Acta Metallurgica Sinica (English Letters) ›› 2025, Vol. 38 ›› Issue (5): 839-848.DOI: 10.1007/s40195-025-01854-w
Previous Articles Next Articles
Longli Wang1,2, Rongcheng Li1,2, Peilin Miao1,2, Jiushun Zhu1,2, Gangjian Tan1,2(), Xinfeng Tang1,2(
)
Received:
2024-12-20
Revised:
2025-02-15
Accepted:
2025-02-25
Online:
2025-05-10
Published:
2025-04-10
Contact:
Gangjian Tan,gtan@whut.edu.cn;Xinfeng Tang,tangxf@whut.edu.cn
Longli Wang, Rongcheng Li, Peilin Miao, Jiushun Zhu, Gangjian Tan, Xinfeng Tang. Heterogeneous Interface Microstructure and Thermoelectromagnetic Conversion Performance of BiSbTe/MnCoGe Multifunctional Materials[J]. Acta Metallurgica Sinica (English Letters), 2025, 38(5): 839-848.
Add to citation manager EndNote|Ris|BibTeX
Fig. 1 a XRD patterns of Mn1-xCuxCoGe (x = 0, 0.09-0.13), b DSC curves of Mn1-xCuxCoGe (x = 0, 0.09-0.13), c temperature dependence of magnetization curves under an applied magnetic field of 0.1 T upon cooling of Mn1-xCuxCoGe (x = 0.10, 0.11), d ΔS as a function of temperature of Mn1-xCuxCoGe (x = 0.10, 0.11) under different magnetic fields
Fig. 4 a-d Backscattered electron images of the composites at different sintering temperatures, e elemental mapping overlay of the sample sintered at 723 K, f-l elemental mapping images of Bi, Sb, Te, Mn, Co, Ge, and Cu
Fig. 6 Temperature-dependent electrical properties of BST/MCCG composites sintered at different temperatures: a electrical conductivity, b Seebeck coefficient, and c power factor
Samples | p (1019 cm−3) | μ (cm2 V−1 s−1) | ρ (g/cm3) | σ (104 S m−1) | S (μV K−1) |
---|---|---|---|---|---|
573 K PAS | 9.9 | 48.7 | 6.56 | 7.7 | 161.9 |
623 K PAS | 22 | 34.6 | 6.77 | 12.2 | 146.9 |
673 K PAS | 31.1 | 30.7 | 6.81 | 15.3 | 110.5 |
723 K PAS | 68.5 | 16.8 | 6.85 | 18.4 | 76.2 |
Table 1 Room temperature charge transport properties and mass densities of BST/MCCG composites sintered at different temperatures
Samples | p (1019 cm−3) | μ (cm2 V−1 s−1) | ρ (g/cm3) | σ (104 S m−1) | S (μV K−1) |
---|---|---|---|---|---|
573 K PAS | 9.9 | 48.7 | 6.56 | 7.7 | 161.9 |
623 K PAS | 22 | 34.6 | 6.77 | 12.2 | 146.9 |
673 K PAS | 31.1 | 30.7 | 6.81 | 15.3 | 110.5 |
723 K PAS | 68.5 | 16.8 | 6.85 | 18.4 | 76.2 |
Fig. 7 a Total and b latice thermal conductivities as a function of temperature for BST/MCCG sintered at different temperatures, c ZT values as a function of temperature for BST/MCCG sintered at different temperatures
Fig. 8 a Temperature dependence of magnetization curves under a magnetic field of 0.1 T upon cooling of Mn0.9Cu0.1CoGe and BST/MCCG and b ΔS as a function of temperature of BST/MCCG under different magnetic fields
[1] | X. She, L. Cong, B. Nie, G. Leng, H. Peng, Y. Chen, X. Zhang, T. Wen, H. Yang, Y. Luo, Appl. Energy 232, 157 (2018) |
[2] | R. Khosla, R. Renaldi, A. Mazzone, C. Mcelroy, G. Palafox-Alcantar, Annu. Rev. Environ. Resour. 47, 449 (2022) |
[3] | Y. Wang, Z. Zhang, T. Usui, M. Benedict, S. Hirose, J. Lee, J. Kalb, D. Schwartz, Science 370, 129 (2020) |
[4] | K. Harby, Renew. Sust. Energ. Rev. 73, 1247 (2017) |
[5] | N. Kumma, S.S.H. Kruthiventi, Renew. Sust. Energ. Rev. 189, 114073 (2024) |
[6] | M.O. Mclinden, J.S. Brown, R. Brignoli, A.F. Kazakov, P.A. Domanski, Nat. Commun. 8, 14476 (2017) |
[7] | G. Restrepo, M. Weckert, R. Brüggemann, S. Gerstmann, H. Frank, Environ. Sci. Technol. 42, 2925 (2008) |
[8] | J. Shi, D. Han, Z. Li, L. Yang, S.G. Lu, Z. Zhong, J. Chen, Q.M. Zhang, X. Qian, Joule 3, 1200 (2019) |
[9] | G. Tan, L.D. Zhao, M.G. Kanatzidis, Chem. Rev. 116, 12123 (2016) |
[10] | X. Tang, Z. Li, W. Liu, Q. Zhang, C. Uher, Interdisc. Mater. 1, 88 (2022) |
[11] | J. Mao, G. Chen, Z. Ren, Nat. Mater. 20, 454 (2021) |
[12] | G. Tan, W. Liu, H. Chi, X. Su, S. Wang, Y. Yan, X. Tang, W. Wong-Ng, C. Uher, Acta Mater. 61, 7693 (2013) |
[13] | G. Tan, F. Shi, S. Hao, H. Chi, T.P. Bailey, L.D. Zhao, C. Uher, C. Wolverton, V.P. Dravid, M.G. Kanatzidis, J. Am. Chem. Soc. 137, 11507 (2015) |
[14] | G. Tan, L.D. Zhao, F. Shi, J.W. Doak, S.H. Lo, H. Sun, C. Wolverton, V.P. Dravid, C. Uher, M.G. Kanatzidis, J. Am. Chem. Soc. 136, 7006 (2014) |
[15] | G. Tan, S. Hao, S. Cai, T.P. Bailey, Z. Luo, I. Hadar, C. Uher, V.P. Dravid, C. Wolverton, M.G. Kanatzidis, J. Am. Chem. Soc. 141, 4480 (2019) |
[16] | R. Li, C. Xie, Y. Wang, B. Jin, J. Zhu, X. Tang, G. Tan, Mater. Today Phys. 48, 101573 (2024) |
[17] | V. Franco, J.S. Blázquez, J.J. Ipus, J.Y. Law, L.M. Moreno-Ramírez, A. Conde, Prog. Mater. Sci. 93, 112 (2018) |
[18] | K. Klinar, J.Y. Law, V. Franco, X. Moya, A. Kitanovski, Adv. Energy Mater. 14, 2401739 (2024) |
[19] | Z. Zhao, W. Guo, Z. Zhang, Adv. Funct. Mater. 32, 2203866 (2022) |
[20] | S. Wang, Y. Shi, Y. Li, H. Lin, K. Fan, X. Teng, Renew. Sust. Energ. Rev. 187, 113762 (2023) |
[21] | G. Zhou, Y. Zhu, S. Yao, Q. Sun, Joule 7, 2003 (2023) |
[22] | N.A. Zolpakar, N. Mohd-Ghazali, M.H. El-Fawal, Renew. Sustain. Energy Rev. 54, 626 (2016) |
[23] | F.W. Jordan, Nature 86, 380 (1911) |
[24] |
J. Flipse, F.L. Bakker, A. Slachter, F.K. Dejene, B.J. Van Wees, Nat. Nanotechnol. 7, 166 (2012)
DOI PMID |
[25] | G. Tan, F. Shi, S. Hao, L.D. Zhao, H. Chi, X. Zhang, C. Uher, C. Wolverton, V.P. Dravid, M.G. Kanatzidis, Nat. Commun. 7, 12167 (2016) |
[26] | G. Tan, F. Shi, H. Sun, L.D. Zhao, C. Uher, V.P. Dravid, M.G. Kanatzidis, J. Mater. Chem. A 2, 20849 (2014) |
[27] | G. Tan, W.G. Zeier, F. Shi, P. Wang, G.J. Snyder, V.P. Dravid, M.G. Kanatzidis, Chem. Mater. 27, 7801 (2015) |
[28] | Y. Qin, B. Qin, D. Wang, C. Chang, L.D. Zhao, Energy Environ. Sci. 15, 4527 (2022) |
[29] | G. Tan, C.C. Stoumpos, S. Wang, T.P. Bailey, L.D. Zhao, C. Uher, M.G. Kanatzidis, Adv. Energy Mater. 7, 1700099 (2017) |
[30] | S. Lin, S. Wang, Y. Li, Z. Lai, X. Yang, X. Lu, M. Jin, Acta Metall. Sin.-Engl. Lett. (2024). https://doi.org/10.1007/s40195-024-01790-1 |
[31] | Z.G. Chen, W.D. Liu, J. Mater. Sci. Technol. 121, 256 (2022) |
[32] | J. Ding, W. Zhao, W. Jin, C.A. Di, D. Zhu, Adv. Funct. Mater. 31, 2010695 (2021) |
[33] | W. Sun, W.D. Liu, Q. Liu, Z.G. Chen, Chem. Eng. J. 450, 138389 (2022) |
[34] | T. Cao, X.L. Shi, Z.G. Chen, Prog. Mater. Sci. 131, 101003 (2023) |
[35] | R. Zhan, J. Lyu, D. Yang, Y. Liu, S. Hua, Z. Xu, C. Wang, X. Peng, Y. Yan, X. Tang, Mater. Today Phys. 24, 100670 (2022) |
[36] | G. Tan, M. Ohta, M.G. Kanatzidis, Philos. Trans. Royal Soc. A 377, 20180450 (2019) |
[37] | J. Dong, J. Jiang, Y. Wang, M. Huang, J. Cui, T. Song, Acta Metall. Sin.-Engl. Lett. (2024). https://doi.org/10.1007/s40195-024-01796-9 |
[38] | S. Li, X. Fang, T. Lyu, J. Cheng, W. Ao, C. Zhang, F. Liu, J. Li, L. Hu, Mater. Today Phys. 27, 100764 (2022) |
[39] | G. Zheng, X. Su, X. Li, T. Liang, H. Xie, X. She, Y. Yan, C. Uher, M.G. Kanatzidis, X. Tang, Adv. Energy Mater. 6, 1600595 (2016) |
[40] | B. Nan, X. Song, C. Chang, K. Xiao, Y. Zhang, L. Yang, S. Horta, J. Li, K.H. Lim, M. Ibáñez, A.C.S. Appl. Mater. Interf. 15, 23380 (2023) |
[41] | J. Qiu, Y. Yan, T. Luo, K. Tang, L. Yao, J. Zhang, M. Zhang, X. Su, G. Tan, H. Xie, Energy Environ. Sci. 12, 3106 (2019) |
[42] | X. Guan, Z. Liu, N. Ma, Z. Li, J. Liu, H. Zhang, H. Li, Q. Ba, J. Ma, C. Jin, Acta Metall. Sin.-Engl. Lett. (2024). https://doi.org/10.1007/s40195-024-01794-x |
[43] | R. Deng, X. Su, S. Hao, Z. Zheng, M. Zhang, H. Xie, W. Liu, Y. Yan, C. Wolverton, C. Uher, Energy Environ. Sci. 11, 1520 (2018) |
[44] | Z. Han, J.W. Li, F. Jiang, J. Xia, B.P. Zhang, J.F. Li, W. Liu, J. Materiomics 8, 427 (2022) |
[45] | N. Terada, H. Mamiya, Nat. Commun. 12, 1212 (2021) |
[46] | Y. Taguchi, H. Sakai, D. Choudhury, Adv. Mater. 29, 1606144 (2017) |
[47] | J. RomeroGómez, R. Ferreiro Garcia, A. De MiguelCatoira, M. RomeroGómez, Renew. Sust. Energ. Rev. 17, 74 (2013) |
[48] | D.J. Silva, B.D. Bordalo, A.M. Pereira, J. Ventura, J.P. Araújo, Appl. Energy 93, 570 (2012) |
[49] | C. Li, W. Zhao, Q. Zhang, Sci. Bull. 67, 891 (2022) |
[50] | Y. Gong, J. Sun, W. Hu, S. Li, W. Xu, G. Tan, X. Tang, Appl. Phys. Lett. 120, 023905 (2022) |
[51] | W. Yan, X. Nie, S. Ke, Y. Hu, X. Ai, W. Zhu, W. Zhao, Q. Zhang, Adv. Funct. Mater. 32, 2209739 (2022) |
[52] | X. Li, C. Sun, K. Yang, D. Liang, X. Ye, W. Song, W. Xu, W. Zhao, Q. Zhang, Small 20, 2311478 (2024) |
[53] | X. Mo, J. Liao, G. Yuan, S. Zhu, X. Lei, L. Huang, Q. Zhang, C. Wang, Z. Ren, J. Magnes, Alloys 10, 1024 (2022) |
[54] | J. Feng, R. Geutjens, N.V. Thang, J. Li, X. Guo, A. Kéri, S. Basak, G. Galbács, G. Biskos, H. Nirschl, H.W. Zandbergen, E. Brück, A. Schmidt-Ott, A.C.S. Appl. Mater. Interf. 10, 6073 (2018) |
[55] | G. Cao, Q. Wang, J. Liu, Y. Zhang, X. Wang, M. Huang, H. Shen, L. Zheng, J. Alloys Compd. 800, 363 (2019) |
[56] | Z. Xu, F. Wang, G. Lin, J. Supercond. Nov. Magn. 34, 243 (2021) |
[57] | L. Pfeuffer, A. Gràcia-Condal, T. Gottschall, D. Koch, T. Faske, E. Bruder, J. Lemke, A. Taubel, S. Ener, F. Scheibel, Acta Mater. 217, 117157 (2021) |
[58] | J.H. Chen, N.M. Bruno, I. Karaman, Y. Huang, J. Li, J.H. Ross, Acta Mater. 105, 176 (2016) |
[59] | C. Liu, W. Xu, P. Wei, S. Ke, W. Cui, L. Li, D. Liang, X. Ye, T. Chen, X. Nie, Energy Environ. Mater. 7, e12710 (2024) |
[60] |
L. Xing, W. Cui, X. Sang, F. Hu, P. Wei, W. Zhu, X. Nie, Q. Zhang, W. Zhao, J. Materiomics 7, 998 (2021)
DOI |
[61] | R. Li, L. Wang, P. Miao, C. Xie, X. Tang, G. Tan, J. Magn. Magn. Mater. 603, 172224 (2024) |
[62] |
H. Imam, H.G. Zhang, W.J. Pan, B.T. Song, J.H. Shi, M. Yue, Intermetallics 107, 53 (2019)
DOI |
[63] | N. Ul Hassan, I. A. Shah, J. Liu, G. Xu, Y. Gong, X. Miao, F. Xu, J. Supercond. Nov. Magn. 31, 3809 (2018) |
[64] | J.H. Chen, T. PoudelChhetri, C.K. Chang, Y.C. Huang, D.P. Young, I. Dubenko, S. Talapatra, N. Ali, S. Stadler, J. Appl. Phys. 129, 215108 (2021) |
[65] | P. Gębara, Z. Śniadecki, J. Alloys Compd. 796, 153 (2019) |
[66] | Y. Luo, J. Wang, J. Yang, D. Mao, J. Cui, B. Jia, X. Liu, K. Nielsch, X. Xu, J. He, Energy Environ. Sci. 16, 3743 (2023) |
[67] | X. She, X. Su, H. Xie, J. Fu, Y. Yan, W. Liu, P.F. PoudeuPoudeu, X. Tang, A.C.S. Appl. Mater. Interf. 10, 25519 (2018) |
[68] | H.S. Kousar, D. Srivastava, M. Karppinen, G.C. Tewari, J. Phys. Condens. Matter 31, 405704 (2019) |
[69] | A. Quintana-Nedelcos, J. L. Sánchez Llamazares, C. F. Sánchez-Valdés, P. Álvarez Alonso, P. Gorria, P. Shamba, N. A. Morley, J. Alloys Compd. 694, 1189 (2017) |
[1] | Siqi Lin, Shiyun Wang, Yanjiao Li, Zhenyu Lai, Xiaotang Yang, Xinyu Lu, Min Jin. Efficient Reduction of Carrier Concentration in SnTe: The Case of Gd Doping [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(5): 859-868. |
[2] | Hong Zeng, Liqing Xu, Wei Liu, Xinxiu Cheng, Wenke He, Yu Xiao. Thermoelectric Performance of Layered PbBi4Te7 Compound [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(5): 772-780. |
[3] | Ze Li, Xing Yang, Tian-En Shi, Wang-Qi Bao, Jing Feng, Zhen-Hua Ge. One-Step Carrier Modulation and Nano-Composition Enhancing Thermoelectric and Mechanical Properties of p-Type SnSe Polycrystals by Introducing Ag9GaSe6 Compound [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(5): 781-792. |
[4] | Cuicui Shu, Pengcheng Zhai, Xiege Huang, Sergey I. Morozov, Guodong Li, Zhiyuan Pan. First Principles Study of CoSb3/Ni Interface Structure and Mechanical Properties [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(5): 793-802. |
[5] | Baocheng Yuan, Yi Wen, Lei Wang, Zhihao Li, Hong-Chao Wang, Cheng Chang, Li-Dong Zhao. Impact of CuFeS2 on the Thermoelectric Performance of SnTe [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(5): 803-810. |
[6] | Mi Qin, Bingqing Cao, Pan Zhang, Xuemei Zhang, Ziqi Han, Xiaohong Zheng, Xianlong Wang, Xin Chen, Yongsheng Zhang. Point Defects and Grain Boundaries Effects on Electrical Transports of PbTe Using the Non-equilibrium Green’s Function [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(5): 811-822. |
[7] | Chengwei Sun, Wang Li, Chengjun Li, Yingchao Wei, Wenyuan Ma, Xin Li, Qinghui Jiang, Yubo Luo, Junyou Yang. Thermoelectric Performance of CuInSe2-ZnSe Solid Solution [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(5): 823-830. |
[8] | Xicheng Guan, Zhiyuan Liu, Ni Ma, Zhou Li, Juan Liu, Huiyan Zhang, Hailing Li, Qian Ba, Junjie Ma, Chuangui Jin, Ailin Xia. High-Performance p-Type Bi2Te3-Based Thermoelectric Materials with a Wide Temperature Range Obtained by Direct Sb Doping [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(5): 849-858. |
[9] | Yuqing Sun, Fulong Liu, Zhihao Li, Panpan Peng, Yujie Zong, Peng Cao, Chunlei Wang, Hongchao Wang. Influence of Carbon Nanotubes on the Thermoelectric and Mechanical Properties of Cu2.1Mn0.9SnSe4 Alloy [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(5): 831-838. |
[10] | Pengpeng Chen, Hongyao Xie, Li-Dong Zhao. Recent Progress on Diamondoid Cu2SnSe3 Thermoelectric Materials: A Review [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(5): 707-719. |
[11] | Haolin Ye, Chongjian Zhou. Low Thermal Conductivity Contributes to High Thermoelectric Performance: A Review [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(5): 720-732. |
[12] | Yaru Gong, Wei Dou, Yanan Li, Pan Ying, Guodong Tang. A Review of Polycrystalline SnSe Thermoelectric Materials: Progress and Prospects [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(5): 733-753. |
[13] | Yicheng Wang, Rongcheng Li, Bowen Jin, Chenghao Xie, Xinfeng Tang, Gangjian Tan. Revealing the True Thermoelectric Properties of SnTe through Removing SnO2 Contamination [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(5): 754-762. |
[14] | Xinghui Wang, Yu Yan, Wen Zhang, Huijun Kang, Enyu Guo, Zongning Chen, Rongchun Chen, Tongmin Wang. Enhanced Thermoelectric and Mechanical Properties of ZrNiSn Half-Heusler Compounds by Excess Ag Doping at Ni Sites [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(5): 763-771. |
[15] | Yifei Gao, Peng Zhang, Pan Ren, Yingfei Yang, Guofeng Han, Wenbo Du, Wei Li, Qiwei Wang. Effect of CeO2 on the H2O/NaCl-Induced Corrosion Behavior of Ni-Co Coating at 650 °C [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(4): 672-690. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||