Acta Metallurgica Sinica (English Letters) ›› 2022, Vol. 35 ›› Issue (9): 1407-1423.DOI: 10.1007/s40195-022-01400-y
Yinuo Guo1,2, Haijun Su1,2(), Peixin Yang1,2, Yong Zhao2, Zhonglin Shen1,2, Yuan Liu2, Di Zhao2, Hao Jiang2, Jun Zhang2, Lin Liu2, Hengzhi Fu2
Received:
2022-01-26
Revised:
2022-02-18
Accepted:
2022-02-21
Online:
2022-09-10
Published:
2022-04-09
Contact:
Haijun Su
About author:
Haijun Su, shjnpu@nwpu.edu.cnYinuo Guo, Haijun Su, Peixin Yang, Yong Zhao, Zhonglin Shen, Yuan Liu, Di Zhao, Hao Jiang, Jun Zhang, Lin Liu, Hengzhi Fu. A Review of Emerging Metallic System for High-Energy Beam Additive Manufacturing: Al-Co-Cr-Fe-Ni High Entropy Alloys[J]. Acta Metallurgica Sinica (English Letters), 2022, 35(9): 1407-1423.
Add to citation manager EndNote|Ris|BibTeX
Technology | Selective laser melting | Selective electron beam melting | Directed energy deposition |
---|---|---|---|
Characteristics | Single or multiple laser sources are used to fully melt 30-50 µm thick powder layers in an inert atmosphere [ | Electron beam is used as heat source to melt metal powder materials with a layer thickness (100 µm) in a high vacuum chamber [ | Parts are produced by directly melting feed stock material either through feeding powder or feeding wire |
Power source | Fiber laser of 200 W to 1KW [ | High power electron beam of 3000 W | Nd:YAG, diode or CO2 laser beam [ |
The build chamber environment | Inert atmosphere | High vacuum of 10-4 to 10-5 mbar [ | Inert atmosphere |
Applied materials | Titanium alloys, inconel alloys, cobalt chrome, aluminum alloys | Titanium alloys, cobalt chrome, titanium aluminide, inconel (625 and 718), stainless steels, tool steels, copper, aluminum alloys, beryllium [ | Functionally graded materials, metal-matrix composites, invar + TiC, Ti-TiO2, SS316L [ |
Advantages | Higher complexity and better surface finish can be achieved which require minimum post-processing Several parts can be built together so that build chamber can be fully utilized | A pre-heating procedure is applied to reduce temperature gradient and residual stress of the build [ Higher build rates are achieved because of the high energy density and high scanning speed | It is possible to design specific alloys through the in-situ alloying process It is very promising to be employed for the production of large components |
Downsides | It has low build rates of 5-20 cm3/hr [ Maximum part size that can be produced is limited which increases part cost and limits its use only for the small-sized parts | The long build time at elevated temperatures allows microstructural evolutions such as grain growth Samples with inferior dimensional and surface finish qualities are obtained It has higher machine cost and cannot produce large component volumes | It holds lower part accuracy than powder bed fusion process Final rough surface should be machined after the building process |
Table 1 Characteristic features of SLM, SEBM, and DED
Technology | Selective laser melting | Selective electron beam melting | Directed energy deposition |
---|---|---|---|
Characteristics | Single or multiple laser sources are used to fully melt 30-50 µm thick powder layers in an inert atmosphere [ | Electron beam is used as heat source to melt metal powder materials with a layer thickness (100 µm) in a high vacuum chamber [ | Parts are produced by directly melting feed stock material either through feeding powder or feeding wire |
Power source | Fiber laser of 200 W to 1KW [ | High power electron beam of 3000 W | Nd:YAG, diode or CO2 laser beam [ |
The build chamber environment | Inert atmosphere | High vacuum of 10-4 to 10-5 mbar [ | Inert atmosphere |
Applied materials | Titanium alloys, inconel alloys, cobalt chrome, aluminum alloys | Titanium alloys, cobalt chrome, titanium aluminide, inconel (625 and 718), stainless steels, tool steels, copper, aluminum alloys, beryllium [ | Functionally graded materials, metal-matrix composites, invar + TiC, Ti-TiO2, SS316L [ |
Advantages | Higher complexity and better surface finish can be achieved which require minimum post-processing Several parts can be built together so that build chamber can be fully utilized | A pre-heating procedure is applied to reduce temperature gradient and residual stress of the build [ Higher build rates are achieved because of the high energy density and high scanning speed | It is possible to design specific alloys through the in-situ alloying process It is very promising to be employed for the production of large components |
Downsides | It has low build rates of 5-20 cm3/hr [ Maximum part size that can be produced is limited which increases part cost and limits its use only for the small-sized parts | The long build time at elevated temperatures allows microstructural evolutions such as grain growth Samples with inferior dimensional and surface finish qualities are obtained It has higher machine cost and cannot produce large component volumes | It holds lower part accuracy than powder bed fusion process Final rough surface should be machined after the building process |
Fig. 1 a Schematic diagrams of SLM process [55]. SEM images of the pre-alloyed HEA powders b and particle size distribution of the powders c [51]. d The small turbine blade of Al0.5CoCrFeNi HEA manufactured by SLM [53]. e The complex fan blade of AlCoCrFeNi2.1 EHEA produced via SLM [54]
Fig. 2 a Schematic diagram of SEBM process [56]. b SEM image of AlCoCuFeNi HEA powders [35]. Cylinder specimens c and bulk specimens d prepared by SEBM [58,59]
Fig. 3 a Schematic diagram of DED process [60]. b SEM image showing the AlCoCrFeNiTi0.5 powders and c powder size distribution map [66]. d The bulk HEA produced by DED [63]. e LENS-produced large-sized AlCoCrFeNi2.1 sample [64]. f A thin wall deposited by DED [65]
Fig. 4 a XRD profile of the LENS-ed AlxCuCrFeNi2 [62]. b XRD spectra of cast specimen and SEBM specimens. c Phase diagram of AlxCrCoFeNi calculated with Thermo-calc using TCFE6 database [58]
Fig. 5 Inverse pole figure (IPF) maps of the SEBM-ed AlCoCrFeNi specimens parallel to the building direction: a top section; b bottom section [59]. c IPF map of DED-ed AlCoCrFeNi along building direction [75]. Comparison of IPF maps for AlCoCrFeNi specimens: d SLM-ed and e metallic glass refined [76]. IPF maps of SLM-ed AlCoCrCuFeNi with different VEDs: f 52.08 J/mm3; g 69.40 J/mm3; h 78.10 J/mm3; i 83.3 J/mm3 [78]
Fig. 6 SEM-BSE images of the as-cast a and SEBM-ed AlCoCrFeNi b; the magnified images of a and b are shown in (a1) and (b1) [59]. Lamellar structure c and cellular structure d of SLM-ed AlCrCuFeNi3; (c1) and (d1) represent the corresponding phase maps [70]. e SEM image of the SLM-ed FeCoCrNi; f, g TEM images showing cellular substructure and columnar substructure [79]
Alloy type | Process | lattice | Compressive | Tensile | Hardness (HV) | Density (%) | Ref | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
σ0.2 (MPa) | σmax (MPa) | εf (%) | σ0.2 (MPa) | σmax (MPa) | εf (%) | ||||||||
AlCoCrFeNi | SEBM | B2 + BCC + FCC | 0° | 1015.0 | 1668.3 | 26.4 | 769 | 1073.5 | 1.2 | - | - | [ | |
90° | 944.0 | 1447.0 | 14.5 | - | 312.6 | 0 | - | - | |||||
AlCoCrFeNi | LENS | B2 + BCC | - | - | - | - | - | - | - | 542.8 | - | [ | |
AlCoCrFeNi | SLM | B2 + BCC | - | - | - | - | - | - | - | 632.8 | 98.4 | [ | |
Al0.3CoCrFeNi | DLF | FCC | 0° | 200 | - | 1.0 | - | - | - | - | [ | ||
Al0.6CoCrFeNi | DLF | FCC + BCC | 0° | 400 | - | 0.5 | - | - | - | - | |||
Al0.85CoCrFeNi | DLF | BCC | 0° | 1400 | - | 0.25 | - | - | - | - | - | ||
AlCoCuFeNi | SLM | B2 | 90° | 1342 | 1471 | 0.9 | - | - | - | 541 | - | [ | |
AlCrCuFeNi3 | SLM | FCC + B2 | 90° | - | - | - | - | 957 | 14.3 | - | - | [ | |
AlCrCuFeNi | SLM | BCC | 0° | - | 1655.2 | 6.5 | - | - | - | - | 99.72 | [ | |
90° | 2052.8 | 6.8 | |||||||||||
FeCoCrNiC0.05 | SLM | FCC | - | - | - | - | 638 | 797 | 13.5 | - | 99 | [ | |
SLM | FCC | - | - | - | - | 708 | 872 | 14.5 | 270 | - | [ | ||
AlCoCrFeNi2.1 | LENS | L12 + BCC | 0° | 567 | - | - | - | - | - | 278 | - | [ | |
90° | 678 | - | - | - | - | - | 346 | - | |||||
LRDS | FCC + B2 | 0° | 768 | 1238 | 23 | - | - | [ | |||||
SLM | FCC + B2 | 90° | - | - | - | 966 | 1271 | 22.5 | - | 99.73 | [ |
Table 2 Mechanical properties of the AM-printed Al-Co-Cr-Fe-Ni HEA
Alloy type | Process | lattice | Compressive | Tensile | Hardness (HV) | Density (%) | Ref | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
σ0.2 (MPa) | σmax (MPa) | εf (%) | σ0.2 (MPa) | σmax (MPa) | εf (%) | ||||||||
AlCoCrFeNi | SEBM | B2 + BCC + FCC | 0° | 1015.0 | 1668.3 | 26.4 | 769 | 1073.5 | 1.2 | - | - | [ | |
90° | 944.0 | 1447.0 | 14.5 | - | 312.6 | 0 | - | - | |||||
AlCoCrFeNi | LENS | B2 + BCC | - | - | - | - | - | - | - | 542.8 | - | [ | |
AlCoCrFeNi | SLM | B2 + BCC | - | - | - | - | - | - | - | 632.8 | 98.4 | [ | |
Al0.3CoCrFeNi | DLF | FCC | 0° | 200 | - | 1.0 | - | - | - | - | [ | ||
Al0.6CoCrFeNi | DLF | FCC + BCC | 0° | 400 | - | 0.5 | - | - | - | - | |||
Al0.85CoCrFeNi | DLF | BCC | 0° | 1400 | - | 0.25 | - | - | - | - | - | ||
AlCoCuFeNi | SLM | B2 | 90° | 1342 | 1471 | 0.9 | - | - | - | 541 | - | [ | |
AlCrCuFeNi3 | SLM | FCC + B2 | 90° | - | - | - | - | 957 | 14.3 | - | - | [ | |
AlCrCuFeNi | SLM | BCC | 0° | - | 1655.2 | 6.5 | - | - | - | - | 99.72 | [ | |
90° | 2052.8 | 6.8 | |||||||||||
FeCoCrNiC0.05 | SLM | FCC | - | - | - | - | 638 | 797 | 13.5 | - | 99 | [ | |
SLM | FCC | - | - | - | - | 708 | 872 | 14.5 | 270 | - | [ | ||
AlCoCrFeNi2.1 | LENS | L12 + BCC | 0° | 567 | - | - | - | - | - | 278 | - | [ | |
90° | 678 | - | - | - | - | - | 346 | - | |||||
LRDS | FCC + B2 | 0° | 768 | 1238 | 23 | - | - | [ | |||||
SLM | FCC + B2 | 90° | - | - | - | 966 | 1271 | 22.5 | - | 99.73 | [ |
Fig. 7 a Gas porosity defects in the gas-atomized powder observed by SEM and b magnification image of a; c density of SLM-ed AlCoCrCuFeNi HEA varies with VEDs and metallographs: d 52.08 J/mm3; e 69.4 J/mm3; f 78.1 J/mm3; g 83.3 J/mm3 [78]
Fig. 8 a Microcomputed tomography (µ-CT) images with corresponding cross-sectional OM image for SLM-ed sample. The chimney-like cracks appeared within the sample are circled in a red dashed line. b SEM image showing the atom probe tomography (APT) specimen was acquired on the periphery of a hot crack. c SEM image showing an APT specimen tip with a dimension of ~ 50 nm. d APT reconstruction volumes showing atom distribution of the 4 constituting elements (Co, Cr, Fe and Ni). e A generic schematic illustration of the hot cracking mechanism in AM process. f Hot tearing propensity with respect to their grain size and typical depression pressures for the chosen SLM-built alloys [90]
Fig. 9 a Initial orientation of as-deposited alloy using EBSD-IPF map with schematic representation of tensile and compressive specimens with respect to loading directions. b True stress-strain curve under tensile and compressive loading. TEM images showing c deformation twins in a sample compressed to a strain of 1.0 and d deformed structure testes in tension to true failure strain of 0.38 [92]
Fig. 10 Back-scattered images of AlCoCrFeNi specimens obtained at the cross section perpendicular to the build direction with various heat treatment conditions: a-c for as-deposited, aged at 800 ℃-168 h, 1000 ℃-168 h, respectively. (a1), (b1) and (c1) are higher magnification corresponding to a, b and c. d EDS map of AlCoCrFeNi aged at 1000 ℃ for 168 h [37]. Kernel average misorientation (KAM) maps of (e1) as-printed FeCoCrNi sample and samples after 2 h of annealing at (e2) 973 K, (e3) 1173 K, and (e4) 1573 K (insets: misorientation statistics). Twinning distribution of (f1) as-printed FeCoCrNi sample and samples after 2 h of annealing at (f2) 973 K, (f3) 1173 K, and (f4) 1573 K (insets: recrystallization distribution maps) [79]
Fig. 11 SEM micrographs of DLF-ed a Al0.3, b Al0.6 and c Al0.85 HEAs. The micrographs of the DLF/HIP HEAs at the same magnification were compared in d, e and f, respectively. The corresponding EBSD-IPF maps were shown in g, h and i [98]
[1] |
B. Cantor, I.T.H. Chang, P. Knight, A.J.B. Vincent, Mater. Sci. Eng. A 375-377, 213 (2004)
DOI URL |
[2] |
J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, S.Y. Chang, Adv. Eng. Mater. 6, 299 (2004)
DOI URL |
[3] |
M.H. Tsai, J.W. Yeh, Mater. Res. Lett. 2, 107 (2014)
DOI URL |
[4] | N. Li, C.L. Jia, Z.W. Wang, L.H. Wu, D.R. Ni, Z.K. Li, H.M. Fu, P. Xue, B.L. Xiao, Z.Y. Ma, Y. Shao, Y.L. Chang, Acta Metall. Sin. -Engl. Lett. 33, 947 (2020) |
[5] | Y.X. Wan, J.Y. Mo, X. Wang, Z.B. Zhang, B.L. Shen, X.B. Liang, Acta Metall. Sin. -Engl. Lett. 34, 1585 (2021) |
[6] | J.L. Lu, Z.J. Wang, W. Wang, K.X. Zhou, F. He, Z.J. Wang, Acta Metall. Sin. -Engl. Lett. 33, 1111 (2020) |
[7] |
C.D. Zhao, J.S. Li, Y.D. Liu, W.Y. Wang, H.C. Kou, E. Beaugnon, J. Wang, J. Mater. Sci. Technol. 73, 83 (2021)
DOI URL |
[8] |
Y.P. Lu, Y. Dong, S. Guo, L. Jiang, H.J. Kang, T.M. Wang, B. Wen, Z.J. Wang, J.C. Jie, Z.Q. Cao, H.H. Ruan, T.J. Li, Sci. Rep. 4, 6200 (2014)
DOI URL |
[9] |
P.J. Shi, R.G. Li, Y. Li, Y.B. Wen, Y.B. Zhong, W.L. Ren, Z. Shen, T.X. Zheng, J.C. Peng, X. Liang, P.F. Hu, N. Min, Y. Zhang, Y. Ren, P.K. Liaw, D. Raabe, Y.D. Wang, Science 373, 912 (2021)
DOI URL |
[10] |
L. Wang, C.L. Yao, J. Shen, Y.P. Zhang, T. Wang, Y.H. Ge, L.H. Gao, G.J. Zhang, Intermetallics 118, 106681 (2020)
DOI URL |
[11] |
J.X. Hou, Z. Wang, X.H. Shi, Z.H. Wang, J.W. Qiao, Y.C. Wu, J. Mater. Sci. 55, 7894 (2020)
DOI URL |
[12] | J.X. Hou, J.W. Qiao, J.H. Lian, P.K. Liaw, Mater. Sci. Eng. A 804, 140752 (2021) |
[13] | J.X. Hou, X.H. Shi, J.W. Qiao, Y. Zhang, P.K. Liaw, Y.C. Wu, Mater. Des. 180, 107910 (2019) |
[14] | M.L. Wang, Y.P. Lu, T.M. Wang, C. Zhang, Z.Q. Cao, T.J. Li, P.L. Liaw, Scr. Mater. 204, 114132 (2021) |
[15] |
X.B. Feng, W. Fu, J.Y. Zhang, J.T. Zhao, L. Ji, K. Wu, G. Liu, J. Sun, Scr. Mater. 139, 71 (2017)
DOI URL |
[16] |
M.L. Ríos, P.P.S. Perdomo, I. Voiculescu, V. Geanta, V. Crăciun, I. Boerasu, J.C.M. Rosca, Sci. Rep. 10, 21119 (2020)
DOI URL |
[17] | A. Lozinko, Y.B. Zhang, O.V. Mishin, U. Klement, S. Guo, J. Alloys Compd. 822, 153558 (2020) |
[18] |
W.R. Wang, W.L. Wang, J.W. Yeh, J. Alloys Compd. 589, 143 (2014)
DOI URL |
[19] |
Y.P. Lu, X.Z. Gao, L. Jiang, Z.N. Chen, T.M. Wang, J.C. Jie, H.J. Kang, Y.B. Zhang, S. Guo, H.H. Ruan, Y.H. Zhao, Z.Q. Cao, T.J. Li, Acta Mater. 124, 143 (2017)
DOI URL |
[20] |
J. Dąbrowa, G. Cieślak, M. Stygar, K. Mroczka, K. Berent, T. Kulik, M. Danielewski, Intermetallics 84, 52 (2017)
DOI URL |
[21] |
I. Moravcik, L. Gouvea, V. Hornik, Z. Kovacova, M. Kitzmantel, E. Neubauer, I. Dlouhy, Scr. Mater. 157, 24 (2018)
DOI URL |
[22] |
A. Erdogan, A. Günen, M.S. Gök, S. Zeytin, Vacuum 183, 109820 (2021)
DOI URL |
[23] |
J.H. Martin, B.D. Yahata, J.M. Hundley, J.A. Mayer, T.A. Schaedler, T.M. Pollock, Nature 549, 365 (2017)
DOI URL |
[24] | D.D. Gu, X.Y. Shi, R.H. Poprawe, D.L. Bourell, R. Setchi, J.H. Zhu, Science 372, 932 (2021) |
[25] | G.D. Guercio, M. Galati, A. Saboori, P. Fino, L. Luliano, Acta Metall. Sin. -Engl. Lett. 33, 183 (2020) |
[26] | C.Z. Cao, G.C. Yao, L. Jiang, M. Sokoluk, X. Wang, J. Ciston, A. Javadi, Z.Y. Guan, I.D. Rosa, W.G. Xie, E.J. Lavernia, J.M. Schoenung, X.C. Li, Sci. Adv. 5, eaaw2398 (2019) |
[27] |
R.D. Li, P.D. Niu, T.C. Yuan, P. Cao, C. Chen, K.C. Zhou, J. Alloys Compd. 746, 125 (2018)
DOI URL |
[28] |
J. Guo, M.H. Goh, Z.G. Zhu, X.H. Lee, M.L.S. Nai, J. Wei, Mater. Des. 153, 211 (2018)
DOI URL |
[29] |
Z.G. Zhu, Q.B. Nguyen, F.L. Ng, X.H. An, X.Z. Liao, P.K. Liaw, S.M.L. Nai, J. Wei, Scr. Mater. 154, 20 (2018)
DOI URL |
[30] |
J.M. Park, J. Choe, J.G. Kim, J.W. Bae, J. Moon, S. Yang, K.T. Kim, J.H. Yu, H.S. Kim, Mater. Res. Lett. 8, 1 (2020)
DOI URL |
[31] |
H. Wang, Z.G. Zhu, H. Chen, A.G. Wang, J.Q. Liu, H.W. Liu, R.K. Zheng, S.M.L. Nai, S. Primig, S.S. Babu, S.P. Ringer, X.Z. Liao, Acta Mater. 196, 609 (2020)
DOI URL |
[32] | V.V. Popov, A. Katz-Demyanetz, A. Koptyug, M. Bamberger, Heliyon 5, e01188 (2019) |
[33] | K. Yamanaka, H. Shiratori, M. Mori, K. Omura, T. Fujieda, K. Kuwabara, A. Chiba, N.P.J. Mater, Degrad. 4, 24 (2020) |
[34] |
B. Xiao, W.P. Jia, H.P. Tang, J. Wang, L. Zhou, J. Mater. Sci. Technol. 108, 54 (2022)
DOI URL |
[35] | M. Zhang, X.L. Zhou, D.F. Wang, L.J. He, X.Y. Ye, W.W. Zhang, J. Alloys Compd. 893, 162259 (2022) |
[36] |
S. Xiang, H.W. Luan, J. Wu, K.F. Yao, J.F. Li, X. Liu, Y.Z. Tian, W.L. Mao, H. Bai, G.M. Le, Q. Li, J. Alloys Compd. 773, 387 (2019)
DOI URL |
[37] |
R. Wang, K. Zhang, C. Davies, X.H. Wu, J. Alloys Compd. 694, 971 (2017)
DOI URL |
[38] | M.A. Melia, J.D. Carroll, S.R. Whetten, S.N. Esmaeely, J. Locke, E. White, I. Anderson, M. Chandross, J.R. Michael, N. Argibay, E.J. Schindelholz, A.B. Kustas, Addit. Manuf. 29, 100833 (2019) |
[39] | M.L. Zhang, J. Li, Y.Z. Li, J.W. Wang, Z. Li, X. Cheng, Mater. Lett. 285, 128778 (2021) |
[40] | W.E. Frazier, J. Mater. Eng. Perform. 23, 1917 (2014) |
[41] | C. Zhang, J.K. Zhu, H. Zheng, H. Li, S. Liu, G.J. Cheng, Int. J. Extrem. Manuf. 2, 032003 (2020) |
[42] | C.J. Han, Q.H. Fang, Y.S. Shi, S.B. Tor, C.K. Chua, K. Zhou, Adv. Mater. 32, 1903855 (2020) |
[43] |
A.O. Moghaddam, N.A. Shaburova, M.N. Samodurova, A. Abdollahzadeh, E.A. Trofimov, J. Mater. Sci. Technol. 77, 131 (2021)
DOI |
[44] |
G. Sandera, J. Tan, P. Balan, O. Gharbi, D.R. Feenstra, L. Singer, S. Thomas, R.G. Kelly, J.R. Scully, N. Birbilis, Corrosion 74, 1318 (2018)
DOI URL |
[45] |
C. Li, Z.Y. Liu, X.Y. Fang, Y.B. Guo, Proc CIRP 71, 348 (2018)
DOI URL |
[46] | V. Bhavar, P. Kattire, V. Patil, S. Khot, K. Gujar, R. Singh, A review on powder bed fusion technology of metal additive manufacturing. Paper presented at the 4th International conference and exhibition on Additive Manufacturing Technologies, Banglore, pp. 1-2, September, pp. 1-2, September, 2014. |
[47] |
D. Herzog, V. Seyda, E. Wycisk, C. Emmelmann, Acta Mater. 117, 371 (2016)
DOI URL |
[48] |
C. Körner, Int. Mater. Rev. 61, 361 (2016)
DOI URL |
[49] |
P.N. Sibisi, A.P.I. Popoola, N.K.K. Arthur, S.L. Pityana, Int. J. Adv. Manuf. Technol. 107, 1163 (2020)
DOI URL |
[50] |
A. Dass, A. Moridi, Coatings 9, 418 (2019)
DOI URL |
[51] |
S.C. Luo, P. Gao, H.C. Yu, J.J. Yang, Z.M. Wang, X.Y. Zeng, J. Alloys Compd. 771, 387 (2019)
DOI URL |
[52] |
J. Suryawanshi, K.G. Prashanth, S. Scudino, J. Eckert, O. Prakash, U. Ramamurty, Acta Mater. 115, 285 (2016)
DOI URL |
[53] |
P.F. Zhou, D.H. Xiao, Z. Wu, X.Q. Ou, Mater. Sci. Eng. A 739, 86 (2019)
DOI URL |
[54] |
Y.N. Guo, H.J. Su, H.T. Zhou, Z.L. Shen, Y. Liu, J. Zhang, L. Liu, H.Z. Fu, J. Mater. Sci. Technol. 111, 298 (2022)
DOI URL |
[55] |
A. Nouri, A.R. Shirvan, Y. Li, C. Wen, J. Mater. Sci. Technol. 94, 196 (2021)
DOI URL |
[56] | M. Galati, L. Iuliano, Addit. Manuf. 19, 1 (2018) |
[57] | B. Vayre, F. Vignat, F. Villeneuve, Mech. Ind. 13, 89 (2012) |
[58] | K. Kuwabara, H. Shiratori, T. Fujieda, K. Yamanaka, Y. Koizumi, A. Chiba, Addit. Manuf. 23, 264 (2018) |
[59] |
H. Shiratori, T. Fujieda, K. Yamanaka, Y. Koizumi, K. Kuwabara, T. Kato, A. Chiba, Mater. Sci. Eng. A 656, 39 (2016)
DOI URL |
[60] |
S.J. Wolff, S. Lin, E.J. Faierson, W.K. Liu, G.J. Wagner, J. Cao, Acta Mater. 132, 106 (2017)
DOI URL |
[61] | N. Shamsaei, A. Yadollahi, L. Bian, S.M. Thompson, Addit. Manuf. 8, 12 (2015) |
[62] |
T. Borkar, B. Gwalani, D. Choudhuri, C.V. Mikler, C.J. Yannetta, X. Chen, R.V. Ramanujan, M.J. Styles, M.A. Gibson, R. Banerjee, Acta Mater. 116, 63 (2016)
DOI URL |
[63] |
K.X. Zhou, J.J. Li, L.L. Wang, H.O. Yang, Z.J. Wang, J.C. Wang, Intermetallics 114, 106592 (2019)
DOI URL |
[64] | J. Joseph, M. Imran, P.D. Hodgson, M.R. Barnett, D.M. Fabijanic, Manuf. Lett. 25, 16 (2020) |
[65] |
H.R. Sistla, J.W. Newkirk, F.F. Liou, Mater. Des. 81, 113 (2015)
DOI URL |
[66] | S. Guan, K. Solberg, D. Wan, F. Berto, T. Welo, T.M. Yue, K.C. Chan, Mater. Des. 184, 108202 (2019) |
[67] |
J. Joseph, T. Jarvis, X. Wu, N. Stanford, P. Hodgson, D.M. Fabijanic, Mater. Sci. Eng. A 633, 184 (2015)
DOI URL |
[68] |
F. Peyrouzet, D. Hachet, R. Soulas, C. Navone, S. Godet, S. Gorsse, JOM 71, 3443 (2019)
DOI URL |
[69] |
D. Karlsson, A. Marshal, F. Johansson, M. Schuisky, M. Sahlberg, J.M. Schneider, U. Jansson, J. Alloys Compd. 784, 195 (2019)
DOI URL |
[70] | S.C. Luo, C.Y. Zhao, Y. Su, Q. Liu, Z.M. Wang, Addit. Manuf. 31, 100925 (2020) |
[71] |
P.D. Niu, R.D. Li, T.C. Yuan, S.Y. Zhu, C. Chen, M.B. Wang, L. Huang, Intermetallics 104, 24 (2019)
DOI |
[72] | M.N. Zhang, X.L. Zhou, W.Z. Zhu, J.H. Li, Microstructure and mechanical behavior of AlCoCuFeNi high-entropy alloy fabricated by selective laser melting. Paper presented at the 28th Annual International Solid Freeform Fabrication Symposium - An Additive Manufacturing Conference, Beijing,725-732, August 2017. |
[73] |
T. Fujieda, H. Shiratori, K. Kuwabara, T. Kato, K. Yamanaka, Y. Koizumi, A. Chiba, Mater. Lett. 159, 12 (2015)
DOI URL |
[74] |
R. Zhou, Y. Liu, C.S. Zhou, S.Q. Li, W.Q. Wu, M. Song, B. Liu, X.P. Liang, P.K. Liaw, Intermetallics 94, 165 (2018)
DOI URL |
[75] | Q.X. Sui, Z. Wang, J. Wang, S.R. Xu, F.J. Zhao, L. Gong, B. Liu, J. Liu, G. Liu, Mater. Sci. Eng. A 833, 142507 (2022) |
[76] | Q. Jiang, P.L. Zhang, Z.S. Yu, Y.T. Tian, S.Y. Ma, Mater. Lett. 307, 130994 (2022) |
[77] |
I. Kunce, M. Polanski, K. Karczewski, T. Plocinski, K.J. Kurzydlowski, J. Alloys Compd. 648, 751 (2015)
DOI URL |
[78] |
Y. Wang, R.D. Li, P.D. Niu, Z.J. Zhang, T.C. Yuan, J.W. Yuan, K. Li, Intermetallics 120, 106746 (2020)
DOI URL |
[79] | D.Y. Lin, L.Y. Xu, H.Y. Jing, Y.D. Han, L. Zhao, F. Minami, Addit. Manuf. 32, 101058 (2020) |
[80] |
J. Chen, Z.H. Yao, X.B. Wang, Y.K. Lu, X.H. Wang, Y. Liu, X.H. Fan, Mater. Chem. Phys. 210, 136 (2018)
DOI URL |
[81] |
Z.W. Wang, I. Baker, Z.H. Cai, S. Chen, J.D. Poplawsky, W. Guo, Acta Mater. 120, 228 (2016)
DOI URL |
[82] |
V. Braic, A.C. Parau, I. Pana, M. Braic, M. Balaceanu, Surf. Coat. Technol. 258, 996 (2014)
DOI URL |
[83] |
R. Zhou, Y. Liu, B. Liu, J. Li, Q.H. Fang, Intermetallics 106, 20 (2019)
DOI |
[84] | R.J. Vikram, B.S. Murty, D. Fabijanic, S. Suwas, J. Alloys Compd. 827, 154034 (2020) |
[85] | Y. Zhu, S. Zhou, Z. Xiong, Y.J. Liang, Y. Xue, L. Wang, Addit. Manuf. 39, 101901 (2021) |
[86] |
M.N. Zhang, X.L. Zhou, D.F. Wang, W.Z. Zhu, J.H. Li, Y.F. Zhao, Mater. Sci. Eng. A 743, 773 (2019)
DOI URL |
[87] |
Y. Kuzminova, D. Firsov, A. Dudin, S. Sergeev, A. Zhilyaev, A. Dyakov, A. Chupeeva, A. Alekseev, D. Martynov, I. Akhatov, S. Evlashin, Intermetallics 116, 106651 (2020)
DOI URL |
[88] |
N.J. Harrison, I. Todd, K. Mumtaz, Acta Mater. 94, 59 (2015)
DOI URL |
[89] |
X. Cao, W. Wallace, J.P. Immarigeon, C. Poon, Mater. Manuf. Process. 18, 23 (2003)
DOI URL |
[90] |
Z. Sun, X.P. Tan, M. Descoins, D. Mangelinck, S.B. Tor, C.S. Lim, Scr. Mater. 168, 129 (2019)
DOI URL |
[91] |
J. Joseph, N. Stanford, P. Hodgson, D.M. Fabijanic, J. Alloys Compd. 726, 885 (2017)
DOI URL |
[92] |
J. Joseph, N. Stanford, P. Hodgson, D.M. Fabijanic, Scr. Mater. 129, 30 (2017)
DOI URL |
[93] |
J.X. Fu, C.M. Cao, W. Tong, L.M. Peng, Trans. Nonferrous Met. Soc. China 28, 931 (2018)
DOI URL |
[94] |
T. Guo, J.S. Li, J. Wang, W.Y. Wang, Y. Liu, X.M. Luo, H.C. Kou, E. Beaugnon, Mater. Sci. Eng. A 729, 141 (2018)
DOI URL |
[95] |
L.H. Wen, H.C. Kou, J.S. Li, H. Chang, X.Y. Xue, L. Zhou, Intermetallics 17, 266 (2009)
DOI URL |
[96] |
T.T. Shun, Y.C. Du, J. Alloys Compd. 478, 269 (2009)
DOI URL |
[97] |
Z. Wang, M.C. Gao, S.G. Ma, H.J. Yang, Z.H. Wang, M. Ziomek-Moroz, J.W. Qiao, Mater. Sci. Eng. A 645, 163 (2015)
DOI URL |
[98] |
J. Joseph, P. Hodgson, T. Jarvis, X.H. Wu, N. Stanford, D.M. Fabijanic, Mater. Sci. Eng. A 733, 59 (2018)
DOI URL |
[99] | K. Wang, X. Jin, Y. Zhang, P.K. Liaw, J.W. Qiao, Phys. Rev. Mater. 5, 113608 (2021) |
[100] | Y.T. Wu, X. Jin, M. Zhang, H.J. Yang, J.W. Qiao, Y.C. Wu, Mater. Today Commun. 28, 102718 (2021) |
[101] |
M.J. Qin, X. Jin, M. Zhang, H.J. Yang, J.W. Qiao, J. Iron Steel Res. Int. 28, 1463 (2021)
DOI URL |
[102] | B.B. Bian, N. Guo, H.J. Yang, R.P. Guo, L. Yang, Y.C. Wu, J.W. Qiao, J. Alloys Compd. 827, 153981 (2020) |
[1] | Shuohong Gao, Xingchen Yan, Cheng Chang, Xinliang Xie, Qingkun Chu, Zhaoyang Deng, Bingwen Lu, Min Liu, Hanlin Liao, Nouredine Fenineche. Finished surface morphology, microstructure and magnetic properties of selective laser melted Fe-50wt% Ni permalloy [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(9): 1439-1452. |
[2] | Mohammad Hossein Mosallanejad, Saber Sanaei, Masoud Atapour, Behzad Niroumand, Luca Iuliano, Abdollah Saboori. Microstructure and Corrosion Properties of CP-Ti Processed by Laser Powder Bed Fusion under Similar Energy Densities [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(9): 1453-1464. |
[3] | Jian-Yu Li, Shi-Ning Kong, Chi-Kun Liu, Bin-Bin Wang, Zhao Zhang. Chemical Composition Effect on Microstructures and Mechanical Properties in Friction Stir Additive Manufacturing [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(9): 1494-1508. |
[4] | Junrong Tang, Naeem ul Haq Tariq, Zhipo Zhao, Mingxiao Guo, Hanhui Liu, Yupeng Ren, Xinyu Cui, Yanfang Shen, Jiqiang Wang, Tianying Xiong. Microstructure and Mechanical Properties of Ti-Ta Composites Prepared Through Cold Spray Additive Manufacturing [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(9): 1465-1476. |
[5] | Yongxin Lu, Fan Luo, Zhen Chen, Jian Cao, Kai Song, Lei Zhao, Xueli Xu, Hongduo Wang, Wenya Li. Microstructure and Mechanical Properties of Graphene Reinforced K418 Superalloy by Selective Laser Melting [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(9): 1477-1493. |
[6] | Fei Qiang, Wen Wang, Ke Qiao, Pai Peng, Ting Zhang, Xiao-Hu Guan, Jun Cai, Qiang Meng, Hua-Xia Zhao, Kuai-She Wang. Microstructure and Mechanical Properties in Friction Stir Welded Thick Al-Zn-Mg-Cu Alloy Plate [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(8): 1329-1342. |
[7] | Jialin Yang, Xing Li, Hanbo Yao, Yingchun Guan. Interfacial Features of Stainless Steel/Titanium Alloy Multi-metal Fabricated by Laser Additive Manufacturing [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(8): 1357-1364. |
[8] | Junwei Xie, Haokai Dong, Yuxiu Hao, Zhongding Fan, Chang-An Wang. Exploring the Formation Mechanism of Deformation Twins in CrMnFeCoNi High Entropy Alloy [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(8): 1275-1280. |
[9] | Haoyang Yu, Wei Fang, Jinfei Zhang, Jiaxin Huang, Jiaohui Yan, Xin Zhang, Juan Wang, Jianhang Feng, Fuxing Yin. Microstructural Evolution of Co35Cr25Fe30Ni10 TRIP Complex Concentrated Alloy with the Addition of Minor Cu and Its Effect on Mechanical Properties [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(8): 1291-1300. |
[10] | Xiong Zhou, Qichi Le, Chenglu Hu, Ruizhen Guo, Tong Wang, Chunming Liu, Dandan Li, Xiaoqiang Li. Mechanical Properties and Corrosion Behavior of Multi-Microalloying Mg Alloys Prepared by Adding AlCoCrFeNi Alloy [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(8): 1301-1316. |
[11] | Bao-Jia Hu, Qin-Yuan Zheng, Chun-Ni Jia, Peng Liu, Yi-Kun Luan, Cheng-Wu Zheng, Dian-Zhong Li. Improvement of Mechanical Properties of a Medium-Mn TRIP Steel by Precursor Microstructure Control [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(7): 1068-1078. |
[12] | Pengcheng Zhu, Lin Zhang, Zhaochang Li, K. H. Lo, Jianfeng Wang, Yufeng Sun, Shaokang Guan. Microstructure and Mechanical Properties of Friction Stir Welded 1.5 GPa Martensitic High-Strength Steel Plates [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(7): 1079-1089. |
[13] | Zhenye Chen, Zhangguo Lin, Jianjun Qi, Yang Feng, Liqing Chen, Guodong Wang. Microstructures and Mechanical Properties of a New Multi-functional 460 MPa Grade Construction Structural Steel [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(7): 1131-1142. |
[14] | Chenchen Xiong, Jing Bai, Yansong Li, Jianglong Gu, Xinzeng Liang, Ziqi Guan, Yudong Zhang, Claude Esling, Xiang Zhao, Liang Zuo. First-Principles Investigation on Phase Stability, Elastic and Magnetic Properties of Boron Doping in Ni-Mn-Ti Alloy [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(7): 1175-1183. |
[15] | Hao Gu, Zhide Li, Kaiguang Luo, Laxman Bhatta, Hanqing Xiong, Yun Zhang, Charlie Kong, Hailiang Yu. Enhanced Mechanical Properties of AA5083 Matrix Composite via Introducing Al0.5CoCrFeNi Particles and Cryorolling [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(6): 879-889. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||