Acta Metallurgica Sinica (English Letters) ›› 2021, Vol. 34 ›› Issue (9): 1201-1212.DOI: 10.1007/s40195-021-01214-4
Previous Articles Next Articles
					
													Muhammad Rizwan1, Junxia Lu1( ), Fei Chen2, Ruxia Chai1, Rafi Ullah1, Yuefei Zhang1(
), Fei Chen2, Ruxia Chai1, Rafi Ullah1, Yuefei Zhang1( ), Ze Zhang1,3
), Ze Zhang1,3
												  
						
						
						
					
				
Received:2020-09-26
															
							
																	Revised:2020-11-18
															
							
																	Accepted:2021-01-21
															
							
																	Online:2021-09-10
															
							
																	Published:2021-03-12
															
						Contact:
								Junxia Lu,Yuefei Zhang   
													About author:Yuefei Zhang, yfzhang@bjut.edu.cnMuhammad Rizwan, Junxia Lu, Fei Chen, Ruxia Chai, Rafi Ullah, Yuefei Zhang, Ze Zhang. Microstructure Evolution and Mechanical Behavior of Laser Melting Deposited TA15 Alloy at 500 °C under In-Situ Tension in SEM[J]. Acta Metallurgica Sinica (English Letters), 2021, 34(9): 1201-1212.
Add to citation manager EndNote|Ris|BibTeX
| Laser power (W) | Powder supply rate (kg/h) | Laser scan spacing (mm) | Powder bed layer thickness (mm) | Scanning speed (mm/min) | 
|---|---|---|---|---|
| 2200-2600 | ~ 1 | 2.2 | 0.7-0.9 | 1250 | 
Table 1 Parameters of laser melting deposition process
| Laser power (W) | Powder supply rate (kg/h) | Laser scan spacing (mm) | Powder bed layer thickness (mm) | Scanning speed (mm/min) | 
|---|---|---|---|---|
| 2200-2600 | ~ 1 | 2.2 | 0.7-0.9 | 1250 | 
 
																													Fig. 3 As built characteristics of the alloy: a XRD patterns; b OM image showing the columnar β-grain; c SEM low magnification surface view showing prior β GB and parallel α colony along prior β GB; d magnified image showing basketweave α appearance
 
																													Fig. 5 In-situ tensile deformation process of Z-direction specimen at 500 °C at a displacement of a 763 µm, b 970 µm, and c 985 µm; d fracture morphology of the specimen. The tensile direction was applied horizontally
 
																													Fig. 6 Microstructure evolution during in-situ tensile deformation of Z-direction specimen at 500 °C at a displacement of: a 653 µm, b 763 µm, c 866 µm, d 970 µm
 
																													Fig. 7 In-situ tensile deformation process of X-direction specimen at 500 °C: a before tensile deformation showing layer interface and prior β GB orientation, b deformation at displacement of 784 µm, c deformation at displacement of 842 µm, d fracture failure, e enlarged encircled part showing the trace of prior β GB, f fracture surface morphology. Loading direction was applied horizontal
 
																													Fig. 8 Microstructure variation of X-direction sample during in-situ tensile deformation at temperature of 500 °C: a slip bands along β GB at a displacement of 657 µm, b intergranular slips at a displacement of 657 μm, c slips pile-up at a displacement of 784 µm, d slips hindrance by GB at a displacement of 784 µm, e microcracks accumulation at displacement of 842 µm, f fracture failure. Inset in a: TD-tensile direction, BD-building direction
 
																													Fig. 9 SEM micrographs illustrating impact of grain boundaries on deformation process: a Z-direction specimen at a displacement of 866 µm, b X-direction specimen at a displacement of 784 µm. Schematic of the deformation mechanism at 500 °C: c Z-direction specimen, d X-direction specimen
 
																													Fig. 10 SEM micrographs showing: a uniform movement of slip bands and microcracks fusion in Z-direction, at a displacement of 970 µm (close to fracture failure), b resistance to slip bands and microcracks by misoriented grain in X-direction specimen, at a displacement of 842 µm (close to fracture failure)
| [1] | J. Jiang, Z. Ren, Z. Ma, T. Zhang, P. Zhang, D.Z. Zhang, Z. Mao, Mater. Sci. Eng. A 772, 138742 (2020) | 
| [2] | Q.J. Sun, X. Xie, Mater. Sci. Eng. A 724, 493 (2018) | 
| [3] | X. Liu, A. Sha, W. Zhang, J. Chu, J. Ma, Titan Ind Progr 20, 90 (2003) | 
| [4] | Y. Zhao, H. Guo, Z. Shi, Z. Yao, Y. Zhang, J. Mater. Process. Technol. 211, 1364 (2011) DOI URL | 
| [5] | G. Lütjering, J.C. Williams, Titanium, 2nd edn. (Springer, Berlin, 2007). | 
| [6] | B. Zhang, L. Dembinski, C. Coddet, Mater. Sci. Eng. A 584, 21 (2013) | 
| [7] | X. Wang, F. Lv, L.D. Shen, H.X. Liang, D.Q. Xie, Z.J. Tian, Acta Metall. Sin.-Eng. Lett. 32, 1173 (2019) | 
| [8] | X. Yan, S. Yin, C. Chen, C. Huang, R. Bolot, R. Lupoi, M. Kuang, W. Ma, C. Coddet, H. Liao, J. Alloys Compd. 764, 1056 (2018) DOI URL | 
| [9] | G. Lütjering, J. Williams, A. Gysler, Microstructure and mechanical properties of titanium alloys, Microstructure and Properties of Materials (2000), p. 1 | 
| [10] | J. Wang, J. Lu, X. You, R. Ullah, L. Sang, L. Chang, Y. Zhang, Z. Zhang, Mater. Sci. Eng. A 749, 48 (2019) | 
| [11] | B.E. Carroll, T.A. Palmer, A.M. Beese, Acta Mater. 87, 309 (2015) DOI URL | 
| [12] | J. Lu, L. Chang, J. Wang, L. Sang, S. Wu, Y. Zhang, Mater. Sci. Eng. A 712, 199 (2018) | 
| [13] | Z. Liang, Z. Sun, W. Zhang, S. Wu, H. Chang, J. Alloys Compd. 782, 1041 (2019) DOI URL | 
| [14] | J. Song, Y. Han, M. Fang, F. Hu, L. Ke, Y. Li, L. Lei, W. Lu, Mater. Charact. 165, 110342 (2020) DOI URL | 
| [15] | S. Al-Bermani, M. Blackmore, W. Zhang, I. Todd, Metall. Mater. Trans. A 41, 3422 (2010) | 
| [16] | J. Yang, Y. Chen, Y. Huang, Z. Ning, B. Liu, C. Guo, J. Sun, J. Mater. Sci. Technol. 42, 1 (2020) DOI URL | 
| [17] | F. Wang, S. Williams, M. Rush, Int. J. Adv. Manuf. 57, 597 (2011) DOI URL | 
| [18] | T. Lu, C. Liu, Z. Li, Q. Wu, J. Wang, T. Xu, J. Liu, H. Wang, S. Ma, J. Alloys Compd. 817, 153334 (2020) DOI URL | 
| [19] | Z. Zhao, J. Chen, X. Lu, H. Tan, X. Lin, W. Huang, Mater. Sci. Eng. A 691, 16 (2017) | 
| [20] | S. Zhu, H. Yang, L. Guo, X. Fan, Mater. Charact. 70, 101 (2012) DOI URL | 
| [21] | J. Zhang, Y. Yang, S. Cao, Z. Cao, D. Kovalchuk, S. Wu, E. Liang, X. Zhang, W. Chen, F. Wu, Acta Metall Sin. -Eng. Lett. 33, 1311 (2020) | 
| [22] | T. Vilaro, C. Colin, J.D. Bartout, Metall. Mater. Trans. A 42, 3190 (2011) | 
| [23] | L. Qin, D. Wu, G. Yang, H. Bian, C. Wang, Appl. Laser 37, 623 (2017) | 
| [24] | Z. Li, X. Cheng, J. Li, H. Wang, Mater. Charact. 128, 115 (2017) DOI URL | 
| [25] | X. Wu, C. Cai, L. Yang, W. Liu, W. Li, M. Li, J. Liu, K. Zhou, Y. Shi, Mater. Sci. Eng. A 738, 10 (2018) | 
| [26] | C. Cai, X. Wu, W. Liu, W. Zhu, H. Chen, J. Qiu, C.N. Sun, J. Liu, Q. Wei, Y. Shi, J. Mater. Sci. Technol. 57, 51 (2020) DOI URL | 
| [27] | L.M. Gammon, R.D. Briggs, J.M. Packard, K.W. Batson, R. Boyer, C.W. Domby, Metallography and microstructures of titanium and its alloys. ASM Handb. 9, 899 (2004) | 
| [28] | X. Wu, J. Liang, J. Mei, C. Mitchell, P. Goodwin, W. Voice, Mater. Des. 25, 137 (2004) DOI URL | 
| [29] | R. Ullah, J. Lu, L. Sang, X. You, W. Zhang, Y. Zhang, Z. Zhang, J. Alloys Compd. 817, 152781 (2020) DOI URL | 
| [30] | J. Chen, L. Xue, S.H. Wang, J. Mater. Sci. 46, 5859 (2011) DOI URL | 
| [31] | E. Lee, R. Banerjee, S. Kar, D. Bhattacharyya, H. Fraser, Philos. Mag. 87, 3615 (2007) DOI URL | 
| [32] | R. Banerjee, D. Bhattacharyya, P. Collins, G. Viswanathan, H. Fraser, Acta Mater. 52, 377 (2004) DOI URL | 
| [33] | G. Lütjering, Mater. Sci. Eng. A 243, 32 (1998) | 
| [34] | S. Joseph, T.C. Lindley, D. Dye, Int. J. Plast. 110, 38 (2018) DOI URL | 
| [35] | P. Åkerfeldt, M.L. Antti, R. Pederson, Mater. Sci. Eng. A 674, 428 (2016) | 
| [36] | Y. Ren, X. Lin, X. Fu, H. Tan, J. Chen, W. Huang, Acta Mater. 132, 82 (2017) DOI URL | 
| [37] | S. Hémery, C. Tromas, P. Villechaise, Materials 5, 100189 (2019) | 
| [38] | H. Li, C. Boehlert, T. Bieler, M. Crimp, Philos. Mag. 95, 691 (2015) DOI URL | 
| [1] | Yingying Shen, Qing Jia, Xu Zhang, Ronghua Liu, Yumin Wang, Yuyou Cui, Rui Yang. Tensile Behavior of SiC Fiber-Reinforced γ-TiAl Composites Prepared by Suction Casting [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(7): 932-942. | 
| [2] | Zhitao Yu, Minghui Chen, Qunchang Wang, Xiaolan Wang, Fuhui Wang. Effect of Interfacial Microstructure on Mechanical and Tribological Properties of Cu/WS2 Self-lubricating Composites Sintered by Spark Plasma Sintering [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(7): 913-924. | 
| [3] | Guang-Lei Wang, Jin-Lai Liu, Ji-De Liu, Yi-Zhou Zhou, Xu-Dong Sun, Hai-Feng Zhang, Xiao-Feng Sun. Effect of Orientation on Stress-Rupture Property and Related Deformation Microstructure of a Ni-Base Re-containing Single-Crystal Superalloy at 900 °C [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(5): 719-728. | 
| [4] | Guang-Da Sun, Li Zhou, Ren-Xiao Zhang, Ling-Yun Luo, Hao Xu, Hong-Yun Zhao, Ning Guo, Di Zhang. Effect of Sleeve Plunge Depth on Interface/Mechanical Characteristics in Refill Friction Stir Spot Welded Joint [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(4): 551-560. | 
| [5] | Ke Xu, Tao Fang, Longfei Zhao, Haichao Cui, Fenggui Lu. Effect of Trace Element on Microstructure and Fracture Toughness of Weld Metal [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(3): 425-436. | 
| [6] | Hamid Ashrafi, Morteza Shamanian, Rahmatollah Emadi, Ehsan Ghassemali. Void Formation and Plastic Deformation Mechanism of a Cold-Rolled Dual-Phase Steel During Tension [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(2): 299-306. | 
| [7] | Mao-Kai Chen, Jun Xie, De-Long Shu, Gui-Chen Hou, Shu-Ling Xun, Jin-Jiang Yu, Li-Rong Liu, Xiao-Feng Sun, Yi-Zhou Zhou. Effect of Long-Term Thermal Exposures on Tensile Behaviors of K416B Nickel-Based Superalloy [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(12): 1699-1708. | 
| [8] | Manoj Kumar Pathak, Amit Joshi, K. K. S. Mer, R. Jayaganthan. Mechanical Properties and Microstructural Evolution of Bulk UFG Al 2014 Alloy Processed Through Cryorolling and Warm Rolling [J]. Acta Metallurgica Sinica (English Letters), 2019, 32(7): 845-856. | 
| [9] | Peng Liu, Zhao-Kuang Chu, Yong Yuan, Dao-Hong Wang, Chuan-Yong Cui, Gui-Chen Hou, Yi-Zhou Zhou, Xiao-Feng Sun. Microstructures and Mechanical Properties of a Newly Developed Austenitic Heat Resistant Steel [J]. Acta Metallurgica Sinica (English Letters), 2019, 32(4): 517-525. | 
| [10] | Liu Liu, Jie Meng, Jin-Lai Liu, Hai-Feng Zhang, Xu-Dong Sun, Yi-Zhou Zhou. Effects of Crystal Orientations on the Low-Cycle Fatigue of a Single-Crystal Nickel-Based Superalloy at 980 °C [J]. Acta Metallurgica Sinica (English Letters), 2019, 32(3): 381-390. | 
| [11] | Rong-Hua Li, Peng Zhang, Zhe-Feng Zhang. Torsional Fatigue Cracking and Fracture Behaviors of Cold-Drawn Copper: Effects of Microstructure and Axial Stress [J]. Acta Metallurgica Sinica (English Letters), 2019, 32(12): 1521-1529. | 
| [12] | Xu Kong, Yu-Min Wang, Xu Zhang, Qing Yang, Guo-Xing Zhang, Li-Na Yang, Rui Yang. Monitoring Damage Evolution in a Titanium Matrix Composite Shaft Under Torsion Loading Using Acoustic Emission [J]. Acta Metallurgica Sinica (English Letters), 2019, 32(10): 1244-1252. | 
| [13] | Dong-Wei Ao, Xing-Rong Chu, Shu-Xia Lin, Yang Yang, Jun Gao. Hot Tensile Behaviors and Microstructure Evolution of Ti-6Al-4V Titanium Alloy Under Electropulsing [J]. Acta Metallurgica Sinica (English Letters), 2018, 31(12): 1287-1296. | 
| [14] | A. A. Yuriev, V. E. Gromov, V. A. Grishunin, Yu. F. Ivanov, R. S. Qin, A. P. Semin. Stages and Fracture Mechanisms of Lamellar Pearlite of 100-m-Long Differentially Hardened Rails Under Long-Term Operation Conditions [J]. Acta Metallurgica Sinica (English Letters), 2018, 31(12): 1356-1361. | 
| [15] | Jie Yang. Micromechanical Analysis of In-Plane Constraint Effect on Local Fracture Behavior of Cracks in the Weakest Locations of Dissimilar Metal Welded Joint [J]. Acta Metallurgica Sinica (English Letters), 2017, 30(9): 840-850. | 
| Viewed | ||||||
| Full text |  | |||||
| Abstract |  | |||||
 WeChat
			   WeChat
			