Acta Metallurgica Sinica (English Letters) ›› 2025, Vol. 38 ›› Issue (5): 763-771.DOI: 10.1007/s40195-025-01853-x
Previous Articles Next Articles
Xinghui Wang1, Yu Yan1, Wen Zhang1, Huijun Kang1,2(), Enyu Guo1,2, Zongning Chen1,2, Rongchun Chen1(
), Tongmin Wang1,2
Received:
2024-12-24
Revised:
2025-02-04
Accepted:
2025-02-24
Online:
2025-05-10
Published:
2025-04-19
Contact:
Huijun Kang,kanghuijun@dlut.edu.cn;Rongchun Chen,crc618@dlut.edu.cn
Xinghui Wang, Yu Yan, Wen Zhang, Huijun Kang, Enyu Guo, Zongning Chen, Rongchun Chen, Tongmin Wang. Enhanced Thermoelectric and Mechanical Properties of ZrNiSn Half-Heusler Compounds by Excess Ag Doping at Ni Sites[J]. Acta Metallurgica Sinica (English Letters), 2025, 38(5): 763-771.
Add to citation manager EndNote|Ris|BibTeX
Fig. 1 Crystal structures of ZrNiSn (HH) and ZrNi2Sn (FH) (Schematic diagram depicting the two defects present in ZrNiSn and the structural link between the FH/HH phases)
Fig. 4 SEM micrographs of the fracture section of ZrNiAgxSn: a x = 0, b x = 0.01, c x = 0.02, and d x = 0.03. Grain size distributions of ZrNiAgxSn: a1 x = 0, b1 x = 0.01, c1 x = 0.02, and d1 x = 0.03. Histogram of grain size distributions of ZrNiAgxSn: a2 x = 0, b2 x = 0.01, c2 x = 0.02, and d2 x = 0.03. e-h Elements maps of the fracture section of ZrNiAg0.02Sn
Fig. 5 a Temperature-dependent σ. b nH and μH at room temperature. c Temperature-dependent S. d Room temperature Pisarenko plot with m* = 3.56 me, where me is the electron effective mass. e Temperature-dependent PF for ZrNiAgxSn
Fig. 7 Figure of merit zT for ZrNiAgxSn samples: a zT and b average zT. c Comparison of zT values of several typical Hf-free ZrNiSn TE materials. d Vickers hardness of ZrNiAgxSn samples at room temperature
[1] | D. Liu, Q. Cao, B. Qin, L. Zhao, Mater. Lab. 2, 230032 (2024) |
[2] | Y. Fan, C. Xie, J. Li, X. Meng, J. Sun, J. Wu, X. Tang, G. Tan, Energy Environ. Mater. 7, e12535 (2024) |
[3] | H. Su, H. Zhang, M. Zhou, Mater. Lab. 2, 230015 (2023) |
[4] |
J.P. Heremans, V. Jovovic, E.S. Toberer, A. Saramat, K. Kurosaki, A. Charoenphankdee, S. Yamanaka, G.J. Snyder, Science 321, 554 (2008)
DOI PMID |
[5] | P. Chen, H. Xie, L. Zhao, Acta Metall. Sin.-Engl. Lett. (2024). https://doi.org/10.1007/s40195-024-01798-7 |
[6] | J. Mao, H.S. Kim, J. Shuai, Z. Liu, R. He, U. Saparamadu, F. Tian, W. Liu, Z. Ren, Acta Mater. 633, 103 (2016) |
[7] | S. Lin, S. Wang, Y. Li, Z. Lai, X. Yang, X. Lu, M. Jin, Acta Metall. Sin.-Engl. Lett. (2024). https://doi.org/10.1007/s40195-024-01790-1 |
[8] | Z. Hu, H. Yu, J. He, Y. Ran, H. Zeng, Y. Zhao, Z. Yu, K. Tai, Acta Metall. Sin.-Engl. Lett. 36, 1699 (2023) |
[9] | Q. Zhang, H. Wang, W. Liu, H. Wang, B. YU, Q. Zhang, Z. Tian, G. Ni, S. Lee, K. Esfarjani, G. Chen, Z. Ren, Energy Environ. Sci. 5, 5246 (2012) |
[10] | W. Liu, J. Zhou, Q. Jie, Y. Li, H.S. Kim, J. Bao, G. Chen, Z. Ren, Energy Environ. Sci. 9, 530 (2016) |
[11] | H. Yang, J.H. Bahk, T. Day, A.M.S. Mohammed, G.J. Snyder, A. Shakouri, Y. Wu, Nano Lett. 15, 1349 (2015) |
[12] |
J.R. Sootsman, D.Y. Chung, M.G. Kanatzidis, Angew. Chem. Int. Ed. 48, 8616 (2009)
DOI PMID |
[13] | S. Bhattacharya, A. Bohra, R. Basu, R. Bhatt, S. Ahmad, K.N. Meshram, A.K. Debnath, A. Singh, S.K. Sarkar, M. Navneethan, Y. Hayakawa, D.K. Aswal, S.K. Gupta, J. Mater. Chem. A 2, 17122 (2014) |
[14] | P. Jood, M. Ohta, Materials 8, 1124 (2015) |
[15] | Y. Zhu, Z. Han, F. Jiang, E. Dong, B. Zhang, W. Zhang, W. Liu, Mater. Today Phys. 16, 100327 (2021) |
[16] | P. Qiu, J. Yang, X. Huang, X. Chen, L. Chen, Appl. Phys. Lett. 96, 152105 (2010) |
[17] | M. Hong, Z. Chen, L. Yang, T.C. Chasapis, S.D. Kang, Y. Zou, G.J. Auchterlonie, M.G. Kanatzidis, G.J. Snyder, J. Zou, J. Mater. Chem. A 5, 10713 (2017) |
[18] | G. Joshi, X. Yan, H. Wang, W. Liu, G. Chen, Z. Ren, Adv. Energy Mater. 1, 643 (2011) |
[19] | Y. Pan, B. He, C. Felser, Mater. Lab. 2, 230016 (2023) |
[20] | R. Chen, Y. Yan, W. Zhang, F. Liu, H. Kang, E. Guo, Z. Chen, T. Wang, Chem. Mater. 35, 2202 (2023) |
[21] | Q. Zhang, P. Xie, C. Liu, S. Li, X. Lei, L. Huang, G. Yuan, F. Cai, Mater. Today Phys. 24, 100648 (2022) |
[22] | R. Akram, Y. Yan, D. Yang, X. She, G. Zheng, X. Su, X. Tang, Intermetallics 74, 1 (2016) |
[23] | C. Jia, B. Zhu, C. Pang, C. Yuan, P. Xu, B. Xu, J. Bai, L. Tao, F. Xue, G. Tang, Mater. Today Phys. 33, 101039 (2023) |
[24] | R. Chen, Q. Jiang, L. Jiang, R. Min, H. Kang, Z. Chen, E. Guo, X. Yang, T. Wang, Chem. Eng. J. 455, 140676 (2023) |
[25] | S. Li, X. Bao, L. Yin, X. Ye, J. Mao, Q. Zhang, Acta Mater. 271, 119896 (2024) |
[26] | R. Chen, Y. Yan, G. Li, R. Min, H. Kang, E. Guo, Z. Chen, X. Yang, T. Wang, J. Materiomics 10, 45 (2024) |
[27] |
M.A.A. Mohamed, E.M.M. Ibrahim, N.P. Rodriguez, S. Hampel, B. Büchner, G. Schierning, K. Nielsch, R. He, Acta Mater. 196, 669 (2020)
DOI |
[28] | R.B. Villoro, D. Zavanelli, C. June, D.A. Mattlat, R.H. Naderloo, N. Pérez, K. Nielsch, C.J. Snyder, C. Scheu, R. He, S. Zhang, Adv. Energy Mater. 13, 2204321 (2023) |
[29] | S. Li, H. Zhu, J. Mao, Z. Feng, X. Li, C. Chen, F. Cao, X. Liu, D.J. Singh, Z. Ren, Q. Zhang, ACS Appl. Mater. Interfaces 11, 41321 (2019) |
[30] | E. Haque, M.A. Hossain, Results Phys. 10, 458 (2018) |
[31] | P.R. Raghuvanshi, S. Mondal, A. Bhattacharya, J. Mater. Chem. A 8, 25187 (2020) |
[32] | V.V. Romaka, G. Rogl, A. Grytsiv, P. Rogl, Comput. Mater. Sci. 172, 109307 (2020) |
[33] | X. Yang, Z. Jiang, J. Li, H. Kang, D. Liu, F. Yang, Z. Chen, E. Guo, X. Jiang, T. Wang, Nano Energy 78, 105372 (2020) |
[34] | P. Larson, S.D. Mahanti, Phys. Rev. B 62, 12754 (2000) |
[35] | K. Miyamoto, A. Kimura, K. Sakamoto, M. Ye, Y. Cui, K. Shimada, H. Namatame, M. Taniguchi, S. Fujimori, Y. Saitoh, E. Ikenaga, K. Kobayashi, J. Tadano, T. Kanometa, Appl. Phys. Express 1, 081901 (2008) |
[36] | N.S. Chauhan, S. Bathula, B. Gahtori, S.D. Mahanti, A. Bhattacharya, A. Vishwakarma, R. Bhardwaj, V.N. Singh, A. Dhar, ACS Appl. Mater. Interfaces 11, 47830 (2019) |
[37] | S.A. Barczak, J.E. Halpin, J. Buckman, R. Decourt, M. Pollet, R.I. Smith, D.A. MacLaren, J.G. Bos, ACS Appl. Mater. Interfaces 10, 4786 (2018) |
[38] | R. Yan, C. Shen, M. Widenmeyer, T. Luo, R. Winkler, E. Adabifiroozjaei, R. Xie, S. Yoon, E. Suard, L. Molina-Luna, H. Zhang, W. Xie, A. Weidenkaff, Mater. Today Phys. 33, 101049 (2023) |
[39] | S. Jain, A.K. Verma, K.K. Johari, C. Candolfi, B. Lenoir, B. Gahtori, J. Mater. Res. 39, 3249 (2024) |
[40] | B. Ge, M. Yang, Q. Zu, J. Guo, Y. Tian, Q. Peng, Acta Mater. 201, 477 (2020) |
[41] | R.B. Villoro, M. Wood, T. Luo, H. Bishara, L. Abdellaoui, D. Zavanelli, B. Gault, G.J. Snyder, C. Scheu, S. Zhang, Acta Mater. 249, 118816 (2023) |
[42] | X. Chen, H. Wu, J. Cui, Y. Xiao, Y. Zhang, J. He, Y. Chen, J. Cao, W. Cai, S.J. Pennycook, Z. Liu, L. Zhao, J. Sui, Nano Energy 52, 246 (2018) |
[43] | N. Qu, Y. Zhu, J. Zhu, K. Yu, F. Guo, Z. Liu, Q. Zhang, W. Cai, J. Sui, J. Magnes. Alloy. 12, 4538 (2024) |
[44] | S.V. Faleev, F. Léonard, Phys. Rev. B 77, 214304 (2008) |
[45] |
J.P.A. Makongo, D.K. Misra, X. Zhou, A. Pant, M.R. Shabetai, X. Su, C. Uher, K.L. Stokes, P.F.P. Poudeu, J. Am. Chem. Soc. 133, 18843 (2011)
DOI PMID |
[46] | W.J. Xie, J. He, S. Zhu, X.L. Su, S.Y. Wang, T. Holgate, J.W. Graff, V. Ponnambalam, S.J. Poon, X.F. Tang, Q.J. Zhang, T.M. Tritt, Acta Mater. 58, 4705 (2010) |
[47] | N.S. Chauhan, A. Bhardwaj, T.D. Senguttuvan, R.P. Pant, R.C. Mallik, D.K. Misra, J. Mater. Chem. C 4, 5766 (2016) |
[48] | K.K. Johari, R. Bhardwaj, N.S. Chauhan, B. Gahtori, S. Bathula, S. Auluck, S.R. Dhakate, ACS Appl. Energy Mater. 3, 1349 (2019) |
[49] | N.S. Chauhan, S. Bathula, A. Vishwakarma, R. Bhardwaj, B. Gahtori, A. Kumar, A. Dhar, ACS Appl. Energy Mater. 1, 757 (2018) |
[50] |
L. Zhao, S. Lo, J. He, H. Li, K. Biswas, J. Androulakis, C. Wu, T.P. Hogan, D. Chung, V.P. Dravid, M.G. Kanatzidis, J. Am. Chem. Soc. 133, 20476 (2011)
DOI PMID |
[51] | X. Guan, Z. Liu, N. Ma, Z. Li, J. Liu, H. Zhang, H. Li, Q. Ba, J. Ma, C. Jin, A. Xia, Acta Metall. Sin.-Engl. Lett. (2024). https://doi.org/10.1007/s40195-024-01794-x |
[52] | R. Min, Y. Wang, X. Jiang, R. Chen, H. Kang, E. Guo, Z. Chen, X. Yang, T. Wang, Chem. Eng. J. 449, 137898 (2022) |
[53] | J. Shen, C. Fu, Y. Liu, X. Zhao, T. Zhu, Energy Storage Mater. 10, 69 (2018) |
[54] | H. Kim, Z.M. Gibbs, Y. Tang, H. Wang, G.J. Snyder, APL Mater. 3, 041506 (2015) |
[55] | J.P.A. Makongo, D.K. Misra, J.R. Salvador, N.J. Takas, G. Wang, M.R. Shabetai, A. Pant, P. Paudel, C. Uher, K.L. Stokes, P.F.P. Poudeu, J. Solid State Chem. 184, 2948 (2011) |
[56] | C. Zhang, G. Yan, Y. Wang, L. Hu, F. Liu, W. Ao, O. Cojocaru-Mirédin, M. Wutting, G.J. Snyder, Y. Yu, Adv. Energy Mater. 13, 2203361 (2022) |
[57] | P.G. Klemens, Phys. Rev. 119, 507 (1960) |
[58] | X. Yang, Z. Jiang, H. Kang, Z. Chen, E. Guo, D. Liu, F. Yang, R. Li, X. Jiang, T. Wang, ACS Appl. Mater. Interfaces 12, 3773 (2019) |
[59] | T. Dahal, S. Gahlawat, Q. Jie, K. Dahal, Y. Lan, K. White, Z. Ren, J. Appl. Phys. 117, 055101 (2015) |
[60] | Z. Liu, W. Gao, X. Meng, X. Li, J. Mao, Y. Wang, J. Shuai, W. Cai, Z. Ren, J. Sui, Scr. Mater. 127, 72 (2017) |
[61] | G. Li, K.R. Gadelrab, T. Souier, P.L. Potapov, G. Chen, M. Chiesa, Nanotechnology 23, 065703 (2012) |
[62] | R.D. Schmidt, E.D. Case, L. Zhao, M.G. Kanatzidis, J. Mater. Sci. 50, 1770 (2014) |
[63] | R.D. Schmidt, E.D. Case, J.E. Ni, R.M. Trejo, E. Lara-Curzio, R.J. Korkosz, M.G. Kanatzidis, J. Mater. Sci. 48, 8244 (2013) |
[64] | B. Li, P. Xie, S. Zhang, D. Liu, J. Mater. Sci. 46, 4000 (2011) |
[1] | Xicheng Guan, Zhiyuan Liu, Ni Ma, Zhou Li, Juan Liu, Huiyan Zhang, Hailing Li, Qian Ba, Junjie Ma, Chuangui Jin, Ailin Xia. High-Performance p-Type Bi2Te3-Based Thermoelectric Materials with a Wide Temperature Range Obtained by Direct Sb Doping [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(5): 849-858. |
[2] | Hui Jiang, Li Li, Jianming Wang, Chengbin Wei, Qiang Zhang, Chunjian Su, Huaiming Sui. Wear Properties of Spark Plasma-Sintered AlCoCrFeNi2.1 Eutectic High Entropy Alloy with NbC Additions [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(6): 987-998. |
[3] | Xiaojuan Fan, Ruitao Qu, Zhefeng Zhang. Relation Between Strength and Hardness of High-Entropy Alloys [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(11): 1461-1482. |
[4] | M. Premović, D. Minić, D. Manasijević, Vladan Ćosović, D. Živković, I. Dervišević, N. Talijan. Mechanical and Electrical Properties of the Ternary Ag–Sb–Zn System [J]. Acta Metallurgica Sinica (English Letters), 2014, 27(1): 47-54. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||