Acta Metallurgica Sinica (English Letters) ›› 2023, Vol. 36 ›› Issue (4): 637-649.DOI: 10.1007/s40195-022-01497-1
Previous Articles Next Articles
Yakui Chen1,2, Dong Wu1, Dianzhong Li1, Yiyi Li1,3, Shanping Lu1,3()
Received:
2022-07-26
Revised:
2022-09-05
Accepted:
2022-09-18
Online:
2023-04-10
Published:
2023-03-31
Contact:
Shanping Lu, shplu@imr.ac.cn
Yakui Chen, Dong Wu, Dianzhong Li, Yiyi Li, Shanping Lu. Effects of Stabilization Heat Treatment on Microstructure and Mechanical Properties of Si-Bearing 15Cr-9Ni-Nb Austenitic Stainless Steel Weld Metal[J]. Acta Metallurgica Sinica (English Letters), 2023, 36(4): 637-649.
Add to citation manager EndNote|Ris|BibTeX
Element | C | Si | Mn | Cr | Ni | Nb |
---|---|---|---|---|---|---|
2.5Si filler wire | 0.057 | 2.45 | 1.64 | 14.03 | 8.28 | 0.73 |
2.5Si weld metal | 0.059 | 2.49 | 1.44 | 14.07 | 8.47 | 0.71 |
3.5Si filler wire | 0.064 | 3.37 | 1.63 | 13.92 | 8.31 | 0.72 |
3.5Si weld metal | 0.065 | 3.43 | 1.45 | 13.96 | 8.38 | 0.70 |
Table 1 Chemical composition of filler wire and weld metal (wt%)
Element | C | Si | Mn | Cr | Ni | Nb |
---|---|---|---|---|---|---|
2.5Si filler wire | 0.057 | 2.45 | 1.64 | 14.03 | 8.28 | 0.73 |
2.5Si weld metal | 0.059 | 2.49 | 1.44 | 14.07 | 8.47 | 0.71 |
3.5Si filler wire | 0.064 | 3.37 | 1.63 | 13.92 | 8.31 | 0.72 |
3.5Si weld metal | 0.065 | 3.43 | 1.45 | 13.96 | 8.38 | 0.70 |
Welding current | Welding voltage | Welding speed | Wire feed speed | Shield gas | Gas flow rate | Interpass temperature |
---|---|---|---|---|---|---|
180-182 A | 13-13.5 V | 0.1 m/min | 1 m/min | 99.999% Argon | 15 L/min | < 100 °C |
Table 2 Welding parameters
Welding current | Welding voltage | Welding speed | Wire feed speed | Shield gas | Gas flow rate | Interpass temperature |
---|---|---|---|---|---|---|
180-182 A | 13-13.5 V | 0.1 m/min | 1 m/min | 99.999% Argon | 15 L/min | < 100 °C |
Fig. 1 Schematic diagram of a weldment, location of b the impact sample and c the tensile sample in the weld metal, the dimensions of d the tensile sample and e the impact sample
Weld metal | FN | Phase content |
---|---|---|
2.5Si | 6.5 | 2.5%-3.5% δ ferrite + 3.0%-4.0% Martensite + Balanced Austenite |
3.5Si | 6.4 | 6.0%-7.0% δ ferrite + Balanced Austenite |
Table 3 Phase contents of the as-welded weld metals
Weld metal | FN | Phase content |
---|---|---|
2.5Si | 6.5 | 2.5%-3.5% δ ferrite + 3.0%-4.0% Martensite + Balanced Austenite |
3.5Si | 6.4 | 6.0%-7.0% δ ferrite + Balanced Austenite |
Fig. 6 Characterization of δ ferrite: SEM image of a 3.5Si as-welded weld metal and b 3.5Si-800 weld metal, c 3.5Si-900 weld metal, TEM image of d 3.5Si-900 weld metal (γδ = austenite transitioned by δ ferrite during the SHT)
Fig. 8 Microstructure characterization of the coarse-NbC in the matrix of the 2.5Si as-welded weld metal: a SEM image of NbC and δ ferrite, elements distribution of b Nb, c Cr, and d Fe
Fig. 9 Microstructure characterization of the coarse-NbC at the δ/γ interfaces of the 3.5Si as-welded weld metal: a SEM image, EDS semiquantitative result of b spectrum 1 (NbC), c spectrum 2 (δ ferrite), d spectrum3 (austinite)
Fig. 10 Dark field image of the nanoscale-NbC in the matrix of the a 3.5Si as-welded, b 3.5Si-900 weld metal (Red arrows point to NbC of size 5-10 nm, yellow arrows point to NbC of size 10-20 nm)
Fig. 11 TEM characterization of G phase: a G phase at the grain boundary in 2.5Si-900 weld metal and b corresponding SAED pattern, e, f, g corresponding STEM-EDS mappings, c G phase at δ/γ interface in 3.5Si-900 and d corresponding SAED pattern
[1] | J.L. Séran, M.L. Flem, Structural Materials for Generation IV Nuclear Reactors (Woodhead Publishing, England, 2017), pp. 285-328 |
[2] |
A.L. Johnson, D. Parsons, J. Manzerova, D.L. Perry, K. Dan, B. Hosterman, J.W. Farley, J. Nucl. Mater. 328, 88 (2004)
DOI URL |
[3] |
C. Schroer, O. Wedemeyer, J. Novotny, A. Skrypnik, J. Konys, Corros. Sci. 84, 113 (2014)
DOI URL |
[4] |
Y. Kurata, H. Yokota, T. Suzuki, J. Nucl. Mater. 424, 237 (2012)
DOI URL |
[5] | V. Tsisar, C. Schroer, O. Wedemeyer, A. Skrypnik, J. Konys, J. Nucl. Mater. (2014). |
[6] |
Y. Kurata, S. Saito, Mater. Trans. 50, 2410 (2009)
DOI URL |
[7] | I.G. Vladimir, I.S. Viktor, I.O. Mihail, S.C. Tatyana, Mater. Sci Power Eng. 91, 130 (2015) |
[8] | J.C. Lippold, D.J. Kotecki, Welding Metallurgy and Weldability of Stainless Steels (Wiley, New Jersey, 2005), pp. 140-160 |
[9] |
R.A. Farrar, R.G. Thomas, J. Mater. Sci. 18, 3461 (1983)
DOI URL |
[10] |
R.A. Farrar, J. Mater. Sci. 22, 363 (1987)
DOI URL |
[11] |
R.A. Farrar, J. Mater. Sci. 20, 4215 (1985)
DOI URL |
[12] |
J.J. Smith, R.A. Farrar, J. Mater. Sci. 26, 5025 (1991)
DOI URL |
[13] | L. Zhao, S. Wei, D. Gao, S. Lu, Acta Metall. Sin.-Engl. Lett. 34, 11 (2021) |
[14] | A.B. Korostelev, S.V. Evropin, A.G. Derzhavin, I.V. Vershinin, A.N. Romanov, At.Energy 129, 1 (2021) |
[15] |
L. Cinotti, C.F. Smith, H. Sekimoto, L. Mansani, M. Reale, J.J. Sienicki, J. Nucl. Mater. 415, 245 (2011)
DOI URL |
[16] |
A. Nassour, W.W. Bose, D. Spinelli, J. Mater. Eng. Perform. 10, 693 (2001)
DOI URL |
[17] |
K. Guan, X. Xu, X. Hong, Z. Wang, Nucl. Eng. Des. 235, 2485 (2005)
DOI URL |
[18] | G. Eichelman, F.C. Hull, Trans. Am. Soc. Met. 45, 77 (1953) |
[19] | B. Arh, F. Tehovnik, F. Vode,Metals 11, 935 (2021) |
[20] | B. Leone, H.W. Kerr, Weld. J. 61, 1 (1982) |
[21] |
A.F. Padilha, G. Schanz, K. Anderko, J. Nucl. Mater. 105, 77 (1982)
DOI URL |
[22] | A.S. Grot, J.E. Spruiell, Metall. Trans. A 6, 2023 (1975) |
[23] | J.M. Leitnaker, J. Bentley, Metall. Trans. A 8, 1605 (1977) |
[24] |
A.R. Jones, P.R. Howell, B. Ralph, J. Mater. Sci. 11, 1600 (1976)
DOI URL |
[25] | H. Uno, A. Kimura, T. Misawa,Sumitomo Search (Japan) 54, 48 (1993) |
[26] | H.W. Cao, X.H. Luo, G.F. Zhan, S. Liu, Acta Metall. Sin.-Engl. Lett. 31, 81 (2018) |
[27] |
R.A.P. Ibaez, G. Soares, L. Almeida, I.L. May, Mater. Charact. 30, 243 (1993)
DOI URL |
[28] | N. Vaché, P. Steyer, C. Duret-Thual, M. Perez,Materialia 9, 100593 (2020) |
[29] |
D.J. Powell, R. Pilkington, D.A. Miller, Acta Metall. 36, 713 (1988)
DOI URL |
[30] | X.F. Guo, Y.Y. Ni, J.M. Gong, L.Y. Geng, J.Q. Tang, Y. Jiang, X.K. Jia, X.Y. Yang, Acta Metall. Sin.-Engl. Lett. 30, 11 (2017) |
[31] | D.M. Knowles, C.W. Thomas, D.J. Keen, Q.Z. Chen, Int. J. Press. Vessel. Pip. 81, 499 (2004) |
[32] | D. Hauser, J.E. Vanecho, Weld J. 50, 61 (1982) |
[33] |
J. Vojvodic-Tuma, B. Sustarsic, F. Vodopivec, Nucl. Eng. Des. 238, 1511 (2008)
DOI URL |
[1] | X. J. Guan, Z. P. Jia, M. A. Nozzari Varkani, X. W. Li. Effect of Grain Boundary Engineering on the Work Hardening Behavior of AL6XN Super-Austenitic Stainless Steel [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(4): 681-693. |
[2] | Binbin Wu, Fangzhong Hu, Zhiquan Wang, Shaopeng Yang, Rui Zhong, Chengjia Shang, Zhigang Yang, Chi Zhang. Unraveling the Effects of Austenitizing Temperature and Austenite Grain Size on the Crystallographic Characteristics and Mechanical Properties of Martensitic Transformation Products in a Low-Alloy Steel [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(4): 694-704. |
[3] | Renxian Yang, Xin Cai, Leigang Zheng, Xiaoqiang Hu, Dianzhong Li. Enhancement Mechanism of Cerium in 316LN Austenitic Stainless Steel During Creep at 700 °C [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(3): 507-512. |
[4] | Sihan Chen, Tian Liang, Guangcai Ma, Chengwu Zheng, Deli Chen, Yingche Ma, Kui Liu. High-Temperature Plasticity Enhanced by Multiple Secondary Phases in a High-Si Austenitic Stainless Steel [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(9): 1519-1530. |
[5] | Haidong Sun, Zuohua Wang, Shuai Zhang, Ning Liu, Pinwen Zhu, Dongli Yu, Hongwang Zhang. Twinned Martensitic Substructure in a Water Quenched Fe-1.0 wt% C Alloy [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(7): 1157-1163. |
[6] | Xinzeng Liang, Jing Bai, Jianglong Gu, Ziqi Guan, Haile Yan, Yudong Zhang, Claude Esling, Xiang Zhao, Liang Zuo. Composition-Dependent of 6 M Martensite Structure and Magnetism in Cu-Alloyed Ni-Mn-In-Co by First-Principles Calculations [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(6): 1034-1042. |
[7] | Wenbin Tian, Dong Wu, Yiyi Li, Shanping Lu. Precipitation Behavior and Mechanical Properties of a 16Cr-25Ni Superaustenitic Stainless Steel Weld Metal During Post-weld Heat Treatment [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(4): 577-590. |
[8] | Sheng Huang, Xiaoyu Zhang, Dichen Li, Qingyu Li. Microstructure and Mechanical Properties of B-Bearing Austenitic Stainless Steel Fabricated by Laser Metal Deposition In-Situ Alloying [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(3): 453-465. |
[9] | Xinbo Ji, Liming Fu, Han Zheng, Jian Wang, Hengchang Lu, Wei Wang, Mao Wen, Han Dong, Aidang Shan. Strengthening of Ultrafine Lamellar-Structured Martensite Steel via Tempering-Induced Nanoprecipitation [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(11): 1812-1824. |
[10] | F. Shi, L. Yan, J. Hu, L. F. Wang, T. Z. Li, W. Li, X. J. Guan, C. M. Liu, X. W. Li. Improving Intergranular Stress Corrosion Cracking Resistance in a Fe-18Cr-17Mn-2Mo-0.85N Austenitic Stainless Steel Through Grain Boundary Character Distribution Optimization [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(11): 1849-1861. |
[11] | Langlang Zhao, Shitong Wei, Dianbao Gao, Shanping Lu. Effect of Carbon Content on the Creep Rupture Properties and Microstructure of 316H Weld Metals [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(7): 986-996. |
[12] | Chao Hai, Xuequn Cheng, Cuiwei Du, Xiaogang Li. Role of Martensite Structural Characteristics on Corrosion Features in Ni-Advanced Dual-Phase Low-Alloy Steels [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(6): 802-812. |
[13] | Sihan Chen, Tian Liang, Yangtao Zhou, Weiwei Xing, Chengwu Zheng, Yingche Ma, JinMing Wu, Guobin Li, Kui Liu. Phase Characterization and Formation Behavior in 6 wt% Si High-silicon Austenitic Stainless Steel during Isothermal Aging [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(5): 649-656. |
[14] | Bin-Bin Wu, Zhi-Quan Wang, Cheng-Jia Shang, Yi-Shuang Yu, Devesh Misra. Nucleation Analysis of Variant Transformed from Austenite with Σ3 Boundary in High-Strength Low-Alloy Steel [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(4): 523-533. |
[15] | Hongchi Ma, Baijie Zhao, Yi Fan, Kui Xiao, Jinbin Zhao, Xuequn Cheng, Xiaogang Li. Simultaneously Improving Mechanical Properties and Stress Corrosion Cracking Resistance of High-Strength Low-Alloy Steel via Finish Rolling within Non-recrystallization Temperature [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(4): 565-578. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||