Acta Metallurgica Sinica (English Letters) ›› 2021, Vol. 34 ›› Issue (4): 495-510.DOI: 10.1007/s40195-020-01143-8
Previous Articles Next Articles
Hua-Zhen Jiang1,2, Zheng-Yang Li2(), Tao Feng3, Peng-Yue Wu3, Qi-Sheng Chen1,2(
), Yun-Long Feng3, Long-Fei Chen3, Jing-Yu Hou1,2, He-Jian Xu2
Received:
2020-02-25
Revised:
2020-08-02
Accepted:
2020-08-03
Online:
2021-04-10
Published:
2021-03-30
Contact:
Zheng-Yang Li,Qi-Sheng Chen
About author:
Qi Sheng Chen, qschen@imech.ac.cnHua-Zhen Jiang, Zheng-Yang Li, Tao Feng, Peng-Yue Wu, Qi-Sheng Chen, Yun-Long Feng, Long-Fei Chen, Jing-Yu Hou, He-Jian Xu. Effect of Process Parameters on Defects, Melt Pool Shape, Microstructure, and Tensile Behavior of 316L Stainless Steel Produced by Selective Laser Melting[J]. Acta Metallurgica Sinica (English Letters), 2021, 34(4): 495-510.
Add to citation manager EndNote|Ris|BibTeX
Sample No. | Process parameters | Volume energy density | Normalized equivalent energy density | Experimental results of relative density | |||||
---|---|---|---|---|---|---|---|---|---|
q (W) | q* | v (mm/s) | v* | h (μm) | h* | E (J/mm3) | E0* | ρ0 (%) | |
Low power | |||||||||
1 | 95 | 20.99 | 415 | 3.09 | 50 | 1.25 | 152.61 | 4.21 | 97.70±0.97 |
2 | 95 | 20.99 | 415 | 3.09 | 70 | 1.75 | 109.01 | 3.00 | 96.78±1.03 |
3 | 95 | 20.99 | 415 | 3.09 | 90 | 2.25 | 84.78 | 2.34 | 97.71±1.09 |
4 | 95 | 20.99 | 415 | 3.09 | 110 | 2.75 | 69.37 | 1.91 | 98.49±0.32 |
5 | 95 | 20.99 | 415 | 3.09 | 130 | 3.25 | 58.70 | 1.62 | 97.69±0.43 |
6 | 95 | 20.99 | 650 | 4.83 | 90 | 2.25 | 54.13 | 1.49 | 98.14±0.62 |
7 | 95 | 20.99 | 530 | 3.94 | 90 | 2.25 | 66.39 | 1.83 | 97.97±0.58 |
8 | 95 | 20.99 | 300 | 2.23 | 90 | 2.25 | 117.28 | 3.23 | 97.72±0.84 |
9 | 95 | 20.99 | 185 | 1.38 | 90 | 2.25 | 190.19 | 5.24 | 95.95±0.80 |
Medium power | |||||||||
10 | 206 | 45.52 | 900 | 6.69 | 50 | 1.25 | 152.59 | 4.21 | 98.17±0.97 |
11 | 206 | 45.52 | 900 | 6.69 | 70 | 1.75 | 108.99 | 3.00 | 96.95±1.19 |
12 | 206 | 45.52 | 900 | 6.69 | 90 | 2.25 | 84.77 | 2.33 | 98.93±0.49 |
13 | 206 | 45.52 | 900 | 6.69 | 110 | 2.75 | 69.36 | 1.91 | 98.97±0.35 |
14 | 206 | 45.52 | 900 | 6.69 | 130 | 3.25 | 58.70 | 1.62 | 97.57±0.87 |
15 | 206 | 45.52 | 1400 | 10.41 | 90 | 2.25 | 54.50 | 1.50 | 98.66±0.43 |
16 | 206 | 45.52 | 1150 | 8.55 | 90 | 2.25 | 66.34 | 1.83 | 97.69±0.57 |
17 | 206 | 45.52 | 650 | 4.83 | 90 | 2.25 | 117.38 | 3.24 | 96.83±0.86 |
18 | 206 | 45.52 | 400 | 2.97 | 90 | 2.25 | 190.74 | 5.26 | 97.37±1.55 |
High power | |||||||||
19 | 360 | 79.54 | 1575 | 11.71 | 50 | 1.25 | 152.38 | 4.20 | - |
20 | 360 | 79.54 | 1575 | 11.71 | 70 | 1.75 | 108.84 | 3.00 | - |
21 | 360 | 79.54 | 1575 | 11.71 | 90 | 2.25 | 84.66 | 2.33 | 99.22±0.31 |
22 | 360 | 79.54 | 1575 | 11.71 | 110 | 2.75 | 69.26 | 1.91 | 98.14±0.88 |
23 | 360 | 79.54 | 1575 | 11.71 | 130 | 3.25 | 58.61 | 1.62 | 98.36±0.28 |
24 | 360 | 79.54 | 2465 | 18.33 | 90 | 2.25 | 54.09 | 1.49 | 98.60±0.23 |
25 | 360 | 79.54 | 2010 | 14.94 | 90 | 2.25 | 66.33 | 1.83 | 99.17±0.15 |
26 | 360 | 79.54 | 1135 | 8.44 | 90 | 2.25 | 117.47 | 3.24 | 98.50±0.40 |
27 | 360 | 79.54 | 700 | 5.20 | 90 | 2.25 | 190.48 | 5.25 | 97.96±0.83 |
Table 1 List of processing parameters in this study
Sample No. | Process parameters | Volume energy density | Normalized equivalent energy density | Experimental results of relative density | |||||
---|---|---|---|---|---|---|---|---|---|
q (W) | q* | v (mm/s) | v* | h (μm) | h* | E (J/mm3) | E0* | ρ0 (%) | |
Low power | |||||||||
1 | 95 | 20.99 | 415 | 3.09 | 50 | 1.25 | 152.61 | 4.21 | 97.70±0.97 |
2 | 95 | 20.99 | 415 | 3.09 | 70 | 1.75 | 109.01 | 3.00 | 96.78±1.03 |
3 | 95 | 20.99 | 415 | 3.09 | 90 | 2.25 | 84.78 | 2.34 | 97.71±1.09 |
4 | 95 | 20.99 | 415 | 3.09 | 110 | 2.75 | 69.37 | 1.91 | 98.49±0.32 |
5 | 95 | 20.99 | 415 | 3.09 | 130 | 3.25 | 58.70 | 1.62 | 97.69±0.43 |
6 | 95 | 20.99 | 650 | 4.83 | 90 | 2.25 | 54.13 | 1.49 | 98.14±0.62 |
7 | 95 | 20.99 | 530 | 3.94 | 90 | 2.25 | 66.39 | 1.83 | 97.97±0.58 |
8 | 95 | 20.99 | 300 | 2.23 | 90 | 2.25 | 117.28 | 3.23 | 97.72±0.84 |
9 | 95 | 20.99 | 185 | 1.38 | 90 | 2.25 | 190.19 | 5.24 | 95.95±0.80 |
Medium power | |||||||||
10 | 206 | 45.52 | 900 | 6.69 | 50 | 1.25 | 152.59 | 4.21 | 98.17±0.97 |
11 | 206 | 45.52 | 900 | 6.69 | 70 | 1.75 | 108.99 | 3.00 | 96.95±1.19 |
12 | 206 | 45.52 | 900 | 6.69 | 90 | 2.25 | 84.77 | 2.33 | 98.93±0.49 |
13 | 206 | 45.52 | 900 | 6.69 | 110 | 2.75 | 69.36 | 1.91 | 98.97±0.35 |
14 | 206 | 45.52 | 900 | 6.69 | 130 | 3.25 | 58.70 | 1.62 | 97.57±0.87 |
15 | 206 | 45.52 | 1400 | 10.41 | 90 | 2.25 | 54.50 | 1.50 | 98.66±0.43 |
16 | 206 | 45.52 | 1150 | 8.55 | 90 | 2.25 | 66.34 | 1.83 | 97.69±0.57 |
17 | 206 | 45.52 | 650 | 4.83 | 90 | 2.25 | 117.38 | 3.24 | 96.83±0.86 |
18 | 206 | 45.52 | 400 | 2.97 | 90 | 2.25 | 190.74 | 5.26 | 97.37±1.55 |
High power | |||||||||
19 | 360 | 79.54 | 1575 | 11.71 | 50 | 1.25 | 152.38 | 4.20 | - |
20 | 360 | 79.54 | 1575 | 11.71 | 70 | 1.75 | 108.84 | 3.00 | - |
21 | 360 | 79.54 | 1575 | 11.71 | 90 | 2.25 | 84.66 | 2.33 | 99.22±0.31 |
22 | 360 | 79.54 | 1575 | 11.71 | 110 | 2.75 | 69.26 | 1.91 | 98.14±0.88 |
23 | 360 | 79.54 | 1575 | 11.71 | 130 | 3.25 | 58.61 | 1.62 | 98.36±0.28 |
24 | 360 | 79.54 | 2465 | 18.33 | 90 | 2.25 | 54.09 | 1.49 | 98.60±0.23 |
25 | 360 | 79.54 | 2010 | 14.94 | 90 | 2.25 | 66.33 | 1.83 | 99.17±0.15 |
26 | 360 | 79.54 | 1135 | 8.44 | 90 | 2.25 | 117.47 | 3.24 | 98.50±0.40 |
27 | 360 | 79.54 | 700 | 5.20 | 90 | 2.25 | 190.48 | 5.25 | 97.96±0.83 |
A [ | λ (W m-1 K-1) [ | α (m2 s-1) [ | ρ (kg m-3) [ | Cp (J kg-1 K-1) [ | Tm (K) [ | T0 (K) | |
---|---|---|---|---|---|---|---|
0.35 | 29.55 | 5.38×10-6 | 7980 | 592.24 | 1673 | 333 |
Table 2 Thermophysical properties of 316L SS used for calculating the normalized quantities
A [ | λ (W m-1 K-1) [ | α (m2 s-1) [ | ρ (kg m-3) [ | Cp (J kg-1 K-1) [ | Tm (K) [ | T0 (K) | |
---|---|---|---|---|---|---|---|
0.35 | 29.55 | 5.38×10-6 | 7980 | 592.24 | 1673 | 333 |
Fig. 1 Normalized process map showing the location of dimensional variables corresponding to the experimental process parameters selected from Table 1 (the experimental data are enclosed in the blue dashed rectangle and the boundary of the experimental data in Ref. [16] is the black dashed rectangle). Contours of constant normalized equivalent energy density, E0*, are provided by the dashed lines
Fig. 4 Dimension of the as-fabricated sample and as-fabricated tensile specimen: a sketch of the 24 regions of interest for evaluating the density of each part, among which 8 regions of interest for quantitative statistics of defect size and morphology are indicated by the blue rectangle; b dimension of the dogbone sample after machining
Fig. 5 Effect of process parameters on relative density: a density measurement results, b a normalized processing diagram showing the location of high-density (>99%) SLM-processed part. The dashed lines represent contours of constant E0*
Fig. 6 SEM images showing the topography of the top surface structure of typical as-fabricated 316L SS samples: a-c effect of q* on the top surface structure when E0* is constant; c-e effect of E0* on the top surface structure when q* is constant; f magnified view of e
Fig. 7 Absolute frequency histograms illustrating the effect of process parameters on the size and morphology of defects: a-e defect size distributions f-j morphology distributions
Sample | No. 9 (L-P, E0*=5.25) | No. 18 (M-P, E0*=5.25) | No. 27 (H-P, E0*=5.25) | No. 21 (H-P, E0*=2.33) | No. 24 (H-P, E0*=1.49) |
---|---|---|---|---|---|
Absolute frequency of large defects (>50 μm) | 161 | 60 | 32 | 15 | 46 |
Total absolute frequency of defects | 3352 | 1430 | 3340 | 720 | 1265 |
Table 3 Absolute frequency of large defects and the total absolute frequency of defects detected at different samples
Sample | No. 9 (L-P, E0*=5.25) | No. 18 (M-P, E0*=5.25) | No. 27 (H-P, E0*=5.25) | No. 21 (H-P, E0*=2.33) | No. 24 (H-P, E0*=1.49) |
---|---|---|---|---|---|
Absolute frequency of large defects (>50 μm) | 161 | 60 | 32 | 15 | 46 |
Total absolute frequency of defects | 3352 | 1430 | 3340 | 720 | 1265 |
Fig. 8 Nine OM images of cross-sectional views of scanning tracks with q* and E0* as abscissa and ordinate, respectively (the dark blue arrows indicate keyhole defects, while the green ones represent irregular defects)
Fig. 9 a Typical SEM image of the as-fabricated sample revealing the complex microstructure of 316L SS sample, b magnified view revealing the solidified cellular structures in a, c an example of conducting the SEM observations to measure the cell structure size at various process parameters
Fig. 12 Tensile properties of SLM-processed 316L SS: a engineering tensile stress-strain curves; b true stress-strain curves; c representative normalized work hardening rate curves as a function of true strain in the two process parameters
Fig. 13 SEM fractographs of the as-fabricated tensile specimens at different values of energy density: a-c Sample No. 24 (q*=79.54 and E0*=1.49) with unmelted spherical powder granules marked by blue arrows; d-f Sample No. 12 (q*=45.52 and E0*=2.33)
Fig. 14 Summary of ultimate tensile strength versus elongation to failure for 316L SS from our work and previous studies (the mechanical performance range of conventional wrought 316L SS is shown in the block region; HFA—hot finished+annealed; CFA—cold finished+annealed; CF—cold finished)
[1] | I. Yadroitsev, Dissertation (Central University of Technology, Free State, 2009) |
[2] | C. Yu, Y. Zhong, P. Zhang, Z. Zhang, C. Zhao, Z. Zhang, Z. Shen, W. Liu, Acta Metall. Sin. Engl. Lett. 33 539 (2020) |
[3] | Y. Zhong, L.F. Liu, S. Wikman, D.Q. Cui, Z.J. Shen, J. Nucl. Mater. 470 170 (2016) |
[4] |
C. Qiu, M. Al Kindi, A.S. Aladawi, I. Al Hatmi, Sci. Rep. 8 7785 (2018)
URL PMID |
[5] | L.Z. Wang, W.H. Wei, Acta Metall. Sin. Engl. Lett. 31 807 (2018) |
[6] |
J.H. Martin, B.D. Yahata, J.M. Hundley, J.A. Mayer, T.A. Schaedler, T.M. Pollock, Nature 549, 365 (2017)
DOI URL PMID |
[7] |
D. Zhang, D. Qiu, M.A. Gibson, Y. Zheng, H.L. Fraser, D.H. StJohn, M.A. Easton, Nature 576, 91 (2019)
URL PMID |
[8] | M. Shamsujjoha, S.R. Agnew, J.M. Fitz-Gerald, W.R. Moore, T.A. Newman, Metall. Mater. Trans. A 49 3011 (2018) |
[9] | Z.J. Sun, X.P. Tan, S.B. Tor, C.K. Chua, NPG. Asia Mater. 10 127 (2018) |
[10] |
Y.M. Wang, T. Voisin, J.T. McKeown, J. Ye, N.P. Calta, Z. Li, Z. Zeng, Y. Zhang, W. Chen, T.T. Roehling, R.T. Ott, M.K. Santala, P.J. Depond, M.J. Matthews, A.V. Hamza, T. Zhu, Nat. Mater. 17 63 (2018)
URL PMID |
[11] |
L. Liu, Q. Ding, Y. Zhong, J. Zou, J. Wu, Y.L. Chiu, J. Li, Z. Zhang, Q. Yu, Z. Shen, Mater. Today 21 354 (2018)
DOI URL |
[12] | W. Yang, Y. Tarng, J. Mater. Process. Technol. 84 122 (1998) |
[13] | T. Mukherjee, V. Manvatkar, A. De, T. DebRoy, J. Appl. Phys. 121 064904 (2017) |
[14] | J.C. Ion, H.R. Shercliff, M.F. Ashby, Acta Metall. Mater. 40 1539 (1992) |
[15] | M. Thomas, G.J. Baxter, I. Todd, Acta Mater. 108 26 (2016) |
[16] | H.Z. Jiang, Z.Y. Li, T. Feng, P.Y. Wu, Q.S. Chen, Y.L. Fen, S.W. Li, H. Gao, H.J. Xu, Opt. Laser. Technol. 119 105592 (2019) |
[17] | K. Darvish, Z.W. Chen, T. Pasang, Mater. Des. 112 357 (2016) |
[18] |
Z. Li, T. Voisin, J.T. McKeown, J.C. Ye, T. Braun, C. Kamath, W.E. King, Y.M. Wang, Int. J. Plast. 120 395 (2019)
DOI URL |
[19] |
H. Hou, E. Simsek, T. Ma, N.S. Johnson, S. Qian, C. Cissé, D. Stasak, N. Al Hasan, L. Zhou, Y. Hwang, Science 366, 1116 (2019)
DOI URL PMID |
[20] |
E.O. Olakanmi, R.F. Cochrane, K.W. Dalgarno, J. Mater. Process. Technol. 211 113 (2011)
DOI URL |
[21] | M. Ma, Z. Wang, X. Zeng, Mater. Sci. Eng. A 685 265 (2017) |
[22] | S.A. Khairallah, A.T. Anderson, A. Rubenchik, W.E. King, Acta Mater. 108 36 (2016) |
[23] | T. Debroy, H.L. Wei, J.S. Zuback, T. Mukherjee, J.W. Elmer, J.O. Milewski, A.M. Beese, A. Wilson-Heid, A. De, W. Zhang, Prog. Mater. Sci. 92 112 (2018) |
[24] | W.E. King, H.D. Barth, V.M. Castillo, G.F. Gallegos, J.W. Gibbs, D.E. Hahn, C. Kamath, A.M. Rubenchik, J. Mater. Process. Technol. 214 2915 (2014) |
[25] | C. Kamath, B. El-dasher, G.F. Gallegos, W.E. King, A. Sisto, Int. J. Adv. Manuf. Technol. 74 65 (2014) |
[26] | A.B. Spierings, M. Schneider, R. Eggenberger, Rapid Prototyp. J. 17 380 (2011) |
[27] | Z.J. Sun, X.P. Tan, S.B. Tor, W.Y. Yeong, Mater. Des. 104 197 (2016) |
[28] |
L. Thijs, F. Verhaeghe, T. Craeghs, J.V. Humbeeck, J.P. Kruth, Acta Mater. 58 3303 (2010)
DOI URL PMID |
[29] | J. Suryawanshi, K.G. Prashanth, U. Ramamurty, Mater. Sci. Eng. A 696 113 (2017) |
[30] |
C.L. Qiu, N.J.E. Adkins, M.M. Attallah, Acta Mater. 103 382 (2016)
DOI URL |
[31] | Y.M. Wang, C. Kamath, T. Voisin, Z. Li, Rapid. Prototyp. J. 24 1469 (2018) |
[32] |
C.L. Qiu, C. Panwisawas, M. Ward, H.C. Basoalto, J.W. Brooks, M.M. Attallah, Acta Mater. 96 72 (2015)
DOI URL |
[33] | J.A. Cherry, H.M. Davies, S. Mehmood, N.P. Lavery, S.G.R. Brown, J. Sienz, J. Sienz, Int. J. Adv. Manuf. Technol. 76 869 (2015) |
[34] | T. Niendorf, S. Leuders, A. Riemer, H.A. Richard, T. Tröster, D. Schwarze, Metall. Mater. Trans. B 44 794 (2013) |
[35] |
R. Cunningham, C. Zhao, N. Parab, C. Kantzos, J. Pauza, K. Fezzaa, T. Sun, A.D. Rollett, Science 363, 849 (2019)
DOI URL PMID |
[36] |
L. Cla, S. Marussi, R.C. Atwood, M. Towrie, P.J. Withers, P.D. Lee, Nat. Commun. 9 1355 (2018)
URL PMID |
[37] |
T. Mukherjee, J.S. Zuback, A. De, T. DebRoy, Sci. Rep. 6 19717 (2016)
DOI URL PMID |
[38] | I. Yadroitsev, P. Bertrand, I. Smurov, Appl. Surf. Sci. 253 8064 (2007) |
[39] | D. Wang, C.H. Song, Y.Q. Yang, Y.C. Bai, Mater. Des. 100 291 (2016) |
[40] | M. Ma, Z. Wang, G. Ming, X. Zeng, J. Mater. Process. Technol. 215 142 (2015) |
[41] | S. Katayama, A. Matsunawa, in International Congress on Applications of Lasers & Electro-Optics, vol. 44(Laser Institute of America, New York, 1984), p. 60 |
[42] |
K. Saeidi, X. Gao, F. Lofaj, L. Kvetková, Z.J. Shen, J. Alloys Compd. 633 463 (2015)
DOI URL |
[43] |
A.T. Sidambe, Y. Tian, P.B. Prangnell, P. Fox, Int. J. Refract. Met. Hard Mat. 78 254 (2019)
DOI URL |
[44] |
D. Bäuerle, Laser Processing and Chemistry, 4th edn. (Springer, Berlin, 2011)
URL PMID |
[45] | R. Casati, J. Lemke, M. Vedani, J. Mater. Sci. Technol. 32 738 (2016) |
[46] | K. Saeidi, L. Kvetkova, F. Lofajc, Z.J. Shen, RSC Adv. 5 20747 (2015) |
[47] | C. Elangeswaran, A. Cutolo, G.K. Muralidharan, C. de Formanoir, F. Berto, K. Vanmeensel, B. Van Hooreweder, Int. J. Fatigue. 123 31 (2019) |
[48] | A. Riemer, S. Leuders, M. Thöne, H. Richard, T. Tröster, T. Niendorf, Eng. Fract. Mech. 120 15 (2014) |
[49] |
T. Kurzynowski, K. Gruber, W. Stopyra, B. Kuźnicka, E. Chlebus, Mater. Sci. Eng. A. 718 64 (2018)
DOI URL |
[50] | ASM International Handbook Committee, ed. by S.D. Washko and G. Aggen. Properties and Selection: Irons, Steels, and High-Performance Alloys, vol. 1, 10th Edition (USA, 1990), p. 2049 |
[51] | K. Saeidi, X. Gao, Y. Zhong, Z.J. Shen, Mater. Sci. Eng. A 625 221 (2015) |
[52] | T. Voisin, N.P. Calta, S.A. Khairallah, J.B. Forien, L. Balogh, R.W. Cunningham, A.D. Rollett, Y.M. Wang, Mater. Des. 158 113 (2018) |
[1] | Hui Xiao, Yu Liu, Kai Wang, Zhipeng Wang, Te Hu, Touwen Fan, Li Ma, Pingying Tang. Effects of Mn Content on Mechanical Properties of FeCoCrNiMnx (0≤x≤0.3) High-Entropy Alloys: A First-Principles Study [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(4): 455-464. |
[2] | Ibrahim Ondicho, Bernard Alunda, Fredrick Madaraka, Melody Chepkoech. Effect of Bimodal Grain Size Distribution on the Strain Hardening Behavior of a Medium-Entropy Alloy [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(4): 465-475. |
[3] | Jinsen Tian, Jiang Ma, Ming Yan, Zhuo Chen, Jun Shen, Jing Wu. Orientation Dependence of the Micro-Pillar Compression Strength in an Electron Beam Melted Ti-6Al-4V Alloy [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(4): 476-484. |
[4] | L. B. Tong, J. H. Chu, D. N. Zou, Q. Sun, S. Kamado, H. G. Brokmeier, M. Y. Zheng. Simultaneously Enhanced Mechanical Properties and Damping Capacities of ZK60 Mg Alloys Processed by Multi-Directional Forging [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(2): 265-277. |
[5] | Chun-Hua Ma, Fu-Sheng Pan, Ding-Fei Zhang, Ai-Tao Tang, Zhi-Wen Lu. Effects of Sb Addition on Microstructural Evolution and Mechanical Properties of Mg-9Al-5Sn Alloy [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(2): 278-288. |
[6] | Hua-Ping Tang, Qu-Dong Wang, Colin Luo, Chuan Lei, Tian-Wen Liu, Zhong-Yang Li, Kui Wang, Hai-Yan Jiang, Wen-Jiang Ding. Effects of Solution Treatment on the Microstructure, Tensile Properties, and Impact Toughness of an Al-5.0Mg-3.0Zn-1.0Cu Cast Alloy [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(1): 98-110. |
[7] | Lin-Yue Jia, Wen-Bo Du, Jin-Long Fu, Zhao-Hui Wang, Ke Liu, Shu-Bo Li, Xian Du. Obtaining Ultra-High Strength and Ductility in a Mg-Gd-Er-Zn-Zr Alloy via Extrusion, Pre-deformation and Two-Stage Aging [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(1): 39-44. |
[8] | Xi Zhao, Fa-Fa Yan, Zhi-Min Zhang, Peng-Cheng Gao, Shu-Chang Li. Influence of Heat Treatment on Precipitation Behavior and Mechanical Properties of Extruded AZ80 Magnesium Alloy [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(1): 54-64. |
[9] | Chao-Yue Zhao, Xian-Hua Chen, Peng Peng, Teng Tu, Andrej Atrens, Fu-Sheng Pan. Microstructures and Mechanical Properties of Mg-xAl-1Sn-0.3Mn (x = 1, 3, 5) Alloy Sheets [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(9): 1217-1225. |
[10] | Tianbo Zhao, Yutaka S. Sato, Hiroyuki Kokawa, Kazuhiro Ito. Predicting Tensile Properties of Friction-Stir-Welded 6063 Aluminum with Experimentally Measured Welding Heat Input [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(9): 1235-1242. |
[11] | Jia-Qi Zhao, Hua Tian, Zhong Wang, Xue-Jiao Wang, Jun-Wei Qiao. FCC-to-HCP Phase Transformation in CoCrNix Medium-Entropy Alloys [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(8): 1151-1158. |
[12] | Qiuxin Nie, Hui Liang, Dongxu Qiao, Zhaoxin Qi, Zhiqiang Cao. Microstructures and Mechanical Properties of Multi-component AlxCrFe2Ni2Mo0.2 High-Entropy Alloys [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(8): 1135-1144. |
[13] | Ren Li, Jing Ren, Guo-Jia Zhang, Jun-Yang He, Yi-Ping Lu, Tong-Min Wang, Ting-Ju Li. Novel (CoFe2NiV0.5Mo0.2)100-xNbx Eutectic High-Entropy Alloys with Excellent Combination of Mechanical and Corrosion Properties [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(8): 1046-1056. |
[14] | Hao Wu, Si-Rui Huang, Cheng-Yan Zhu, Ji-Feng Zhang, He-Guo Zhu, Zong-Han Xie. In Situ TiC/FeCrNiCu High-Entropy Alloy Matrix Composites: Reaction Mechanism, Microstructure and Mechanical Properties [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(8): 1091-1102. |
[15] | Kai-Bo Nie, Zhi-Hao Zhu, Paul Munroe, Kun-Kun Deng, Jun-Gang Han. Microstructure, Tensile Properties and Work Hardening Behavior of an Extruded Mg-Zn-Ca-Mn Magnesium Alloy [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(7): 922-936. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||