Acta Metallurgica Sinica (English Letters) ›› 2025, Vol. 38 ›› Issue (4): 672-690.DOI: 10.1007/s40195-025-01818-0
Previous Articles Next Articles
Yifei Gao1, Peng Zhang1,2, Pan Ren1,2, Yingfei Yang1,2,3(), Guofeng Han4, Wenbo Du4, Wei Li1, Qiwei Wang1,2(
)
Received:
2024-08-12
Revised:
2024-10-06
Accepted:
2024-11-11
Online:
2025-04-10
Published:
2025-02-18
Contact:
Yingfei Yang, Yifei Gao, Peng Zhang, Pan Ren, Yingfei Yang, Guofeng Han, Wenbo Du, Wei Li, Qiwei Wang. Effect of CeO2 on the H2O/NaCl-Induced Corrosion Behavior of Ni-Co Coating at 650 °C[J]. Acta Metallurgica Sinica (English Letters), 2025, 38(4): 672-690.
Add to citation manager EndNote|Ris|BibTeX
C | Cr | Si | Mn | Mo | V | Ni | Fe |
---|---|---|---|---|---|---|---|
7 | 1.5 | 6.2 | 3 | 7.5 | 5 | 6.5 | Bal. |
Table 1 Normal composition of the carbon steel substrate (wt%)
C | Cr | Si | Mn | Mo | V | Ni | Fe |
---|---|---|---|---|---|---|---|
7 | 1.5 | 6.2 | 3 | 7.5 | 5 | 6.5 | Bal. |
Compositions and plating condition | Parameters |
---|---|
H3BO3 | 15-30 g/L |
NiCl2·6H2O | 30-40 g/L |
NiSO4·6H2O | 200-250 g/L |
CoSO4·7H2O | 5-9 g/L |
SDS | 0.1-0.2 g/L |
Temperature | 50-60 °C |
pH | 3-5 |
Average current density | 0.01-0.02 A/cm2 |
Duty cycle | 50% |
Frequency | 2000 Hz |
Agitation rate | 400 r/min |
Average current density | 0.01-0.02 A/cm2 |
Table 2 Composition of the plating solution and deposition parameters for Ni-Co coating and Ni-Co-CeO2 composite coating
Compositions and plating condition | Parameters |
---|---|
H3BO3 | 15-30 g/L |
NiCl2·6H2O | 30-40 g/L |
NiSO4·6H2O | 200-250 g/L |
CoSO4·7H2O | 5-9 g/L |
SDS | 0.1-0.2 g/L |
Temperature | 50-60 °C |
pH | 3-5 |
Average current density | 0.01-0.02 A/cm2 |
Duty cycle | 50% |
Frequency | 2000 Hz |
Agitation rate | 400 r/min |
Average current density | 0.01-0.02 A/cm2 |
Coatings | Ni | Co | Ce | O | Ratio of Co to Ni |
---|---|---|---|---|---|
Ni-Co coating | 83.79 | 16.21 | - | - | 0.19 |
Ni-Co-CeO2 coating | 67.01 | 17.13 | 15.36 | 0.50 | 0.25 |
Table 3 Composition of the coating surface in Fig. 2a and 2b by EDS mapping (at.%)
Coatings | Ni | Co | Ce | O | Ratio of Co to Ni |
---|---|---|---|---|---|
Ni-Co coating | 83.79 | 16.21 | - | - | 0.19 |
Ni-Co-CeO2 coating | 67.01 | 17.13 | 15.36 | 0.50 | 0.25 |
Fig. 4 EBSD maps showing the band contrast (BC maps), average grain size, and grain orientation maps (IPF maps) of Ni-Co coating a, c, e and Ni-Co-CeO2 coating b, d, f
Fig. 5Mass change curve a and the logarithm of the mass gain b of the Ni-Co coating and Ni-Co-CeO2 coatings during the H2O/NaCl-induced corrosion at 650 °C
Fig. 8 Surface morphologies, cross-sectional morphologies and corresponding EDS line profile along the oxide scale of Ni-Co coating a, c, e and Ni-Co-CeO2 coating b, d, f after H2O/NaCl-induced corrosion at 650 °C for 20 h
Points | Fe | Co | Ni | O | Ce | Cl |
---|---|---|---|---|---|---|
1 | 4.21 | 46.24 | 22.35 | 27.20 | - | - |
2 | - | 24.40 | 11.21 | 48.88 | 15.51 | - |
3 | 4.61 | 53.64 | - | 41.75 | - | - |
4 | 2.32 | 28.33 | 0.92 | 65.21 | 3.22 | - |
5 | 58.51 | 32.16 | - | 8.07 | - | 1.26 |
6 | 30.80 | 14.58 | - | 53.68 | - | 0.94 |
Table 4 Composition of the tagged zone in Figs. 8-10 by EDS (at.%, normalized by Fe, Co, Ni, O, Ce, Cl)
Points | Fe | Co | Ni | O | Ce | Cl |
---|---|---|---|---|---|---|
1 | 4.21 | 46.24 | 22.35 | 27.20 | - | - |
2 | - | 24.40 | 11.21 | 48.88 | 15.51 | - |
3 | 4.61 | 53.64 | - | 41.75 | - | - |
4 | 2.32 | 28.33 | 0.92 | 65.21 | 3.22 | - |
5 | 58.51 | 32.16 | - | 8.07 | - | 1.26 |
6 | 30.80 | 14.58 | - | 53.68 | - | 0.94 |
Fig. 9 Surface morphologies, cross-sectional morphologies and corresponding EDS line profile along the oxide scale of Ni-Co coating a, c, e and Ni-Co-CeO2 coating b, d, f after H2O/NaCl-induced corrosion at 650 °C for 60 h
Fig. 10 Surface morphologies, cross-sectional morphologies and corresponding EDS line profile along the oxide scale of Ni-Co coating a, c, e and Ni-Co-CeO2 coating b, d, f after H2O/NaCl-induced corrosion at 650 °C for 200 h
Fig. 11 Bright field morphology of the oxide scale a and the diffraction patterns of the tagged zone in different oxide layers b-1, c-2, d-3, e-4, f-5, g-6 on Ni-Co-CeO2 coating after H2O/NaCl-induced corrosion at 650 °C for 200 h
[1] | A.H.I. Mourad, A. Almomani, I.A. Sheikh, A.H. Elsheikh, Eng. Fail. Anal. 146, 107107 (2023) |
[2] | F. Xu, N. Ding, N. Li, L. Liu, N. Hou, N. Xu, W. Guo, L. Tian, H. Xu, C.M.L. Wu, Eng. Fail. Anal. 152, 107518 (2023) |
[3] | A. Dalmau, C. Richard, Tribol. Int. 121, 167 (2018) |
[4] | B. Fotovvati, N. Namdari, J. Manuf. Mater. Process. 3, 28 (2019) |
[5] | A. Karimzadeh, M. Aliofkhazraei, F.C. Walsh, Surf. Coat. Technol. 372, 463 (2019) |
[6] | F. Mohsenifar, H. Ebrahimifar, A. Irannejad, Acta Metall. Sin.-Engl. Lett. 37, 872 (2024) |
[7] | A.R. Shetty, A.C. Hegde, Hegde, Surf. Coat. Technol. 322, 99 (2017) |
[8] | S. Sattawitchayapit, V. Yordsri, T. Wutikhun, T. Chookajorn, Wear 538, 205184 (2024) |
[9] | X. Yang, X. Lu, W. Zhang, X. Guo, J. Ren, H. Xue, F. Tang, J. Nanopart. Res. 25, 152 (2023) |
[10] | P. Zhang, Y. Zhao, J. Huang, J. Li, L. Cao, J. Liu, G. Han, W. Du, L. Chen, L. Xiao, Surf. Coat. Technol. 467, 129678 (2023) |
[11] | J.H. Choi, G. Gyawali, D.R. Dhakal, B. Joshi, S.W. Lee, Acta Metall. Sin.-Engl. Lett. 33, 573 (2020) |
[12] | N.S. Mbugua, M. Kang, Y. Zhang, N.J. Ndiithi, G.V. Bertrand, L. Yao, Materials 13, 3475 (2020) |
[13] | K.C. Zhou, M. Li, Z.Y. Li, Trans. Nonferrous Met. Soc. China 21, 1052 (2011) |
[14] | X. Zhuang, Y. Tan, X. You, P. Li, L. Zhao, C. Cui, H. Zhang, H. Cui, Vacuum 189, 110219 (2021) |
[15] | D. Golodnitsky, N. Gudin, G. Volyanuk, Plating. Surf. Finish. 85, 65 (1998) |
[16] | L. Chang, M. An, S. Shi, Mater. Chem. Phys. 94, 125 (2005) |
[17] | S.M.A. Shibli, K.S. Chinchu, M.A. Sha, Acta Metall. Sin.-Engl. Lett. 32, 481 (2019) |
[18] | W.C. Sun, Mater. Sci. Forum 694, 799 (2011) |
[19] | M. Srivastava, J. Balaraju, B. Ravisankar, C. Anandan, V.W. Grips, Appl. Surf. Sci. 263, 597 (2012) |
[20] | D. Maruoka, M. Nanko, Ceram. Int. 49, 28629 (2023) |
[21] | L. Ma, K. Zhou, Z. Li, Corros. Sci. 53, 2357 (2011) |
[22] | S. Shanmugasamy, K. Balakrishnan, A. Subasri, S. Ramalingam, A. Subramania, J. Rare Earths 36, 1319 (2018) |
[23] | S. Purkayastha, D.K. Dwivedi, J. Tribol. 136, 011602 (2014) |
[24] | Q. Zheng, S. Mei, Z. Xiao, Z. Hu, Z. Chen, Q. Xu, A. Guryev, B. Lygdenov, Ceram. Int. 50, 8760 (2024) |
[25] | A.A. Ansari, J.P. Labis, M. Alam, S.M. Ramay, N. Ahmad, A. Mahmood, Acta Metall. Sin.-Engl. Lett. 29, 265 (2016) |
[26] | Y. Xue, S. Wang, Y. Xue, L. Cao, M. Nie, Y. Jin, Adv. Eng. Mater. 22, 2000402 (2020) |
[27] | M. Sheng, W. Weng, Y. Wang, Q. Wu, S. Hou, J. Alloy. Compd. 743, 682 (2018) |
[28] | B. Li, D. Li, T. Mei, W. Zhang, Res. Phys. 13, 102375 (2019) |
[29] | R. Shakoor, R. Kahraman, U.S. Waware, Y. Wang, W. Gao, Mater. Des. 59, 421 (2014) |
[30] | Y.J. Xue, X.Z. Jia, Y.W. Zhou, W. Ma, J.S. Li, Surf. Coat. Technol. 200, 5677 (2006) |
[31] | H.M. Jin, S.H. Jiang, L.N. Zhang, J. Rare Earths 27, 109 (2009) |
[32] | Y. Li, S. Geng, G. Chen, Int. J. Hydrog. Energy 43, 12811 (2018) |
[33] | M. Hajizadeh-Oghaz, R.S. Razavi, A. Ghasemi, Z. Valefi, Ceram. Int. 42, 5433 (2016) |
[34] | H. Gitanjaly, S. Singh, S. Singh, Mater. High Temp. 27, 109 (2010) |
[35] | W. Chen, W. Wang, L. Liu, R. Liu, Y. Cui, Z. Chen, Q. Wang, F. Wang, Corros. Sci. 226, 111677 (2024) |
[36] | M. Bajt Leban, M. Vončina, T. Kosec, R. Tisu, M. Barborič, J. Medved, High. Temp. Corros. Mater. 99, 63 (2023) |
[37] | J. Guo, Acta Metall. Sin. 46, 513 (2010) |
[38] | A.A. Ati, Z. Othaman, A. Samavati, J. Mol. Struct. 1052, 177 (2013) |
[39] | Y.J. Xue, H.B. Liu, M.M. Lan, J.S. Li, H. Li, Surf. Coat. Technol. 204, 3539 (2010) |
[40] | L. Benea, P.L. Bonora, A. Borello, S. Martelli, F. Wenger, P. Ponthiaux, J. Galland, Solid. State Ionics 151, 89 (2002) |
[41] | J. Sun, S. Jiang, H. Yu, S. Liu, J. Gong, C. Sun, Corros. Sci. 139, 172 (2018) |
[42] | D.J. Young, High Temperature Oxidation and Corrosion of Metals, vol. 1 (Elsevier 2008), p. iii |
[43] | F. Kaschel, R. Vijayaraghavan, P. McNally, D. Dowling, M. Celikin, Mater. Sci. Eng. A 819, 141534 (2021) |
[44] | M.S. Safavi, M. Tanhaei, M.F. Ahmadipour, R.G. Adli, S. Mahdavi, F.C. Walsh, Surf. Coat. Technol. 382, 125153 (2020) |
[45] | S.M. Dezfuli, M. Sabzi, Ceram. Int. 45, 21835 (2019) |
[46] | W. Ke, W. Jiang, Y. Han, Y. Chen, Y. Lao, J. Alloy. Compd. 946, 169407 (2023) |
[47] | Y. Xi, K. Gao, X. Pang, H. Yang, X. Xiong, H. Li, A.A. Volinsky, Ceram. Int. 43, 11992 (2017) |
[48] | Z. Zhang, C. Jiang, Z. Liao, G. Wei, Mater. Today. Commun. 27, 102403 (2021) |
[49] | L. Xu, R. Wang, M. Gen, L. Lu, G. Han, Materials 12, 3240 (2019) |
[50] | F. Khorashadizade, H. Saghafian, S. Rastegari, J. Alloy. Compd. 770, 98 (2019) |
[51] | A. Kamboj, Y. Raghupathy, M. Rekha, C. Srivastava, JOM 69, 1149 (2017) |
[52] | A. Aliyu, C. Srivastava, Surf. Coat. Technol. 405, 126596 (2021) |
[53] | G. Wang, D. Li, Y. Zuo, Y. Tang, X. Zhang, X. Zhao, Coatings 10, 161 (2020) |
[54] | C. de Alwis, M. Trought, E.J. Crumlin, S. Nemsak, K.A. Perrine, Appl. Surf. Sci. 612, 155596 (2023) |
[55] | I.E. Wachs, K. Routray, ACS Catal. 2, 1235 (2012) |
[56] | L. Yuan, Y. Wang, R. Cai, Q. Jiang, J. Wang, B. Li, A. Sharma, G. Zhou, Mater. Sci. Eng. B 177, 327 (2012) |
[57] | C. Jiang, M. Feng, M. Chen, K. Chen, S. Geng, F. Wang, Corros. Sci. 187, 109484 (2021) |
[58] | W. Sun, J. Wang, L. Yang, M. Chen, Z. Bao, C. Zheng, S. Zhu, F. Wang, Corros. Sci. 161, 108187 (2019) |
[59] | M. Zhang, L. Xin, X. Ding, S. Zhu, F. Wang, J. Alloy. Compd. 734, 307 (2018) |
[1] | Xiaoming Liu, Fengyang Quan, Yuan Gao, Shaodong Zhang, Jianbin Wang, Zhijun Wang, Junjie Li, Feng He, Jincheng Wang. Comparison of Hot Corrosion Behavior of Ni36Fe34Al17Cr10Mo1Ti2 and Ni34Co25Fe12Al15Cr12W2 Alloys in NaCl-KCl-Na2SO4 Salt [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(2): 205-217. |
[2] | You Lv, Yupeng Zhang, Xi Liu, Zehua Dong, Xiaorong Zhou, Xinxin Zhang. Effect of Mn Addition and Heat Treatment on the Corrosion Behaviour of Mg-Ag-Mn Alloy [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(4): 665-677. |
[3] | L. M. Liu, Y. X. Lai, C. L. Wu, Z. Zhang, J. H. Chen. Anisotropic Inter-granular Corrosion Behaviors and Microstructures of AlMgSiCu Alloy Sheets Made by Thermal-Mechanical Treatments [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(2): 275-284. |
[4] | Yunpeng Zeng, Wei Yan, Xianbo Shi, Maocheng Yan, Yiyin Shan, Ke Yang. Enhanced Bio-corrosion Resistance by Cu Alloying in a Micro-alloyed Pipeline Steel [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(10): 1731-1743. |
[5] | Xuyang Wang, Jieren Yang, Rui Hu, Zitong Gao, Jinguang Li, Hengzhi Fu. Creep-Induced Phase Instability and Microstructure Evolution of a Nearly Lamellar Ti-45Al-8.5Nb-(W, B, Y) Alloy [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(12): 1591-1600. |
[6] | Bao-Jie Wang, Ji-Yu Luan, Dao-Kui Xu, Jie Sun, Chuan-Qiang Li, En-Hou Han. Research Progress on the Corrosion Behavior of Magnesium-Lithium-Based Alloys: A Review [J]. Acta Metallurgica Sinica (English Letters), 2019, 32(1): 1-9. |
[7] | Zhang Jingqing, Hu Rui, Wang Jian, Li Jinshan. Corrosion Behavior of Ni-20Cr-18W-1Mo Superalloy in Supercritical Water [J]. Acta Metallurgica Sinica (English Letters), 2014, 27(6): 1046-1056. |
[8] | Sabale Sandip, Khot Vishwajeet, Jadhav Vidhya, Zhu Xiaoli, Xu Yanhong. Synthesis and Properties of Monodisperse Superparamagnetic Mg0.8Mn0.2Fe2O4 Nanoparticles Using Polyol Reflux Method [J]. Acta Metallurgica Sinica (English Letters), 2014, 27(6): 1122-1126. |
[9] | Shuai WANG, Lei WANG1, Yang LIU, Guohua XU, Beijiang ZHANG, Guangpu ZHAO. Nucleation mechanism of a nickel-base superalloy during dynamic recrystallization [J]. Acta Metallurgica Sinica (English Letters), 2011, 24(4): 295-300. |
[10] | S.J. Yan, W.H. Tian , L. Qi. PREPARATION OF TEM THIN FOIL CONTAINING POWDER PARTICLE BY ELECTRODEPOSITION METHOD [J]. Acta Metallurgica Sinica (English Letters), 2006, 19(2): 98-104 . |
[11] | C.Leygraf, J.Pan, M.Femenia. MICROSCOPIC CORROSION STUDIES OF DUPLEX STAINLESS STEELS [J]. Acta Metallurgica Sinica (English Letters), 2004, 17(5): 625-631 . |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||