Acta Metallurgica Sinica (English Letters) ›› 2025, Vol. 38 ›› Issue (5): 754-762.DOI: 10.1007/s40195-025-01838-w
Previous Articles Next Articles
Yicheng Wang1,2, Rongcheng Li2, Bowen Jin2, Chenghao Xie2,3, Xinfeng Tang2, Gangjian Tan1,2()
Received:
2024-12-09
Revised:
2025-01-02
Accepted:
2025-01-14
Online:
2025-05-10
Published:
2025-03-28
Contact:
Gangjian Tan,gtan@whut.edu.cn
Yicheng Wang, Rongcheng Li, Bowen Jin, Chenghao Xie, Xinfeng Tang, Gangjian Tan. Revealing the True Thermoelectric Properties of SnTe through Removing SnO2 Contamination[J]. Acta Metallurgica Sinica (English Letters), 2025, 38(5): 754-762.
Add to citation manager EndNote|Ris|BibTeX
Fig. 1 a XPS spectrum of Sn element for the sample prepared from raw Sn material without surface treatment in air, b XPS spectrum of the Sn element for the sample prepared from raw Sn material with surface treatment in air, c TG curves of SnTe measured under air and argon atmospheres, and d XPS spectrum of the Te element for the sample prepared from raw Sn material without surface treatment in air
Fig. 2 a XRD patterns of SnTe samples, b XPS spectrum of Sn element for the sample prepared from untreated raw Sn material in air, etched for 60 s at 2000 eV, c XPS spectrum of Sn element for the sample prepared from raw Sn material with surface treatment in air, etched for 60 s at 2000 eV, d XPS spectrum of Sn element for the sample prepared from raw Sn material with surface treatment in argon, etched for 60 s at 2000 eV
Fig. 4 a Electrical conductivity, b Seebeck coefficient, and c power factor (PF) as a function of temperature for three samples prepared by controlling the surface state of raw materials and preparation atmosphere; d carrier concentration and mobility at room temperature. The inset in a displays the electrical conductivity of SnO2 [60], and the inset in b displays the Seebeck coefficient of SnO2 [60]
Fig. 5 a Total thermal conductivity, b lattice thermal conductivity, and c ZT value for three samples prepared by controlling the surface state of raw materials and preparation atmosphere. d ZT values of the samples prepared in this study and other binary SnTe samples for comparison. The inset in a displays the total thermal conductivity of SnO2 [60], and the inset in b displays the lattice thermal conductivity of SnO2 [60]
[1] | C. Wu, X.L. Shi, L. Wang, W. Lyu, P. Yuan, L. Cheng, Z.G. Chen, X. Yao, ACS Nano 18, 31660 (2024) |
[2] | G. Tan, F. Shi, J.W. Doak, H. Sun, L.D. Zhao, P. Wang, C. Uher, C. Wolverton, V.P. Dravid, M.G. Kanatzidis, Energy Environ. Sci. 8, 267 (2015) |
[3] | G. Tan, S. Hao, S. Cai, T.P. Bailey, Z. Luo, I. Hadar, C. Uher, V.P. Dravid, C. Wolverton, M.G. Kanatzidis, J. Am. Chem. Soc. 141, 4480 (2019) |
[4] | G. Tan, L.D. Zhao, M.G. Kanatzidis, Chem. Rev. 116, 12123 (2016) |
[5] | P.P. Chen, H.Y. Xie, L.D. Zhao, Acta Metall. Sin.-Engl. Lett. (2024). https://doi.org/10.1007/s40195-024-01798-7 |
[6] | R. Moshwan, L. Yang, J. Zou, Z.G. Chen, Adv. Funct. Mater. 27, 1703278 (2017) |
[7] | M.N. Hasan, H. Wahid, N. Nayan, M.S. Mohamed Ali, Int. J. Energy Res. 44, 6170 (2020) |
[8] | R. Ovik, B. Long, M. Barma, M. Riaz, M. Sabri, S. Said, R. Saidur, Renew. Sust. Energ. Rev. 64, 635 (2016) |
[9] | R. Freer, D. Ekren, T. Ghosh, K. Biswas, P. Qiu, S. Wan, L. Chen, S. Han, C. Fu, T. Zhu, J. Phys. Energy 4, 022002 (2022) |
[10] | G. Tan, F. Shi, S. Hao, H. Chi, L.D. Zhao, C. Uher, C. Wolverton, J. Am. Chem. Soc. 137, 5100 (2015) |
[11] | X.L. Shi, J. Zou, Z.G. Chen, Chem. Rev. 120, 7399 (2020) |
[12] | X.C. Guan, Z.Y. Liu, N. Ma, Z. Li, J. Liu, H.Y. Zhang, H.L. Li, Q. Ba, J.J. Ma, C.G. Jin, A.L. Xia, Acta Metall. Sin.-Engl. Lett. (2024). https://doi.org/10.1007/s40195-024-01794-x |
[13] | Z. Liu, T. Hong, L. Xu, S. Wang, X. Gao, C. Chang, X. Ding, Y. Xiao, L.D. Zhao, Interdisc. Mater. 2, 161 (2023) |
[14] | H. Xie, L.D. Zhao, M.G. Kanatzidis, Interdisc. Mater. 3, 5 (2024) |
[15] | R. Moshwan, X.L. Shi, W.D. Liu, J. Liu, Z.G. Chen, Nano Today 58, 102475 (2024) |
[16] | J. Sun, R. Wang, W. Cui, S. Xie, T. Luo, H. Bai, X. Zhao, Z. Chen, X. Sang, X. Tan, Chem. Mater. 34, 6450 (2022) |
[17] | T. Zhang, W. Pan, S. Ning, N. Qi, Z. Chen, X. Su, X. Tang, Adv. Funct. Mater. 33, 2213761 (2023) |
[18] | G. Wu, Z. Guo, X. Tan, R. Wang, Q. Zhang, H. Hu, P. Sun, J. Wu, G.Q. Liu, J. Jiang, J. Mater. Chem. A 11, 649 (2023) |
[19] | B. Nan, X. Song, C. Chang, K. Xiao, Y. Zhang, L. Yang, S. Horta, J. Li, K.H. Lim, M. Ibáñez, ACS Appl. Mater. Interfaces 15, 23380 (2023) |
[20] | G. Tan, F. Shi, S. Hao, H. Chi, L.D. Zhao, C. Uher, C. Wolverton, J. Am. Chem. Soc. 137, 11507 (2015) |
[21] | G. Tan, S. Hao, R.C. Hanus, X. Zhang, S. Anand, T.P. Bailey, A.J. Rettie, X. Su, C. Uher, V.P. Dravid, ACS Energy Lett. 3, 705 (2018) |
[22] | G. Tan, F. Shi, H. Sun, L.D. Zhao, C. Uher, V.P. Dravid, M.G. Kanatzidis, J. Mater. Chem. A 2, 20849 (2014) |
[23] | S.Q. Lin, S.Y. Wang, Y.J. Li, Z.Y. Lai, X.T. Yang, X.Y. Lu, M. Jin, Acta Metall. Sin.-Engl. Lett. (2024). https://doi.org/10.1007/s40195-024-01790-1 |
[24] | E. Isotta, S. Jiang, G. Moller, A. Zevalkink, G.J. Snyder, O. Balogun, Adv. Mater. 35, 2302777 (2023) |
[25] | K. Lei, H. Huang, X.J. Liu, W. Wang, K. Guo, R.K. Zheng, H. Li, A.C.S. Sustain, Chem. Eng. 11, 7541 (2023) |
[26] | J. Xia, J. Yang, K. Sun, D. Mao, X. Wang, H.F. Li, J. He, J. Eur. Ceram. Soc. 43, 4791 (2023) |
[27] | R. Moshwan, W.D. Liu, X.L. Shi, Y.P. Wang, J. Zou, Z.G. Chen, Nano Energy 65, 104056 (2019) |
[28] | V. Anita, A.P. Gupta, J. Mater. Sci. Mater. Electron. 35, 617 (2024) |
[29] | J. Tang, B. Gao, S. Lin, J. Li, Z. Chen, F. Xiong, W. Li, Y. Chen, Y. Pei, Adv. Funct. Mater. 28, 1803586 (2018) |
[30] | A. Abbas, M. Nisar, Z.H. Zheng, F. Li, B. Jabar, G. Liang, P. Fan, Y.X. Chen, A.C.S. Appl. Mater. Interfaces 14, 25802 (2022) |
[31] |
M. Zhou, Z.M. Gibbs, H. Wang, Y. Han, C. Xin, L. Li, G.J. Snyder, Phys. Chem. Chem. Phys. 16, 20741 (2014)
DOI PMID |
[32] | Z. Zhou, J. Yang, Q. Jiang, J. Xin, S. Li, X. Wang, X. Lin, R. Chen, A. Basit, Q. Chen, Chem. Mater. 31, 3491 (2019) |
[33] | W. Li, L. Zheng, B. Ge, S. Lin, X. Zhang, Z. Chen, Y. Chang, Y. Pei, Adv. Mater. 29, 1605887 (2017) |
[34] | G. Tan, L.D. Zhao, F. Shi, J.W. Doak, S.H. Lo, H. Sun, C. Wolverton, V.P. Dravid, C. Uher, M.G. Kanatzidis, J. Am. Chem. Soc. 136, 7006 (2014) |
[35] | Z.Z. Luo, S. Hao, X. Zhang, X. Hua, S. Cai, G. Tan, T.P. Bailey, R. Ma, C. Uher, C. Wolverton, Energy Environ. Sci. 11, 3220 (2018) |
[36] | Y. Fan, S. Xie, J. Sun, X. Tang, G. Tan, A.C.S. Appl. Energy Mater. 4, 6333 (2021) |
[37] | S.I. Kim, J. An, W.J. Lee, S.H. Kwon, W.H. Nam, N.V. Du, J.M. Oh, S.M. Koo, J.Y. Cho, W.H. Shin, Nanomaterials 10, 2270 (2020) |
[38] | W. Chang, Y. Li, H. Zheng, H. Qian, D. Guo, S. Zhang, Y. Lou, C.T. Kwok, L.M. Tam, D. Zhang, Acta Metall. Sin.-Engl. Lett. 36, 379 (2023) |
[39] | V. Neudachina, T. Shatalova, V. Shtanov, L. Yashina, T. Zyubina, M. Tamm, S. Kobeleva, Surf. Sci. 584, 77 (2005) |
[40] | N. Berchenko, R. Vitchev, M. Trzyna, R. Wojnarowska-Nowak, A. Szczerbakow, A. Badyla, J. Cebulski, T. Story, Appl. Surf. Sci. 452, 134 (2018) |
[41] | J. Liu, H. Yao, S. Wang, C. Wu, L. Ding, F. Hao, Adv. Energy Mater. 13, 2300696 (2023) |
[42] | S. Badrinarayanan, A. Mandale, A. Sinha, Mater. Chem. Phys. 11, 1 (1984) |
[43] | B.Z. Tian, J. Chen, X.P. Jiang, J. Tang, D.L. Zhou, Q. Sun, L. Yang, Z.G. Chen, A.C.S. Appl. Mater. Interfaces 13, 50057 (2021) |
[44] | S. Cho, J. Yu, S.K. Kang, D. Shih, JOM 57, 50 (2005) |
[45] | N. Quackenbush, J. Allen, D. Scanlon, S. Sallis, J. Hewlett, A. Nandur, B. Chen, K. Smith, C. Weiland, D. Fischer, Chem. Mater. 25, 3114 (2013) |
[46] | S. Peneva, N. Neykov, V. Rusanov, D. Chakarov, J. Phys. Condens. Matter. 6, 2083 (1994) |
[47] | Y.K. Lee, Z. Luo, S.P. Cho, M.G. Kanatzidis, I. Chung, Joule 3, 719 (2019) |
[48] | A.M. Venezia, Catal. Today 77, 359 (2003) |
[49] | S. Bera, V. Mittal, R.V. Krishnan, T. Saravanan, S. Velmurugan, K. Nagarajan, S. Narasimhan, J. Nucl. Mater. 393, 120 (2009) |
[50] | J. Ma, T. Shi, Y. Zhang, D. Huang, Y. Li, B. Yang, Y. Tian, B. Xu, H. Yang, X. Chen, J. Mater. Res. Technol. 26, 3003 (2023) |
[51] | X. Zhang, G. Zhang, R. Yang, D. Zhang, G. Lian, C. Hou, J. Ren, H. Hou, Z. Guo, F. Dang, Energy Storage Mater. 69, 103392 (2024) |
[52] | W.P. Tian, H.W. Yang, S.D. Zhang, Acta Metall. Sin.-Engl. Lett. 31, 308 (2018) |
[53] | Y.L. Liu, K.L. Hou, M.Q. Ou, Y.C. Ma, K. Liu, Acta Metall. Sin.-Engl. Lett. 34, 1657 (2021) |
[54] | Z. Hu, H. Yu, J. He, Y. Ran, H. Zeng, Y. Zhao, Z. Yu, K. Tai, Acta Metall. Sin.-Engl. Lett. 36, 1699 (2023) |
[55] | M. Hammi, O. El Rhazouani, M. Arejdal, A. Slassi, Chin. J. Phys. 55, 187 (2017) |
[56] | A. Paulson, N.M. Sabeer, P. Pradyumnan, Mater. Res Express 5, 045511 (2018) |
[57] | A. Ashfaq, L.K. Smirani, M. Abboud, U. Ur Rehman, M.M. Fadhali, H. Hegazy, M.A. Hossain, A. Ali, K. Mehmood, N. Amin, Ceram. Int. 49, 10360 (2023) |
[58] | S.I. Yanagiya, S. Furuyama, I. Uriya, M. Takeda, Sensor. Mater. 27, 917 (2015) |
[59] | Y. Chen, H. Jiang, S. Jiang, X. Liu, W. Zhang, Q. Zhang, Acta Metall. Sin.-Engl. Lett. 27, 368 (2014) |
[60] | K. Rubenis, S. Populoh, P. Thiel, S. Yoon, U. Müller, J. Locs, J. Alloys Compd. 692, 515 (2017) |
[61] | C. Zhou, Y.K. Lee, Y. Yu, S. Byun, Z.Z. Luo, H. Lee, B. Ge, Y.L. Lee, X. Chen, J.Y. Lee, Nat. Mater. 20, 1378 (2021) |
[62] |
J.R. Sootsman, D.Y. Chung, M.G. Kanatzidis, Angew. Chem. Int. Ed. 48, 8616 (2009)
DOI PMID |
[63] | E. Yang, L. Yu, G. Li, W. Zhang, X. Wang, R. Chen, H. Kang, Z. Chen, E. Guo, T. Wang, Chem. Mater. 36, 8753 (2024) |
[64] | X. Wang, C. Wang, Y. Wang, M. Hao, S. Cui, X. Huang, C. Wang, J. Chen, Z. Cheng, J. Wang, Small 20, 2403852 (2024) |
[65] | G. Tan, W.G. Zeier, F. Shi, P. Wang, G.J. Snyder, V.P. Dravid, M.G. Kanatzidis, Chem. Mater. 27, 7801 (2015) |
[66] |
D. Ibrahim, S. Misra, S. Migot, J. Ghanbaja, A. Dauscher, B. Malaman, C. Semprimoschnig, C. Candolfi, B. Lenoir, RSC Adv. 10, 5996 (2020)
DOI PMID |
[67] | Q. Zhang, B. Liao, Y. Lan, K. Lukas, W. Liu, K. Esfarjani, C. Opeil, D. Broido, G. Chen, Z. Ren, Proc. Natl. Acad. Sci. USA 110, 13261 (2013) |
[68] |
D. Ibrahim, V. Ohorodniichuk, C. Candolfi, C. Semprimoschnig, A. Dauscher, B. Lenoir, ACS Omega 2, 7106 (2017)
DOI PMID |
[69] | S.N. Patel, A.M. Glaudell, K.A. Peterson, E.M. Thomas, K.A. O’hara, E. Lim, M.L. Chabinyc, Sci. Adv. 3, e1700434 (2017) |
[1] | Pengpeng Chen, Hongyao Xie, Li-Dong Zhao. Recent Progress on Diamondoid Cu2SnSe3 Thermoelectric Materials: A Review [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(5): 707-719. |
[2] | Haolin Ye, Chongjian Zhou. Low Thermal Conductivity Contributes to High Thermoelectric Performance: A Review [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(5): 720-732. |
[3] | Yaru Gong, Wei Dou, Yanan Li, Pan Ying, Guodong Tang. A Review of Polycrystalline SnSe Thermoelectric Materials: Progress and Prospects [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(5): 733-753. |
[4] | Xinghui Wang, Yu Yan, Wen Zhang, Huijun Kang, Enyu Guo, Zongning Chen, Rongchun Chen, Tongmin Wang. Enhanced Thermoelectric and Mechanical Properties of ZrNiSn Half-Heusler Compounds by Excess Ag Doping at Ni Sites [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(5): 763-771. |
[5] | Hong Zeng, Liqing Xu, Wei Liu, Xinxiu Cheng, Wenke He, Yu Xiao. Thermoelectric Performance of Layered PbBi4Te7 Compound [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(5): 772-780. |
[6] | Ze Li, Xing Yang, Tian-En Shi, Wang-Qi Bao, Jing Feng, Zhen-Hua Ge. One-Step Carrier Modulation and Nano-Composition Enhancing Thermoelectric and Mechanical Properties of p-Type SnSe Polycrystals by Introducing Ag9GaSe6 Compound [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(5): 781-792. |
[7] | Cuicui Shu, Pengcheng Zhai, Xiege Huang, Sergey I. Morozov, Guodong Li, Zhiyuan Pan. First Principles Study of CoSb3/Ni Interface Structure and Mechanical Properties [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(5): 793-802. |
[8] | Baocheng Yuan, Yi Wen, Lei Wang, Zhihao Li, Hong-Chao Wang, Cheng Chang, Li-Dong Zhao. Impact of CuFeS2 on the Thermoelectric Performance of SnTe [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(5): 803-810. |
[9] | Mi Qin, Bingqing Cao, Pan Zhang, Xuemei Zhang, Ziqi Han, Xiaohong Zheng, Xianlong Wang, Xin Chen, Yongsheng Zhang. Point Defects and Grain Boundaries Effects on Electrical Transports of PbTe Using the Non-equilibrium Green’s Function [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(5): 811-822. |
[10] | Chengwei Sun, Wang Li, Chengjun Li, Yingchao Wei, Wenyuan Ma, Xin Li, Qinghui Jiang, Yubo Luo, Junyou Yang. Thermoelectric Performance of CuInSe2-ZnSe Solid Solution [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(5): 823-830. |
[11] | Yuqing Sun, Fulong Liu, Zhihao Li, Panpan Peng, Yujie Zong, Peng Cao, Chunlei Wang, Hongchao Wang. Influence of Carbon Nanotubes on the Thermoelectric and Mechanical Properties of Cu2.1Mn0.9SnSe4 Alloy [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(5): 831-838. |
[12] | Longli Wang, Rongcheng Li, Peilin Miao, Jiushun Zhu, Gangjian Tan, Xinfeng Tang. Heterogeneous Interface Microstructure and Thermoelectromagnetic Conversion Performance of BiSbTe/MnCoGe Multifunctional Materials [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(5): 839-848. |
[13] | Xicheng Guan, Zhiyuan Liu, Ni Ma, Zhou Li, Juan Liu, Huiyan Zhang, Hailing Li, Qian Ba, Junjie Ma, Chuangui Jin, Ailin Xia. High-Performance p-Type Bi2Te3-Based Thermoelectric Materials with a Wide Temperature Range Obtained by Direct Sb Doping [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(5): 849-858. |
[14] | Siqi Lin, Shiyun Wang, Yanjiao Li, Zhenyu Lai, Xiaotang Yang, Xinyu Lu, Min Jin. Efficient Reduction of Carrier Concentration in SnTe: The Case of Gd Doping [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(5): 859-868. |
[15] | Yang Feng, Shuai Wang, Yang Zhao, Li-Qing Chen. Achieving High-Temperature Oxidation and Corrosion Resistance in Fe-Mn-Cr-Al-Cu-C TWIP Steel via Annealing Control [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(4): 642-656. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||