Acta Metallurgica Sinica (English Letters) ›› 2025, Vol. 38 ›› Issue (5): 781-792.DOI: 10.1007/s40195-024-01810-0
Previous Articles Next Articles
Ze Li1, Xing Yang1, Tian-En Shi1, Wang-Qi Bao1, Jing Feng1, Zhen-Hua Ge1()
Received:
2024-09-25
Revised:
2024-10-30
Accepted:
2024-11-08
Online:
2025-05-10
Published:
2025-01-13
Contact:
Zhen-Hua Ge,zge@kust.edu.cn
Ze Li, Xing Yang, Tian-En Shi, Wang-Qi Bao, Jing Feng, Zhen-Hua Ge. One-Step Carrier Modulation and Nano-Composition Enhancing Thermoelectric and Mechanical Properties of p-Type SnSe Polycrystals by Introducing Ag9GaSe6 Compound[J]. Acta Metallurgica Sinica (English Letters), 2025, 38(5): 781-792.
Add to citation manager EndNote|Ris|BibTeX
Fig. 1 a Layered structure of carrier introduction and phonon scattering diagram, b the change of the electrical conductivity and PF value, c comparison with several reported ZT value of p-type polycrystalline SnSe-based materials doped by Ag2Se [33], Ag2S [54], Zn [29], AgInSe2 [55], Sb [56], Pb [57] and other works [22,28,58]
Fig. 2 a XRD patterns of SnSe + x wt% Ag9GaSe6 (x = 0, 0.125, 0.25, and 0.5) bulk samples, b enlarged XRD image of a narrow angle from 30° to 32°, c measured TG-DSC curves indication from room temperature to 1400 K for Ag9GaSe6 but a phase transition around 1028 K
Fig. 3 Different directions of SEM images of the fractured surfaces for SnSe + x wt% Ag9GaSe6 (x = 0, 0.125, 0.25, 0.5, and 1) bulk samples: a SnSe, b x = 0.125, c x = 0.25, d x = 0.5, e x = 1.0; f experiment density and relative density
Fig. 4 EPMA results providing the elemental distribution of the elemental distribution of the SnSe + 0.5 wt% Ag9GaSe6 sample: a back scattered electron (BSE) image, b-e elemental mapping of Sn, Se, Ag, and Ga
Fig. 5 TEM images of SnSe + 0.5 wt% Ag9GaSe6 bulk samples: a typical STEM image, b the corresponding FFT image, c high-resolution STEM image, d partial enlarged drawing of d, e inserted fast Fourier transformation (IFFT) image of d, f stress distribution of the whole region in d by geometric phase analysis (GPA), and the color bar represents -10% to 10% strain; a1-a4 EDS element mapping of the area in a, indicating that precipitates in the bulk composite are Ag9GaSe6
Fig. 6 Temperature dependence of electrical transport properties for the SnSe + x wt% (x = 0, 0.125, 0.25, 0.5, and 1.0) bulk samples: a electrical conductivity (σ), b Seebeck coefficient (S), c power factor (PF), d carrier concentration (ne), dependence of the power factor (PF) at room temperature
Fig. 7 Temperature dependence of thermal transport properties for the SnSe + x wt% Ag9GaSe6 (x = 0, 0.125, 0.25, 0.5, and 1.0) bulk samples: a total thermal conductivity (κt), b electron thermal conductivity (κe), and c lattice thermal conductivity (κl)
Fig. 8 Temperature dependence of the SnSe + x wt% Ag9GaSe6 (x = 0, 0.125, 0.25, 0.5, and 1.0) bulk samples: a PFave and ZTave value of p-type polycrystalline SnSe-based materials doped by Ag9GaSe6, b ZT value of all samples
[1] | F.H. Sun, H. Li, J. Tan, L. Zhao, X. Wang, H. Hu, C. Wang, T. Mori, J. Materiomics 10, 218 (2024) |
[2] | H. Shi, C. Guo, B. Qin, G. Wang, D. Wang, L.D. Zhao, J. Materiomics 8, 982 (2022) |
[3] | Z.G. Chen, X. Shi, L.D. Zhao, J. Zou, Prog. Mater. Sci. 97, 283 (2018) |
[4] | Z. Hu, H. Yu, J. He, Y. Ran, H. Zeng, Y. Zhao, Z. Yu, K. Tai, Acta Metall. Sin. -Engl. Lett. 36, 1699 (2023) |
[5] | Z. Sheng, C. Guo, S. Hu, Z. Xiao, L. Guo, J. Phys. Chem. C 126, 1230 (2022) |
[6] | Q. Zhao, B. Qin, D. Wang, Y. Qiu, L.D. Zhao, A.C.S. Appl, Energ. Mater. 3, 2049 (2019) |
[7] |
Y. Xiao, D. Wang, Y. Zhang, C. Chen, S. Zhang, K. Wang, G. Wang, S.J. Pennycook, G.J. Snyder, H. Wu, L.D. Zhao, J. Am. Chem. Soc. 142, 4051 (2020)
DOI PMID |
[8] | L. Su, D. Wang, S. Wang, B. Qin, Y. Wang, Y. Qin, Y. Jin, C. Chang, L.D. Zhao, Science 375, 1385 (2022) |
[9] | Z. Liu, T. Hong, L. Xu, S. Wang, X. Gao, C. Chang, X. Ding, Y. Xiao, L.D. Zhao, Interd. Mater. 2, 161 (2022) |
[10] | D. Liu, D. Wang, T. Hong, Z. Wang, Y. Wang, Y. Qin, L. Su, T. Yang, X. Gao, Z. Ge, B. Qin, L.D. Zhao, Science 380, 841 (2023) |
[11] | S. Chandra, U. Bhat, P. Dutta, A. Bhardwaj, R. Datta, K. Biswas, Adv. Mater. 34, e2203725 (2022) |
[12] | Y. Luo, S. Cai, X. Hua, H. Chen, Q. Liang, C. Du, Y. Zheng, J. Shen, J. Xu, C. Wolverton, V.P. Dravid, Q. Yan, M.G. Kanatzidis, Adv. Energy Mater. 9, 18030721 (2018) |
[13] | Y. Hou, Z.Q. Zhang, W.D. Xuan, J. Wang, J.B. Yu, Z.M. Ren, Acta Metall. Sin. -Engl. Lett. 31, 681 (2017) |
[14] | Y. Qin, T. Xiong, J.F. Zhu, Y.F. Yang, H.R. Ren, H.L. He, C.P. Niu, X.H. Li, M.Q. Xie, T. Zhao, J. Adv. Ceram. 11, 1671 (2022) |
[15] | Y. Gong, C. Chang, W. Wei, J. Liu, W. Xiong, S. Chai, D. Li, J. Zhang, G. Tang, Scr. Mater. 147, 74 (2018) |
[16] | X. Guan, Z. Liu, N. Ma, Z. Li, J. Liu, H. Zhang, H. Li, Q. Ba, J. Ma, C. Jin, Acta Metall. Sin. -Engl. Lett. (2024). https://doi.org/10.1007/s40195-024-01794-x |
[17] | Y. Fan, C. Xie, J. Li, X. Meng, J. Sun, J. Wu, X. Tang, G. Tan, Energy Environ. Mater. 7, e12535 (2024) |
[18] | B. Jia, Y. Huang, Y. Wang, Y. Zhou, X. Zhao, S. Ning, X. Xu, P. Lin, Z. Chen, B. Jiang, J. He, Chem. Commun. 15, 1920 (2022) |
[19] | S. Lin, S. Wang, Y. Li, Z. Lai, X. Yang, L. Xinyu, M. Jin. Acta Metall. Sin. -Eng. Lett. (2024). https://doi.org/10.1007/s40195-024-01790-1 |
[20] | T.R. Wei, C.F. Wu, F. Li, J.F. Li, J. Materiomics 4, 304 (2018) |
[21] | Y. Gong, W. Dou, B. Lu, X. Zhang, H. Zhu, P. Ying, Q. Zhang, Y. Liu, Y. Li, X. Huang, M.F. Iqbal, S. Zhang, D. Li, Y. Zhang, H. Wu, G. Tang, Nat. Commun. 15, 4231 (2024) |
[22] | T.R. Wei, G. Tan, X. Zhang, C.F. Wu, J.F. Li, V.P. Dravid, G.J. Snyder, M.G. Kanatzidis, J. Am. Chem. Soc. 138, 8875 (2016) |
[23] |
Z.H. Ge, D. Song, X. Chong, F. Zheng, L. Jin, X. Qian, L. Zheng, R.E. Dunin-Borkowski, P. Qin, J. Feng, L.D. Zhao, J. Am. Chem. Soc. 139, 9714 (2017)
DOI PMID |
[24] | E.K. Chere, Q. Zhang, K. Dahal, F. Cao, J. Mao, Z. Ren, J. Mater. Chem. A 4, 1848 (2016) |
[25] | X. Lou, S. Li, X. Chen, Q. Zhang, H. Deng, J. Zhang, D. Li, X. Zhang, Y. Zhang, H. Zeng, G. Tang, Angew. Chem. Int. Ed. 15, 8204 (2021) |
[26] | R. Vasudevan, L. Zhang, Q. Ren, J. Wu, Z. Cheng, J. Wang, S. Lin, F. Zhu, Y. Zhang, M. Hölzel, Y. Pei, X. Tong, J. Ma, J. Alloy. Compd. 923, 166251 (2022) |
[27] | C. Li, H. Wu, B. Zhang, H. Zhu, Y. Fan, X. Lu, X. Sun, X. Zhang, G. Wang, X. Zhou, A.C.S. Appl. Mater. Inter. 12, 8446 (2020) |
[28] | X. Huang, Y. Gong, Y. Liu, W. Dou, S. Li, Q. Xia, D. Xiang, D. Li, P. Ying, G. Tang, A.C.S. Appl. Mater. Inter. 16, 20400 (2024) |
[29] | J.C. Li, D. Li, X.Y. Qin, J. Zhang, Scr. Mater. 126, 6 (2017) |
[30] | S. Li, Y. Hou, D. Li, B. Zou, Q. Zhang, Y. Cao, G. Tang, J. Mater. Chem. A 10, 12429 (2022) |
[31] | X. Yang, T.E. Shi, X.Y. Ma, Z.Y. Wang, Y. Wang, J. Wang, J. Feng, Z.H. Ge, J. Mater. Res. Technol. 27, 7606 (2023) |
[32] | Y. Liu, S. Lee, C. Fiedler, M. Chiara Spadaro, C. Chang, M. Li, M. Hong, J. Arbiol, M. Ibáñez, Chem. Eng. J. 490, 151405 (2024) |
[33] | D. Feng, Y.X. Chen, L.W. Fu, J. Li, J.Q. He, Rare Met. 37, 333 (2017) |
[34] | H. Guo, H. Xin, X. Qin, J. Zhang, D. Li, Y. Li, C. Song, C. Li, J. Alloy. Compd. 689, 87 (2016) |
[35] | X. Qi, J. Chen, K. Guo, S. He, J. Yang, Z. Li, J. Xing, J. Hu, H. Luo, W. Zhang, J. Luo, Chem. Eng. J. 374, 494 (2019) |
[36] | A. Charoenphakdee, K. Kurosaki, H. Muta, M. Uno, S. Yamanaka, Jpn. J. Appl. Phys. 48, 011603 (2009) |
[37] | R.B. Beeken, C.R. Driessen, B.M. Hinaus, D.E. Pawlisch, Solid State Ionics 179, 1058 (2008) |
[38] | W. Li, S. Lin, B. Ge, J. Yang, W. Zhang, Y. Pei, Adv. Sci. 3, 1600196 (2016) |
[39] | W. Li, S. Lin, M. Weiss, Z. Chen, J. Li, Y. Xu, W.G. Zeier, Y. Pei, Adv. Energy Mater. 8, 1800030 (2018) |
[40] | B.B. Jiang, P.F. Qiu, H.Y. Chen, Q.H. Zhang, K.P. Zhao, D.D. Ren, X. Shi, L.D. Chen, Chem. Commun. 53, 11658 (2017) |
[41] | B. Qin, Y. Zhang, D. Wang, Q. Zhao, B. Gu, H. Wu, H. Zhang, B. Ye, S.J. Pennycook, L.D. Zhao, J. Am. Chem. Soc. 142, 5901 (2020) |
[42] | K. Imasato, C. Fu, Y. Pan, M. Wood, J.J. Kuo, C. Felser, G.J. Snyder, Adv. Mater. 32, 1908218 (2020) |
[43] | T.J. Slade, J.A. Grovogui, J.J. Kuo, S. Anand, T.P. Bailey, M. Wood, C. Uher, G.J. Snyder, V.P. Dravid, M.G. Kanatzidis, Energ. Environ. Sci. 13, 1509 (2020) |
[44] | Y. Wang, B. Qin, L.D. Zhao, Appl. Phys. Lett. 119, 044103 (2021) |
[45] | M. Cutler, J.F. Leavy, R.L. Fitzpatrick, Phys. Rev. X 133, A1143 (1964) |
[46] | Q. Zhao, D. Wang, B. Qin, G. Wang, Y. Qiu, L.D. Zhao, J. Solid State Chem. 273, 85 (2019) |
[47] | P.P. Chen, H.Y. Xie, L.D. Zhao, Acta Metall. Sin. -Engl. -Engl. Lett. 18, 13647 (2024) |
[48] | D.M. Rowe,Materials, preparation, and characterization in thermoelectrics (CRC Press, USA, 2012) |
[49] | X. Yang, T.E. Shi, W.J. Li, X.Y. Ma, J. Feng, Z.H. Ge, A.C.S. Appl, Nano Mater. 6, 11754 (2023) |
[50] | A.K. Chaubey, B.B. Jha, B.K. Mishra, Acta Metall. Sin. -Engl. Lett. 28, 444 (2015) |
[51] | X. Yan, H. Pan, Y. Zhang, T. Yang, Y. Wang, K. Huang, C. Wang, J. Feng, Z. Ge, J. Adv. Ceram. 13, 641 (2024) |
[52] | M. Li, H. Wuliji, Z. Zhou, P. Qiu, K. Zhao, X. Shi, J. Mater. Chem. A 11, 10901 (2023) |
[53] | H. Liang, Q. Lou, Y.K. Zhu, J. Guo, Z.Y. Wang, S.W. Gu, W. Yu, J. Feng, J. He, Z.H. Ge, A.C.S. Appl. Mater. Inter. 13, 45589 (2021) |
[54] | Y. Zhu, J. Carrete, Q.L. Meng, Z. Huang, N. Mingo, P. Jiang, X. Bao, J. Mater. Chem. A 6, 7959 (2018) |
[55] | Y. Wang, S. Bai, H. Shi, Q. Cao, B. Qin, L.D. Zhao, J. Mater. Chem. A 12, 144 (2024) |
[56] | X.L. Shi, K. Zheng, W.D. Liu, Y. Wang, Y.Z. Yang, Z.G. Chen, J. Zou, Adv. Electron. Mater. 8, 1800775 (2018) |
[57] | J. Liu, P. Wang, M. Wang, R. Xu, J. Zhang, J. Liu, D. Li, N. Liang, Y. Du, G. Chen, G. Tang, Nano Energy 53, 683 (2018) |
[58] | N. Xin, G. Tang, Y. Li, H. Shen, Y. Nie, M. Zhang, X. Zhao, Adv. Electron. Mater. 8, 2 (2014) |
[1] | Haolin Ye, Chongjian Zhou. Low Thermal Conductivity Contributes to High Thermoelectric Performance: A Review [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(5): 720-732. |
[2] | X. Y. Yue, S. Y. Peng, X. Zhang, C. N. He, Y. Z. Tian. Distinct Electrical and Mechanical Responses of a Cu-10Fe Composite Prepared by Hot-Pressed Sintering and Post Treatment [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(2): 255-265. |
[3] | Wenlong Xu, Chang Su, Yuan Yuan, Jingying Bai, Xianhua Che. Achieving Excellent Electromagnetic Interference Shielding Effectiveness in High Rare Earth Mg-12Gd-3Y alloy via Nd Addition Combined with Hot Rolling and Aging [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(10): 1665-1679. |
[4] | Zhu Luo, Xian-Hua Chen, Kai Song, Chun-Quan Liu, Yan Dai, Di Zhao, Fu-Sheng Pan. Effect of Alloying Element on Electromagnetic Interference Shielding Effectiveness of Binary Magnesium Alloys [J]. Acta Metallurgica Sinica (English Letters), 2019, 32(7): 817-824. |
[5] | U?ursoy Olgun, Mustafa Gülfen, Fatih üstel, Hale Arslan. Electro-Optics and Band Gap Energies of Nanosilver-Coated TiO2 Nanotubes on Titanium Metal [J]. Acta Metallurgica Sinica (English Letters), 2018, 31(2): 153-163. |
[6] | Y. H. Zhu, C. M. Luk. Electropulsing-Induced Microstructural Changes and Their Effects on Electrical Conductivity of Thin Films of an Al-doped ZnO [J]. Acta Metallurgica Sinica (English Letters), 2018, 31(12): 1361-1367. |
[7] | M. Premović, D. Minić, D. Manasijević, Vladan Ćosović, D. Živković, I. Dervišević, N. Talijan. Mechanical and Electrical Properties of the Ternary Ag–Sb–Zn System [J]. Acta Metallurgica Sinica (English Letters), 2014, 27(1): 47-54. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||