanium Alloys [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(7): 1007-1020. |
[14] | Langlang Zhao, Shitong Wei, Dianbao Gao, Shanping Lu. Effect of Carbon Content on the Creep Rupture Properties and Microstructure of 316H Weld Metals [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(7): 986-996. |
[15] | B. Mehdi, R. Badji, V. Ji, B. Alili, D. Bradai, W. Bedjaoui, F. Deschaux-Beaume, F. Brisset. Unveiling the Residual Stresses, Local Micromechanical Properties and Crystallographic Texture in a Ti-6Al-4V Weld Joint [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(7): 997-1006. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||