Acta Metallurgica Sinica (English Letters) ›› 2023, Vol. 36 ›› Issue (7): 1173-1178.DOI: 10.1007/s40195-022-01469-5
Previous Articles Next Articles
Jikui Liu1, Junhua Hou1, Fengchao An1, Bingnan Qian1, Christian H. Liebscher2(), Wenjun Lu1(
)
Received:
2022-06-16
Revised:
2022-07-22
Accepted:
2022-07-31
Online:
2023-07-10
Published:
2023-07-04
Contact:
Christian H. Liebscher, Wenjun Lu
Jikui Liu, Junhua Hou, Fengchao An, Bingnan Qian, Christian H. Liebscher, Wenjun Lu. Characterization of Compositionally Complex Hydrides in a Metastable Refractory High-Entropy Alloy[J]. Acta Metallurgica Sinica (English Letters), 2023, 36(7): 1173-1178.
Add to citation manager EndNote|Ris|BibTeX
Fig. 1 a EBSD orienation map of RHEA after homogenization, b-d bright-field TEM images and the corresponding SAED pattern of RHEA after electrochemcal polishing, e-g HAADF-STEM images and its SAED pattern of RHEA after electrochemical polishing
Fig. 2 a HAADF-STEM image of precipitates within the matrix and the corresponding EDS elemental maps, b selected areas of ADF and the corresponding EEL spectra for both the matrix and hydride (yellow: hydride; green: matrix)
Fig. 3 Characterization of compositionally complex hydride in the RHEA: a, b HRTEM images and the corresponding fast Fourier transforms (FFTs) of BCC/FCC regions. The green dashed lines mark the phase boundaries between the BCC and FCC phases. c HRTEM image and the corresponding FFT of a twinned hydride. The parallel red dashed lines represent the Σ3 twin boundaries. d, e HRTEM images and the corresponding FFTs of the BCC/HCP/FCC regions. The blue dashed line shows the phase boundary between HCP phase and compositionally complex hydride
Fig. 4 Schematic illustration of the phase transformation and hydride formation mechanisms during electrochemical polishing. Microstructure evolutions of RHEA: a prior to electrochemical polishing, b phase transformation induced by electrochemical polishing, c hydride formation caused by electrochemical polishing
[1] | J. Yoo, S. Kim, M.C. Jo, H. Park, J.E. Jung, J. Do, D.W. Yun, I.S. Kim, B.G. Choi, Int. J. Hydrogen Energy 47, 43 (2022). |
[2] | Y.S. Chen, H. Lu, J. Liang, A. Rosenthal, H. Liu, G. Sneddon, I. McCarroll, Z. Zhao, W. Li, A. Guo, J.M. Cairney,Science 367, 6474 (2020). |
[3] | B. Sun, W. Lu, B. Gault, R. Ding, S.K. Makineni, D. Wan, C.H. Wu, H. Chen, D. Ponge, D. Raabe, Nat. Mater. 20, 12 (2021). |
[4] | I.A. Hassan, H.S. Ramadan, M.A. Saleh, D. Hissel, Renew. Sust. Energ. Rev. 149, 111311 (2021). |
[5] | E.M. Dematteis, N. Berti, F. Cuevas, M. Latroche, M. Baricco, Mater. Adv. 2, 8 (2021). |
[6] |
Y. Chang, S. Zhang, C.H. Liebscher, D. Dye, D. Ponge, C. Scheu, G. Dehm, D. Raabe, B. Gault, W. Lu, Scr. Mater. 178, 39 (2020).
DOI URL |
[7] |
B. Tao, R. Qiu, Y. Liu, X. Tan, Q. Liu, J. Nucl. Mater. 551, 152989 (2021).
DOI URL |
[8] | T.P. Chapman, D. Dye, D. Rugg, Philos. Trans. R. Soc. A 375, 2098 (2017). |
[9] | W. Lu, P. Kontis, S. Wang, R. Birch, M. Wenman, B. Gault, T.B. Britton, (2021) under review. https://arxiv.org/abs/2109.10955 |
[10] | S. Suwarno, Y. Gosselin, J.K. Solberg, J.P. Maehlen, M. Williams, B. Krogh, B.T. Borresen, E. Rytter, E. Ochoa-Fernandez, V.A. Yartys, Int. J. Hydrogen Energy 37, 5 (2012). |
[11] |
P. Modi, K.F. Aguey-Zinsou, Front. Energy Res. 9, 616115 (2021).
DOI URL |
[12] | F. Reidinger, J.F. Lynch, J.J. Reilly, J. Phys. F: Met. Phys. 12, 3 (1982). |
[13] | J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, S.Y. Chang, Adv. Eng. Mater. 6, 5 (2004). |
[14] |
S. Maiti, W. Steurer, Acta Mater. 106, 87 (2016).
DOI URL |
[15] |
M. Sahlberg, D. Karlsson, C. Zlotea, U. Jansson, Sci. Rep. 6, 1 (2016).
DOI |
[16] | I. Kunce, M. Polanski, J. Bystrzycki, Int. J. Hydrogen Energy 39, 18 (2014). |
[17] | G. Zepon, D.R. Leiva, R.B. Strozi, A. Bedoch, S.J.A. Figueroa, T.T. Ishikawa, W.J. Botta, Int. J. Hydrogen Energy 43, 3 (2018). |
[18] | B. Wu, T. Zhu, X. Cao, Int. J. Hydrogen Energy 47, 28 (2022). |
[19] |
D. Karlsson, G. Ek, J. Cedervall, C. Zlotea, K.T. Møller, T.C. Hansen, J. Bednarcik, M. Paskevicius, M.H. Sørby, T.R. Jensen, U. Jansson, M. Sahlberg, Inorg. Chem. 57, 4 (2018).
DOI URL |
[20] | B. Sakintuna, F. Lamari-Dirkrim, M. Hirscher, Int. J. Hydrogen Energy 32, 9 (2007). |
[21] | Y. Chang, W. Lu, J. Guénolé, L.T. Stephenson, A. Szczpaniak, P. Kontis, A.K. Ackerman, F.F. Dear, I. Mouton, X. Zhong, S. Zhang, D. Dye, C.H. Liebscher, D. Ponge, S. Korte-Kerzel, D. Raabe, B. Gault, Nat.Commun. 10, 1 (2019). |
[22] |
D.B. Shan, Y.Y. Zong, T.F. Lu, Y. Lv, J. Alloys Compd. 427, 1 (2007).
DOI URL |
[23] |
Y. Chang, A.J. Breen, Z. Tarzimoghadam, P. Kürnsteiner, H. Gardner, A. Ackerman, A. Radecka, P.A.J. Bagot, W. Lu, T. Li, E.A. Jägle, M. Herbig, L.T. Stephenson, M.P. Moody, D. Rugg, D. Dye, D. Ponge, D. Raabe, B. Gault, Acta Mater. 150, 273 (2018).
DOI URL |
[24] | A.M. Alvarez, I.M. Robertson, H.K. Birnbaum, Acta Mater. 52, 14 (2004). |
[25] |
S.M. Hanlon, S.Y. Persaud, F. Long, A. Korinek, M.R. Daymond, J. Nucl. Mater. 515, 122 (2019).
DOI |
[26] |
S. Wang, F. Giuliani, T.B. Britton, Acta Mater. 169, 76 (2019).
DOI URL |
[27] |
F. Lukáč, M. Vilémová, M. Klementová, P. Minárik, T. Chráska, Mater. Lett. 286, 129224 (2021).
DOI URL |
[28] | J. Li, X. Li, M. Sui, J. Mater. Sci. Technol. 81, 76 (2021). |
[29] |
S. Wang, S. Kalácska, X. Maeder, J. Michler, F. Giuliani, T.B. Britton, Scr. Mater. 173, 101 (2019).
DOI URL |
[30] |
A.J. Breen, I. Mouton, W. Lu, S. Wang, A. Szczepaniak, P. Kontis, L.T. Stephenson, Y. Chang, A.K. da Silva, C.H. Liebscher, D. Raabe, T.B. Britton, M. Herbig, B. Gault, Scr. Mater. 156, 42 (2018).
DOI URL |
[31] |
O.N. Senkov, S. Rao, K.J. Chaput, C. Woodward, Acta Mater. 151, 201 (2018).
DOI URL |
[32] |
H. Huang, Y. Sun, P. Cao, Y. Wu, X. Liu, S. Jiang, H. Wang, Z. Lu, Scr. Mater. 211, 114506 (2022).
DOI URL |
[33] | H. Huang, Y. Wu, J. He, H. Wang, X. Liu, K. An, W. Wu, Z. Lu, Adv. Mater. 29, 30 (2017). |
[34] |
H. Wipf, B. Kappesser, R. Werner, J. Alloys Compd. 310, 1 (2000).
DOI URL |
[1] | Shougang Duan, Qian Zhang, Wenxuan Li, Yong Dong, Beibei Jiang, Shichao Liu, Chuanqiang Li, Zhengrong Zhang. Effects of V Addition on Microstructural Evolution and Mechanical Properties of AlCrFe2Ni2 High-Entropy Alloys [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(3): 391-404. |
[2] | Yuan Tian, Kanwal Chadha, Clodualdo Aranas Jr.. Deformation-Induced Strengthening Mechanism in a Newly Designed L-40 Tool Steel Manufactured by Laser Powder Bed Fusion [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(1): 21-34. |
[3] | A. Ullah, A. Khan, Z.B. Bao, Y.F. Yang, M.M. Xu, S.L. Zhu, F.H. Wang. Temperature Effect on Early Oxidation Behavior of NiCoCrAlY Coatings: Microstructure and Phase Transformation [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(6): 975-984. |
[4] | Sujie Zhang, Xiaohua Min, Yada Li, Weiqiang Wang, Ping Li, Mingjia Li. Effects of Deformation and Phase Transformation Microstructures on Springback Behavior and Biocompatibility in β-Type Ti-15Mo Alloy [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(4): 621-635. |
[5] | Yong Wen, Yan-Fei Wang, Hao Ran, Wei Wei, Jun-Ming Zhang, Chong-Xiang Huang. Improving the Mechanical and Tribological Properties of NiTi Alloys by Combining Cryo-Rolling and Post-Annealing [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(2): 317-325. |
[6] | Ying-Xi Li, Fan-Qiang Meng, Rui Yuan, Guo-Qiang Huang, Dong-Bai Sun. Devitrification of Al-Ce Amorphous Ribbon Investigated Using In situ High Energy X-ray Diffraction [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(1): 157-162. |
[7] | Guang Zeng, Shiqian Liu, Qinfen Gu, Zebang Zheng, Hideyuki Yasuda, Stuart D. McDonald, Kazuhiro Nogita. Investigation on the Solidification and Phase Transformation in Pb-Free Solders Using In Situ Synchrotron Radiography and Diffraction: A Review [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(1): 49-66. |
[8] | Hui-Hu Lu, Xing-Quan Shen, Wei Liang. Effect of Grain Size on the Precipitation Behaviour in Super-Ferritic Stainless Steels During a Long-Term Ageing [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(9): 1285-1295. |
[9] | Yi-Shuang Yu, Zhi-Quan Wang, Bin-Bin Wu, Jing-Xiao Zhao, Xue-Lin Wang, Hui Guo, Cheng-Jia Shang. Tailoring Variant Pairing to Enhance Impact Toughness in High-Strength Low-Alloy Steels via Trace Carbon Addition [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(6): 755-764. |
[10] | Bin-Bin Wu, Zhi-Quan Wang, Cheng-Jia Shang, Yi-Shuang Yu, Devesh Misra. Nucleation Analysis of Variant Transformed from Austenite with Σ3 Boundary in High-Strength Low-Alloy Steel [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(4): 523-533. |
[11] | Yixing Wan, Jinyong Mo, Xin Wang, Zhibin Zhang, Baolong Shen, Xiubing Liang. Mechanical Properties and Phase Stability of WTaMoNbTi Refractory High-Entropy Alloy at Elevated Temperatures [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(11): 1585-1590. |
[12] | Meichen Liang, Hao Zhang, Lifeng Zhang, Peng Xue, Dingrui Ni, Weizhen Wang, Zongyi Ma, Hengqiang Ye, Zhiqing Yang. Evolution of Quasicrystals and Long-Period Stacking Ordered Structures During Severe Plastic Deformation and Mixing of Dissimilar Mg Alloys Upon Friction Stir Welding [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(1): 12-24. |
[13] | Chengbo Yang, Jing Zhang, Meng Li, Xuejian Liu. Soft-Magnetic High-Entropy AlCoFeMnNi Alloys with Dual-Phase Microstructures Induced by Annealing [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(8): 1124-1134. |
[14] | Ibrahim Ondicho, Bernard Alunda, Dicken Owino, Luke Otieno, Melody Chepkoech. Revealing a Transformation-Induced Plasticity (TRIP) Phenomenon in a Medium-Entropy Alloy [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(8): 1159-1165. |
[15] | Jia-Qi Zhao, Hua Tian, Zhong Wang, Xue-Jiao Wang, Jun-Wei Qiao. FCC-to-HCP Phase Transformation in CoCrNix Medium-Entropy Alloys [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(8): 1151-1158. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||