Acta Metallurgica Sinica (English Letters) ›› 2025, Vol. 38 ›› Issue (5): 811-822.DOI: 10.1007/s40195-025-01834-0
Previous Articles Next Articles
Mi Qin1,2, Bingqing Cao1,2, Pan Zhang3, Xuemei Zhang4,5, Ziqi Han6, Xiaohong Zheng7, Xianlong Wang1, Xin Chen8(), Yongsheng Zhang8(
)
Received:
2024-11-25
Revised:
2024-12-13
Accepted:
2024-12-27
Online:
2025-05-10
Published:
2025-03-20
Contact:
Xin Chen,chenxin@qfnu.edu.cn;Yongsheng Zhang,yshzhang@qfnu.edu.cn
Mi Qin, Bingqing Cao, Pan Zhang, Xuemei Zhang, Ziqi Han, Xiaohong Zheng, Xianlong Wang, Xin Chen, Yongsheng Zhang. Point Defects and Grain Boundaries Effects on Electrical Transports of PbTe Using the Non-equilibrium Green’s Function[J]. Acta Metallurgica Sinica (English Letters), 2025, 38(5): 811-822.
Add to citation manager EndNote|Ris|BibTeX
Fig. 1 Schematic diagram of a two-probe systems: a PbTe with intrinsic point defects. b PbTe with Pb and Te occupying the grain boundary. The red dashed lines indicate the positions of the twin boundaries. The blue dashed box indicates the location of the intrinsic point defects. The minimum twin spacing (U) is 1.14 nm in this nanotwin unit. The purple and blue spheres represent lead and tellurium atoms, respectively
Fig. 2 a Transmission function under zero bias voltage for the device with bulk PbTe and intrinsic point defects in PbTe. b Conductances of bulk PbTe and intrinsic point defects in PbTe at zero bias voltage. c The I-V curves for bulk PbTe and intrinsic point defects in PbTe with bias voltage
Fig. 3 EBS spectrum for the six different intrinsic point defected PbTe configurations: a Pb vacancy, b Te vacancy, c Pb interstitials, d Te interstitials, e PbTe anti-site and f TePb anti-site. The Fermi energy level is indicated by the horizontal white dashed line. The color bar represents the magnitude of the spectral weight, which characterizes the probability of the primitive cell eigenstates contributing to a particular supercell eigenstate of the same energy
Fig. 4 Averaged local density of states distribution over the x-y plane of the central scattering regions (Fig. 1a) as a function of electron energy and transport direction coordinate z for bulk PbTe and intrinsic point defects in PbTe: a Pb vacancy, b Te vacancy, c Pb interstitials, d Te interstitials, e PbTe anti-site and f TePb anti-site. The horizontal black dashed lines indicate the Fermi energy level. The black dashed box represents the location of the intrinsic point defects in PbTe. The color-coding values are given by the vertical bar
Fig. 5 a Transmission function under zero bias voltage for the device with bulk PbTe and PbTe nanotwin structures with Pb and Te occupying the twin boundary. b Conductances of bulk PbTe and PbTe nanotwin structures with Pb and Te occupying the twin boundary at zero bias voltage. c The I-V curves for bulk PbTe and PbTe nanotwin structures with Pb and Te occupying the twin boundary with bias voltage
Fig. 6 Averaged local density of states distribution over the xy plane of the central scattering regions (Fig. 1b) as a function of electron energy E and transport direction coordinate z for PbTe nanotwin structure with a Pb, b Te at the twin boundary, respectively. The horizontal black dashed lines indicate the Fermi energy level. The black dashed box represents the location of the twin boundary. The color-coding values are given by the vertical bar
Fig. 7 Transport properties of bulk PbTe, Pb vacancy in PbTe, Te vacancy in PbTe, PbTe twin boundaries, Te vacancy at Te-TB and Pb vacancy at Pb-TB: a transmission function under zero bias voltage, b zero bias conductance, c I-V curves, respectively,
Fig. 8 Averaged local density of states distribution over the x-y plane of the central scattering regions (Fig. 1) as a function of electron energy and transport direction coordinate z for a Pb vacancy in PbTe, b Te vacancy in PbTe, c Pb vacancy at Pb-TB, d Te vacancy at the Te-TB, respectively. The horizontal black dashed lines indicate the Fermi energy level. The black dashed box represents the location of point defects in the bulk PbTe and twin boundary. The color-coding values are given by the vertical bar
[1] |
L.E. Bell, Science 321,1457 (2008)
DOI PMID |
[2] | G.J. Snyder, E.S. Toberer, Nat. Mater. 7, 105 (2008) |
[3] | K. Biswas, J. He, I.D. Blum, C.I. Wu, T.P. Hogan, D.N. Seidman, V.P. Dravid, M.G. Kanatzidis, Nature 489, 414 (2012) |
[4] | X. Guan, Z. Liu, N. Ma, Z. Li, J. Liu, H. Zhang, H. Li, Q. Ba, J. Ma, C. Jin, A. Xia, Acta Metall. Sin.-Engl. Lett. (2024). https://doi.org/10.1007/s40195-024-01794-x |
[5] | P. Chen, H. Xie, L. Zhao, Acta Metall. Sin.-Engl. Lett. (2024). https://doi.org/10.1007/s40195-024-01798-7 |
[6] | Y. Pei, X. Shi, A. LaLonde, H. Wang, L. Chen, G.J. Snyder, Nature 473, 66 (2011) |
[7] | S. Lin, S. Wang, Y. Li, Z. Lai, X. Yang, X. Lu, M. Jin, Acta Metall. Sin.-Engl. Lett. (2024). https://doi.org/10.1007/s40195-024-01790-1 |
[8] | Y. Fan, C. Xie, J. Li, X. Meng, J. Sun, J. Wu, X. Tang, G. Tan, Energy Environ. Sci. 7, e12535 (2024) |
[9] |
J.P. Heremans, V. Jovovic, E.S. Toberer, A. Saramat, K. Kurosaki, A. Charoenphakdee, S. Yamanaka, G.J. Snyder, Science 321, 554 (2008)
DOI PMID |
[10] | G. Tan, C.C. Stoumpos, S. Wang, T.P. Bailey, L.D. Zhao, C. Uher, M.G. Kanatzidis, Adv. Energy Mater. 7, 1700099 (2017) |
[11] | C. Wood, Rep. Prog. Phys. 51, 459 (1988) |
[12] | C. Zhang, K. Jin, H. Dong, W. Xu, P. Xu, Z. Yan, W. Zhao, B. Xu, L. Fu, Nano Energy 126, 109615 (2024) |
[13] | W. Qiu, H. He, Z. Wang, Q. Hu, X. Cui, Z. Wang, Y. Zhang, L. Gu, L. Yang, Y. Sun, L. Zhao, L. Chen, H. Deng, J. Tang, Nano Today 39, 101176 (2021) |
[14] | Y. Wu, P. Nan, Z. Chen, Z. Zeng, R. Liu, H. Dong, L. Xie, Y. Xiao, Z. Chen, H. Gu, W. Li, Y. Chen, B. Ge, Y. Pei, Adv. Sci. 7, 1902628 (2020) |
[15] | X. Zhang, M.Y. Toriyama, J.P. Male, Z. Feng, S. Guo, T. Jia, Z. Ti, G.J. Snyder, Y. Zhang, Mater. Today Phys. 19, 100415 (2021) |
[16] | M. Qin, X. Zhang, J. Zhu, Y. Yang, Z. Ti, Y. Shen, X. Wang, X. Liu, Y. Zhang, J. Mater. Chem. A 11, 10612 (2023) |
[17] | A. Goyal, P. Gorai, E.S. Toberer, V. Stevanović, N.P.J. Comput. Mater. 3, 42 (2017) |
[18] | D. An, J. Wang, J. Zhang, X. Zhai, Z. Kang, W. Fan, J. Yan, Y. Liu, L. Lu, C.L. Jia, M. Wuttig, O.C. Miredin, S. Chen, W. Wang, G.J. Snyder, Y. Yuan, Energy Environ. Sci. 14, 5469 (2021) |
[19] | Y. Zhou, J.Y. Yang, L. Cheng, M. Hu, Phys. Rev. B 97, 085304 (2018) |
[20] | M. Fiorentini, N. Bonini, Phys. Rev. B 94, 085204 (2016) |
[21] | P.E. Blochl, Phys. Rev. B 50, 17953 (1994) |
[22] |
J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)
DOI PMID |
[23] | H.J. Monkhorst, J.D. Pack, Phys. Rev. B 13, 5188 (1976) |
[24] | J. Maassen, M. Harb, V. Michaud-Rioux, Y. Zhu, H. Guo, Proc. IEEE 101, 518 (2013) |
[25] | S. Datta, Quantum Transport: Atom to Transistor (Cambridge University Press, Cambridge, 2005) |
[26] | S. Ahmad, S. Mahanti, K. Hoang, M. Kanatzidis, Phys. Rev. B 74, 155205 (2006) |
[27] |
M. Büttiker, Y. Imry, R. Landauer, S. Pinhas, Phys. Rev. B 31, 6207 (1985)
PMID |
[28] | P. Bauer Pereira, I. Sergueev, S. Gorsse, J. Dadda, E. Müller, R.P. Hermann, Phys. Status Solidi B 250, 1300 (2013) |
[29] | Y.B. Xue, Y.T. Zhou, D. Chen, X.L. Ma, J. Alloys Compd. 582, 181 (2014) |
[30] | M. Lannoo,Point Defects in Semiconductors I: Theoretical Aspects, vol. 22 (Springer, New York, 2012) |
[31] | P. Brommer, D. Quigley, J. Phys. Condens. Matter 26, 485501 (2014) |
[32] | K. Kushnir, K. Chen, L. Zhou, B. Giri, R.L. Grimm, P.M. Rao, L.V. Titova, J. Phys. Chem. C 122, 11682 (2018) |
[33] | H. Hattori, J. Cryst. Growth 66, 205 (1984) |
[1] | Ze Li, Xing Yang, Tian-En Shi, Wang-Qi Bao, Jing Feng, Zhen-Hua Ge. One-Step Carrier Modulation and Nano-Composition Enhancing Thermoelectric and Mechanical Properties of p-Type SnSe Polycrystals by Introducing Ag9GaSe6 Compound [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(5): 781-792. |
[2] | Haolin Ye, Chongjian Zhou. Low Thermal Conductivity Contributes to High Thermoelectric Performance: A Review [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(5): 720-732. |
[3] | Yifei Gao, Peng Zhang, Pan Ren, Yingfei Yang, Guofeng Han, Wenbo Du, Wei Li, Qiwei Wang. Effect of CeO2 on the H2O/NaCl-Induced Corrosion Behavior of Ni-Co Coating at 650 °C [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(4): 672-690. |
[4] | Chunhui Wang, Lei Guo, Rui Li, Qing Peng. Atomistic Insights into the Irradiation Resistance of Co-Free High Entropy Alloy FeMnNiCr [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(10): 1657-1666. |
[5] | Rui Li, Lei Guo, Yu Liu, Qingsong Xu, Qing Peng. Irradiation Resistance of CoCrCuFeNi High Entropy Alloy under Successive Bombardment [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(9): 1482-1492. |
[6] | Jikui Liu, Junhua Hou, Fengchao An, Bingnan Qian, Christian H. Liebscher, Wenjun Lu. Characterization of Compositionally Complex Hydrides in a Metastable Refractory High-Entropy Alloy [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(7): 1173-1178. |
[7] | Jin-Wang Liu, Xian Luo, Bin Huang, Yan-Qing Yang, Wen-Jie Lu, Xiao-Wei Yi, Hong Wang. Nano-Twinning and Martensitic Transformation Behaviors in 316L Austenitic Stainless Steel During Large Tensile Deformation [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(5): 758-770. |
[8] | Peng Zhang, Ming Chen, Qiang Zhu, Linfu Zhang, Guohua Fan, Heyong Qin, Qiang Tian. Micro Defects Evolution of Nickel-Based Single Crystal Superalloys during Shear Deformation: A Molecular Dynamics Study [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(12): 2089-2099. |
[9] | Xiangchen Meng, Yuming Xie, Xiaotian Ma, Mingyang Liang, Xiaoyang Peng, Shiwei Han, Lei Kan, Xin Wang, Sihao Chen, Yongxian Huang. Towards Friction Stir Remanufacturing of High-Strength Aluminum Components [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(1): 91-102. |
[10] | Yinuo Guo, Haijun Su, Peixin Yang, Yong Zhao, Zhonglin Shen, Yuan Liu, Di Zhao, Hao Jiang, Jun Zhang, Lin Liu, Hengzhi Fu. A Review of Emerging Metallic System for High-Energy Beam Additive Manufacturing: Al-Co-Cr-Fe-Ni High Entropy Alloys [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(9): 1407-1423. |
[11] | Junwei Xie, Haokai Dong, Yuxiu Hao, Zhongding Fan, Chang-An Wang. Exploring the Formation Mechanism of Deformation Twins in CrMnFeCoNi High Entropy Alloy [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(8): 1275-1280. |
[12] | Xiangbin Han, Shuangbao Wang, Bo Wei, Shuai Pan, Guizhen Liao, Weizhou Li, Yuezhou Wei. Influence of Sc Addition on Precipitation Behavior and Properties of Al-Cu-Mg Alloy [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(6): 948-960. |
[13] | L. M. Liu, Y. X. Lai, C. L. Wu, Z. Zhang, J. H. Chen. Anisotropic Inter-granular Corrosion Behaviors and Microstructures of AlMgSiCu Alloy Sheets Made by Thermal-Mechanical Treatments [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(2): 275-284. |
[14] | Sabry S. Youssef, Xiaodong Zheng, Yingjie Ma, Sensen Huang, Min Qi, Jianke Qiu, Ruixue Zhang, Peitao Hua, Shijian Zheng, Jiafeng Lei, Rui Yang. Characterization of α2 Precipitates in Ti-6Al and Ti-8Al Binary Alloys: A Comparative Investigation [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(5): 710-718. |
[15] | Hua-Zhen Jiang, Zheng-Yang Li, Tao Feng, Peng-Yue Wu, Qi-Sheng Chen, Yun-Long Feng, Long-Fei Chen, Jing-Yu Hou, He-Jian Xu. Effect of Process Parameters on Defects, Melt Pool Shape, Microstructure, and Tensile Behavior of 316L Stainless Steel Produced by Selective Laser Melting [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(4): 495-510. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||