Acta Metallurgica Sinica (English Letters) ›› 2022, Vol. 35 ›› Issue (9): 1519-1530.DOI: 10.1007/s40195-022-01388-5
Previous Articles Next Articles
Sihan Chen1,2,3, Tian Liang1,3(), Guangcai Ma1,3, Chengwu Zheng4, Deli Chen5, Yingche Ma1,3, Kui Liu1,3(
)
Received:
2021-11-01
Revised:
2021-12-14
Accepted:
2022-01-05
Online:
2022-09-10
Published:
2022-02-16
Contact:
Tian Liang,Kui Liu
About author:
Kui Liu, kliu@imr.ac.cnSihan Chen, Tian Liang, Guangcai Ma, Chengwu Zheng, Deli Chen, Yingche Ma, Kui Liu. High-Temperature Plasticity Enhanced by Multiple Secondary Phases in a High-Si Austenitic Stainless Steel[J]. Acta Metallurgica Sinica (English Letters), 2022, 35(9): 1519-1530.
Add to citation manager EndNote|Ris|BibTeX
Position | Phase | Si | Cr | Mn | Ni | Cu | Mo | Fe |
---|---|---|---|---|---|---|---|---|
1 | Cr3Ni5Si2 | 8.45 | 20.41 | 2.02 | 26.86 | 1.14 | 0.59 | Bal. |
2 | χ | 8.17 | 25.11 | 1.24 | 18.26 | 0.13 | 4.66 | Bal. |
3 | σ | 7.66 | 39.41 | 1.31 | 7.15 | 0.24 | 0.86 | Bal. |
Table 1 Chemical composition of the secondary phases (wt%)
Position | Phase | Si | Cr | Mn | Ni | Cu | Mo | Fe |
---|---|---|---|---|---|---|---|---|
1 | Cr3Ni5Si2 | 8.45 | 20.41 | 2.02 | 26.86 | 1.14 | 0.59 | Bal. |
2 | χ | 8.17 | 25.11 | 1.24 | 18.26 | 0.13 | 4.66 | Bal. |
3 | σ | 7.66 | 39.41 | 1.31 | 7.15 | 0.24 | 0.86 | Bal. |
Fig. 3 a, b IPF map (the inset showing the grain size distribution histogram) and phase map of the alloy microstructure after aging at 750 °C for 1000 h. The magnified c IPF map and d phase map of the area highlighted with a dashed frame in a
Fig. 5 a Longitudinal section of the fractured specimen, b cross-sectional width, c-e IPF maps, phase maps, misorientation distribution maps and KAM maps in the highlighted areas c, d, and e in a. The black and red lines represent HAGBs (θ > 15°) and LAGBs (2° ≤ θ ≤ 15°) in γ-grains, respectively
Fig. 6 a IPF map and b phase map showing the microstructure after sufficient recrystallization obtained by means of TKD. The area for examination was sectioned near the fracture surface
Fig. 8 STEM-BF images revealing a dislocation tangle hindered by secondary phases, b dislocation wall in the γ-matrix, c microstructure of the recrystallized grains and secondary phases (marked with yellow arrows), and d EDS map corresponding to the area in image c
Position | Phase | Si | Cr | Mn | Ni | Cu | Mo | Fe |
---|---|---|---|---|---|---|---|---|
1 | σ | 8.92 | 37.98 | 1.17 | 9.02 | 0.52 | 2.67 | Bal. |
2 | χ | 7.59 | 24 | 1.68 | 17.7 | 0.77 | 5.75 | Bal. |
3 | Cr3Ni5Si2 | 8.07 | 17.82 | 1.7 | 20.17 | 1.19 | 0.34 | Bal. |
Table 2 Chemical composition of secondary phases in Fig. 8 (wt%)
Position | Phase | Si | Cr | Mn | Ni | Cu | Mo | Fe |
---|---|---|---|---|---|---|---|---|
1 | σ | 8.92 | 37.98 | 1.17 | 9.02 | 0.52 | 2.67 | Bal. |
2 | χ | 7.59 | 24 | 1.68 | 17.7 | 0.77 | 5.75 | Bal. |
3 | Cr3Ni5Si2 | 8.07 | 17.82 | 1.7 | 20.17 | 1.19 | 0.34 | Bal. |
Fig. 10 a IPF and b grain boundary (GB) maps of the deformed microstructure in the late stage of plastic strain. The black and light blue lines indicate boundaries with misorientations of 2 ≤ θ ≤ 15° and θ > 15°, respectively, and the red lines denote twin boundaries. c STEM-BF image revealing morphology of recrystallized grains. d Twin boundaries inside the recrystallized grains. e New-born χ phase
Fig. 11 Summary diagram of the microstructural evolution of the alloy during hot deformation at 800 °C. a Initial microstructure before tensile test. Process of CDRX including dislocations inhibited by the secondary phases b, subgrain boundaries formed through the dislocation entanglement c, recrystallization occurring in the regions with high density secondary phases d and twin boundaries emerged in the late stage of plastic deformation e
[1] | H. Mirzadeh, High strain rate superplasticity via friction stir processing (FSP): a review. Mater. Sci. Eng. A (2021). https://doi.org/10.1016/j.msea.2021.141499 |
[2] |
Z.X. Cao, G.L. Wu, X.J. Sun, C. Wang, D. Ponge, W.Q. Cao, Scr. Mater. 152, 27 (2018)
DOI URL |
[3] | W.L. Zhou, J.T. Guo, R.S. Chen, J.Y. Zhou, Acta Metall. Sin. -Engl. Lett. 13, 888 (2000) |
[4] |
L.M. Tan, Y.P. Li, F. Liu, Y. Nie, L. Jiang, J. Mater. Sci. Technol. 35, 2591 (2019)
DOI URL |
[5] | Y.C. Zhao, A.H. Liu, Acta Metall. Sin. -Engl. Lett. 4, 134 (1991) |
[6] | W.B. Han, K.F. Zhang, G.F. Wang, X.J. Zhang, J. Mater. Sci. Technol. 21, 60 (2005) |
[7] | C. Li, S.S. Jiang, K.F. Zhang, Z.P. Zhao, Acta Metall. Sin. -Engl. Lett. 25, 153 (2012) |
[8] |
H.T. Qu, H.L. Hou, P.F. Li, S.X. Li, X.P. Ren, Mater. Des. 96, 499 (2016)
DOI URL |
[9] |
S.X. Li, X.P. Ren, X. Ji, Y.Y. Gui, Mater. Des. 55, 146 (2014)
DOI URL |
[10] |
P.O. Malta, F.L. Dias, A.C.M. de Souza, D.B. Santos, Mater. Charact. 142, 406 (2018)
DOI URL |
[11] |
H. Zhang, B. Bai, D. Raabe, Acta Mater. 59, 5787 (2011)
DOI URL |
[12] | J.A. Wert, J. Metall. 34, 35 (1982) |
[13] |
Y. Maehara, Trans. Iron Steel Inst. Jpn. 27, 705 (1987)
DOI URL |
[14] | D.K. Louie, Handbook of Sulphuric Acid Manufacturing, 2nd edn. (Richmond Hill, Ontario, 2008), pp. 16-16-118 |
[15] |
A. Paul, R. Sanchez, O.M. Montes, J.A. Odriozola, Oxid. Met. 67, 87 (2007)
DOI URL |
[16] | G. Pracht, N. Perschnick, Procedia Eng. 13, 421 (2016) |
[17] |
A. Sharon, D. Itzhak, Mater. Sci. Eng. A 157, 145 (1992)
DOI URL |
[18] | S.H. Chen, T. Liang, L. Zhang, Y.C. Ma, Z.J. Liu, K. Liu, Acta Metall. Sin. 53, 397 (2017) |
[19] | S.H. Chen, T. Liang, Y.T. Zhou, W.W. Xing, C.W. Zheng, Y.C. Ma, J.M. Wu, G.B. Li, K. Liu, Acta Metall. Sin. -Engl. Lett. 34, 649 (2021) |
[20] | H.B. Yang, K. Zhao, J.F. Nie, X.F. Liu, The enhanced superplasticity of a 2024 matrix nanocomposite reinforced by TiC particles. Mater. Sci. Eng. A (2020). https://doi.org/10.1016/j.msea.2020.138926 |
[21] |
N. Haghdadi, P. Cizek, H. Beladi, P.D. Hodgson, Acta Mater. 126, 44 (2017)
DOI URL |
[22] | S. Bi, Z.Y. Liu, B.H. Yu, G.N. Ma, L.H. Wu, B.L. Xiao, Z.Y. Ma, Superplastic deformation behavior of carbon nanotube reinforced 7055 Al alloy composites. Mater. Sci. Eng. A (2020). https://doi.org/10.1016/j.msea.2020.140263 |
[23] | R.Z. Wang, T.C. Lei, Scr. Mater. 31, 1193 (1994) |
[24] |
H.T. Jeong, W.J. Kim, J. Mater. Sci. Technol. 71, 228 (2021)
DOI |
[25] |
G.L. Fan, H.Y. Huang, Z.Q. Tan, D.B. Xiong, Q. Guo, M. Naito, Z.Q. Li, D. Zhang, Mater. Sci. Eng. A 708, 537 (2017)
DOI URL |
[26] |
L.Y. Ye, X.M. Zhang, D.W. Zheng, S.D. Liu, J.G. Tang, J. Alloys Compd. 487, 109 (2009)
DOI URL |
[27] |
S.S. Sohn, D.G. Kim, Y.H. Jo, A.K. da Silva, W.J. Lu, A.J. Breen, B. Gault, D. Ponge, Acta Mater. 194, 106 (2020)
DOI URL |
[28] | W.X. Chen, C.W. Zheng, C.N. Jia, B.J. Hu, D.Z. Li, Strain-rate dependence of the dynamic softening in a duplex stainless steel. Mater. Charact. (2020). https://doi.org/10.1016/j.matchar.2020.110219 |
[29] |
K. Tsuzaki, H. Matsuyama, M. Nagao, T. Maki, Mater. Trans. JIM 31, 983 (1990)
DOI URL |
[30] | N. Haghdadi, S. Primig, M. Annasamy, P. Cizek, P.D. Hodgson, D.M. Fabijanic, Dynamic recrystallization in AlXCoCrFeNi duplex high entropy alloys. J. Alloys Compd. (2020). https://doi.org/10.1016/j.jallcom.2020.154720 |
[31] |
Y. Maehara, Y. Ohmori, Metall Mater. Trans. A 18, 663 (1987)
DOI URL |
[32] | Z.Z. Jin, X.M. Cheng, M. Zha, J. Rong, H. Zhang, J.G. Wang, C. Wang, Z.G. Li, H.Y. Wang, J. Mater. Sci. Technol. 35, 2017 (2019) |
[33] |
W.X. Chen, C.N. Jia, B.J. Hu, C.W. Zheng, D.Z. Li, Mater. Sci. Eng. A 733, 419 (2018)
DOI URL |
[34] | F.J. Humphreys, M. Hatherly, Recrystallization and Related Annealing Phenomena, 2nd edn. (Kidlington, Oxford, 1995), pp. 263-265 |
[35] | J.K. Li, X.P. Ren, X.D. Gao, Effect of superplastic deformation on microstructure evolution of 3207 duplex stainless steel. Mater. Charact. (2020). https://doi.org/10.1016/j.matchar.2020.110320 |
[36] |
J.Y. Chen, J.X. Dong, M.C. Zhang, Z.H. Yao, Mater. Sci. Eng. A 673, 122 (2016)
DOI URL |
[37] |
O.D. Sherby, J. Wadsworth, Prog. Mater. Sci. 33, 169 (1989)
DOI URL |
[38] |
M. Kawasaki, T.G. Langdon, J. Mater. Sci. 51, 19 (2016)
DOI URL |
[39] | L.J. Zhu, D. Wu, X.M. Zhao, Acta Metall. Sin. -Engl. Lett. 21, 163 (2008) |
[1] | Fei Qiang, Wen Wang, Ke Qiao, Pai Peng, Ting Zhang, Xiao-Hu Guan, Jun Cai, Qiang Meng, Hua-Xia Zhao, Kuai-She Wang. Microstructure and Mechanical Properties in Friction Stir Welded Thick Al-Zn-Mg-Cu Alloy Plate [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(8): 1329-1342. |
[2] | Chang Liu, Jianbo Zhang, Yikai Yang, Xingchuan Xia, Tian He, Jian Ding, Ying Tang, Zan Zhang, Xueguang Chen, Yongchang Liu. Hot Deformation Behavior of ATI 718Plus Alloy with Different Microstructures [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(8): 1383-1396. |
[3] | Ming-Jie Zhao, Liang Huang, Chang-Min Li, Jia-Hui Xu, Xu-Yang Li, Jian-Jun Li, Peng-Chuan Li, Chao-Yuan Sun. Investigation and Modeling of Austenite Grain Evolution for a Typical High-strength Low-alloy Steel during Soaking and Deformation Process [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(6): 996-1010. |
[4] | H. R. Rezaei Ashtiani, A. A. Shayanpoor. Effect of Initial Grain Size on the Hot Deformation Behavior and Microstructural Evolution of Pure Copper [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(4): 662-678. |
[5] | Bo Wu, Jianbo Li, Lizi Liu, Xianhua Chen, Jun Tan, Jiangfeng Song, Muhammad Rashad, Fusheng Pan. Effect of Zener-Hollomon Parameter on High-Temperature Deformation Behaviors of Mg-6Zn-1.5Y-0.5Ce-0.4Zr Alloy [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(5): 606-616. |
[6] | Ce Zheng, Shuai-Feng Chen, Rui-Xue Wang, Shi-Hong Zhang, Ming Cheng. Effect of Hydrostatic Pressure on LPSO Kinking and Microstructure Evolution of Mg-11Gd-4Y-2Zn-0.5Zr Alloy [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(2): 248-264. |
[7] | Kwang-Su Kim, Lin-Xiu Du, Hyo-sung Choe, Tae-Hyong Lee, Gyong-Chol Lee. Influence of Vanadium Content on Hot Deformation Behavior of Low-Carbon Boron Microalloyed Steel [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(5): 705-715. |
[8] | A. Shah S., D. Wu, Chen R. S., Song G. S.. Temperature Effects on the Microstructures of Mg-Gd-Y Alloy Processed by Multi-direction Impact Forging [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(2): 243-251. |
[9] | Hong-Xuan Zhang, Shuai-Feng Chen, Ming Cheng, Ce Zheng, Shi-Hong Zhang. Modeling the Dynamic Recrystallization of Mg-11Gd-4Y-2Zn-0.4Zr Alloy Considering Non-uniform Deformation and LPSO Kinking During Hot Compression [J]. Acta Metallurgica Sinica (English Letters), 2019, 32(9): 1122-1134. |
[10] | Le Zhang, Wei Wang, M. Babar Shahzad, Yi-Yin Shan, Ke Yang. Hot Deformation Behavior of an Ultra-High-Strength Fe-Ni-Co-Based Maraging Steel [J]. Acta Metallurgica Sinica (English Letters), 2019, 32(9): 1161-1172. |
[11] | Yi-Tao Wang, Jian-Bo Li, Yun-Chang Xin, Xian-Hua Chen, Muhammad Rashad, Bin Liu, Yong Liu. Hot Deformation Behavior and Hardness of a CoCrFeMnNi High-Entropy Alloy with High Content of Carbon [J]. Acta Metallurgica Sinica (English Letters), 2019, 32(8): 932-943. |
[12] | Wilasinee Kingkam, Cheng-Zhi Zhao, Hong Li, He-Xin Zhang, Zhi-Ming Li. Hot Deformation and Corrosion Resistance of High-Strength Low-Alloy Steel [J]. Acta Metallurgica Sinica (English Letters), 2019, 32(4): 495-505. |
[13] | Yu-Cheng Zhang, Zhen-Sheng Meng, Yang Meng, Xin-Hua Ju, Zhong-Hang Jiang, Ze-Jun Ma. Effect of Nb Content on the Hot Deformation Behavior of S460ML Steel [J]. Acta Metallurgica Sinica (English Letters), 2019, 32(4): 526-534. |
[14] | Kun Sheng, Li-Wei Lu, Yao Xiang, Min Ma, Zhong-Chang Wang. Microstructure and Mechanical Properties of AZ31 Mg Alloy Fabricated by Pre-compression and Frustum Shearing Extrusion [J]. Acta Metallurgica Sinica (English Letters), 2019, 32(2): 235-244. |
[15] | Tong Xi, Lu Yin, Chun-Guang Yang, Ke Yang. Hot Deformation Behavior and Processing Map of a Cu-Bearing 2205 Duplex Stainless Steel [J]. Acta Metallurgica Sinica (English Letters), 2019, 32(12): 1537-1548. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||