Acta Metallurgica Sinica (English Letters) ›› 2025, Vol. 38 ›› Issue (5): 707-719.DOI: 10.1007/s40195-024-01798-7
Previous Articles Next Articles
Pengpeng Chen1, Hongyao Xie1(), Li-Dong Zhao1(
)
Received:
2024-09-28
Revised:
2024-10-09
Accepted:
2024-10-19
Online:
2025-05-10
Published:
2024-12-21
Contact:
Hongyao Xie,xiehongyao@buaa.edu.cn;Li-Dong Zhao,zhaolidong@buaa.edu.cn
Pengpeng Chen, Hongyao Xie, Li-Dong Zhao. Recent Progress on Diamondoid Cu2SnSe3 Thermoelectric Materials: A Review[J]. Acta Metallurgica Sinica (English Letters), 2025, 38(5): 707-719.
Add to citation manager EndNote|Ris|BibTeX
Fig. 1 Structure evolution and thermoelectric performance of Cu2SnSe3 compounds. A Lattice structures of Cu2SnSe3, Cu5Sn2Se7 and Cu2SnSe4. B The ZT value of different Cu2SnSe3 compounds varies as the function of reported years, showing the gradual development for Cu2SnSe3 thermoelectrics [82,86,88]
Properties | Results |
---|---|
Density (g cm−3) | 5.7 |
Melting point (K) | 960 |
Molecular mass (g mol−1) | 482.7 |
Crystal structure | Monoclinic or cubic |
Space group | Cc (No. 9) or |
Lattice parameters | Monoclinic: a = 6.97 Å, b = 12.05 Å, c = 6.95 Å, β = 109.2°, α = γ = 90° Cubic: a = b = c = 5.67 Å, α = β = γ = 90° |
Conduction type | p |
Effective carrier mass | 1.2m0 |
Carrier concentration (cm−3) | 1018-1019 |
Carrier mobility (cm2 V−1 s−1) | 4-870 |
Bandgap energy (eV) | 0.85 |
Thermal conductivity (W m−1 K−1) | 2.7 |
Debye temperature (K) | 190 |
Sound velocity (m s−1) | 1600 |
Table 1 Physical properties of Cu2SnSe3 semiconductor at 300 K
Properties | Results |
---|---|
Density (g cm−3) | 5.7 |
Melting point (K) | 960 |
Molecular mass (g mol−1) | 482.7 |
Crystal structure | Monoclinic or cubic |
Space group | Cc (No. 9) or |
Lattice parameters | Monoclinic: a = 6.97 Å, b = 12.05 Å, c = 6.95 Å, β = 109.2°, α = γ = 90° Cubic: a = b = c = 5.67 Å, α = β = γ = 90° |
Conduction type | p |
Effective carrier mass | 1.2m0 |
Carrier concentration (cm−3) | 1018-1019 |
Carrier mobility (cm2 V−1 s−1) | 4-870 |
Bandgap energy (eV) | 0.85 |
Thermal conductivity (W m−1 K−1) | 2.7 |
Debye temperature (K) | 190 |
Sound velocity (m s−1) | 1600 |
Fig. 2 Improvement of electrical properties due to acceptor doping in Cu2SnSe3. Temperature dependence of A electrical conductivity, B Seebeck coefficient for different doped materials. C The Pisarenko plot, the solid curve is the theoretical value calculated via SPB model with m* = 1.3m0. D The carrier concentration dependence of carrier mobility. Temperature dependence of E power factor and F ZT values for different Cu2SnSe3 compounds [28,33,37,51,52,53,54,55,56,57,58]
Fig. 3 Triply degenerate electronic bands due to pseudocubic supercell in the tetragonal chalcopyrite and the impact on the Cu2-xAgxSn1-yMgySe3 samples due to band degeneracy. Crystal and electronic band structure of A cubic sphalerite and B I-III-VI2 ternary chalcopyrite. Γ4v is a non-degenerate band and Γ5v is a doubly degenerate band. ∆CF is the energy split on the top of Γ4v and Γ5v bands. C The ZT value as a function of ∆CF at 700 K. D The band structure of monoclinic and cubic Cu2SnSe3, showing the band degeneracy at Γ points from monoclinic to cubic symmetry in Cu2SnSe3 [1]. E The Pisarenko plot of Cu2-xAgxSn1-yMgySe3(x = 0, 0.05, 0.15; y = 0, 0.04, 0.08) and temperature dependence of F Seebeck coefficient and G ZT values for Cu2-xAgxSn1-yMgySe3 [26]
Fig. 4 Gradually enhanced electrical performance and the band structure evolution of Cu2SnSe3 with S alloying and In doping [73]. Temperature dependence of A electrical conductivity and B Seebeck coefficient for Cu2Sn1-yInySe3-xSx. C Room temperature carrier concentration and carrier mobility as the function of In content in Cu2SnSe2.7S0.3. D Pisarenko plot of Cu2Sn1-yInySe3-xSx (x = 0, 0.03, 0.05; y = 0, 0.09, 0.18). E Temperature dependence of power factor for Cu2Sn1-yInySe3-xSx. The band structures of F Cu2SnSe3, G Cu2SnSe2.5S0.5, and H Cu2Sn1-yInySe2.6875S0.3125. The red dashed lines denote the Fermi levels with different doping (y = 0, 0.0625, 0.125, 0.1875). I Temperature dependence of ZT values for Cu2Sn1-yInySe3-xSx
Fig. 5 Lattice thermal conductivity reduction due to introduction of point defects, dislocations and nanostructures. A Temperature dependence of lattice thermal conductivity in Cu2SnSe3 with different acceptors. B Lattice thermal conductivity reduction in (Ag,Ga) and (Ag,Ga,Na) co-doped Cu2SnSe3 at 823 K. TEM images show that dislocation arrays and nanoprecipitates in the (Ag,Ga,Na) co-doped sample. C Temperature dependence of lattice thermal conductivity for Cu2SnSe3. The thermal conductivity reduces with increasing ball milling time, implying the effective of enhancing phonon scattering through grain refining. The experimental results are in good agreement with theoretical calculations. D SEM images show the variation of nanoparticle size as ball milling time [26,28,37,52,53,57,82,87]
Fig. 6 Lattice thermal conductivity reduction due to full-scale scattering mechanism in Cu2SnSe3 [88]. A The temperature-dependent thermal conductivity of Cu2Sn1-2xFexInxSe3-f wt%Ag2Se (x = 0, 0.02, 0.04, 0.06; f = 0–5). B The spectral lattice thermal conductivity calculated by Debye–Callaway model. Regions (I) to (V) represent the influence of different scattering mechanism. The purple dashed lines denote middle- and low-frequency phonons (MLFPs). C The spectral lattice thermal conductivity of Cu2Sn0.88Fe0.06In0.06Se3-5 wt%Ag2Se with different nanoinclusions. The ratio of volume to surface area of nanoinclusions is denoted as $\xi$. D and E TEM images show high-dense stacking faults and oriented nanoneedles with random distributions in Cu2Sn0.88Fe0.06In0.06Se3-5 wt%Ag2Se
Fig. 7 Thermoelectric performance of Cu2SnSe3 and other Cu-based diamond-like compounds. A Temperature dependence of ZT values for different optimized Cu2SnSe3. B A comparison of ZT values for different Cu-based diamond-like compounds [23,25,26,29,34,35,41,89,90]
[1] | H. Xie, L.D. Zhao, M.G. Kanatzidis, Interdiscip. Mater. 3, 5 (2024) |
[2] | B. Qin, D. Wang, X. Liu, Y. Qin, J. Dong, J. Luo, J. Lei, W. Liu, G. Tan, X. Tang, J. Li, J. He, L.D. Zhao, Science 373, 556 (2021) |
[3] |
Y. Xiao, L.D. Zhao, Science 367, 1196 (2020)
DOI PMID |
[4] | X. Shi, J. Zou, Z.G. Chen, Chem. Rev. 120, 7399 (2020) |
[5] | T. Wei, Y. Qin, T. Deng, Q. Song, B. Jiang, R. Liu, P. Qiu, X. Shi, L. Chen, Sci. China Mater. 62, 8 (2019) |
[6] | H. Xie, L.D. Zhao, Mater. Futures 3, 013501 (2024) |
[7] | Y. Liu, H. Xie, Z. Li, Y. Zhang, C. Malliakas, M.A. Malki, S. Ribet, S. Hao, T. Pham, Y. Wang, X. Hu, R. Reis, G.J. Snyder, C. Uher, C. Wolverton, M.G. Kanatzidis, V.P. Dravid, J. Am. Chem. Soc. 145, 8677 (2023) |
[8] | V. Pecunia, S.R.P. Silva, J. Phys. Mater. 6, 042501 (2023) |
[9] |
L. Wang, Y. Wen, S. Bai, C. Chang, Y. Li, S. Liu, D. Liu, S. Wang, Z. Zhao, S. Zhan, Q. Cao, X. Gao, H. Xie, L.D. Zhao, Nat. Commun. 15, 3782 (2024)
DOI PMID |
[10] | J. Cai, R. Wang, S. Zhuang, F. Gao, M. Zhang, Z. Zhang, X. Tan, G. Liu, J. Jiang, Adv. Funct. Mater. 34, 2311217 (2024) |
[11] | B. Jia, D. Wu, L. Xie, W. Wang, S.Y. Li, Y. Wang, Y.J. Xu, B.B. Jiang, Z.Q. Chen, Y.X. Weng, J.Q. He, Science 384, 81 (2024) |
[12] | Z. Liu, T. Hong, L. Xu, S. Wang, X. Gao, C. Chang, X. Ding, Y. Xiao, L.D. Zhao, Interdiscip. Mater. 2, 161 (2023) |
[13] | L. Su, D. Wang, S. Wang, B. Qin, Y. Wang, Y. Qin, Y. Jin, C. Chang, L.D. Zhao, Science 375, 1385 (2022) |
[14] | D. Liu, D. Wang, T. Hong, Z. Wang, Y. Wang, Y. Qin, L. Su, T. Yang, X. Gao, Z. Ge, B. Qin, L.D. Zhao, Science 380, 6647 (2023) |
[15] | S. Bai, X. Zhang, L.D. Zhao, Acc. Chem. Res. 56, 3065 (2023) |
[16] | W.D. Liu, L. Yang, Z.G. Chen, Nano Today 35, 100938 (2020) |
[17] | H. Wu, X. Shi, J. Duan, Q. Liu, Z.G. Chen, Energy Environ. Sci. 16, 1870 (2023) |
[18] | E.S. Toberer, A.F. May, G.J. Snyder, Chem. Mater. 22, 624 (2010) |
[19] | X. Shi, S. Song, G. Gao, Z. Ren, Science 384, 757 (2024) |
[20] | H. Luo, J.W. Krizan, L. Muechler, N. Haldolaarachchige, T. Klimczuk, W. Xie, M.K. Fuccillo, C. Felser, R.J. Cava, Nat. Commun. 6, 6489 (2015) |
[21] | H. Xie, S. Hao, S. Cai, T.P. Bailey, C. Uher, C. Wolverton, V.P. Dravid, M.G. Kanatzidis, Energy Environ. Sci. 13, 3693 (2020) |
[22] | X. Su, N. Zhao, S. Hao, C. Stoumpos, M. Liu, H. Chen, H. Xie, Q. Zhang, C. Wolverton, X. Tang, M.G. Kanatzidis, Adv. Funct. Mater. 29, 1806534 (2019) |
[23] | H. Xie, Z. Li, Y. Liu, Y. Zhang, C. Uher, V.P. Dravid, C. Wolverton, M.G. Kanatzidis, J. Am. Chem. Soc. 145, 3211 (2023) |
[24] | Y. Cao, X. Su, F. Meng, T.P. Bailey, J. Zhao, H. Xie, J. He, C. Uher, X. Tang, Adv. Funct. Mater. 30, 2005861 (2020) |
[25] | S. Wei, L. Yu, Z. Zhang, Z. Ji, S. Luo, J. Liang, W. Song, S. Zheng, Mater. Today Phys. 38, 101260 (2023) |
[26] | L. Hu, Y. Luo, Y. Fang, F. Qin, X. Cao, H. Xie, J. Liu, J. Dong, A. Sanson, M. Giarola, X. Tan, Y. Zheng, A. Suwardi, Y. Huang, K. Hippalgonkar, J. He, W. Zhang, J. Xu, Q. Yan, M.G. Kanatzidis, Adv. Energy Mater. 11, 2100661 (2021) |
[27] | X. Cheng, B. Zhu, D. Yang, X. Su, W. Liu, H. Xie, Y. Zheng, X. Tang, A.C.S. Appl. Mater. Interfaces 14, 5439 (2022) |
[28] | X. Cheng, Z. Li, Y. You, T. Zhu, Y. Yan, X. Su, X. Tang, Role Cation. ACS Appl. Mater. Interfaces 11, 24212 (2019) |
[29] | X.Y. Shi, F.Q. Huang, M.L. Liu, L.D. Chen, Appl. Phys. Lett. 94, 122103 (2009) |
[30] | H. Xie, X. Su, S. Hao, C. Wolverton, C. Uher, X. Tang, M.G. Kanatzidis, Phys. Rev. Mater. 4, 025405 (2020) |
[31] | H. Xie, X. Su, T.P. Bailey, C. Zhang, W. Liu, C. Uher, X. Tang, M.G. Kanatzidis, Chem. Mater. 32, 2639 (2020) |
[32] | H. Xie, X. Su, Y. Yan, W. Liu, L. Chen, J. Fu, J. Yang, C. Uher, X. Tang, NPG Asia Mater. 9, e390 (2017) |
[33] | C. Raju, M. Falmbigl, P. Rogl, P. Heinrich, E. Royanian, E. Bauer, R.C. Mallik, Mater. Chem. Phys. 147, 1022 (2014) |
[34] | C. Yang, L. Qu, Y. Luo, Y. Xia, C. Li, X. Li, J. Cui, A.C.S. Appl, Energy Mater. 6, 5388 (2023) |
[35] | W. Li, S. Lin, X. Zhang, Z. Chen, X. Xu, Y. Pei, Chem. Mater. 28, 6227 (2016) |
[36] | M.R. Pallavolu, A.N. Banerjee, V.R. Minnam Reddy, S.W. Joo, H.R. Barai, C. Park, Sol. Energy 208, 1001 (2020) |
[37] | Y. Fan, K. Peng, Y. Huang, H. Liao, Z. Huang, J. Li, Y. Yan, H. Gu, B. Zhang, Y. Hu, X. Lu, X. Zhou, Rare Met. 41, 3466 (2022) |
[38] | E.J. Skoug, J.D. Cain, D.T. Morelli, J. Alloys Compd. 506, 18 (2010) |
[39] | G. Marcano, L.M. De Chalbaud, C. Rincón, G. Sánchez Pérez, Mater. Lett. 53, 151 (2002) |
[40] | G. Marcano, C. Rincón, L.M. De Chalbaud, D.B. Bracho, G.S. Pérez, J. Appl. Phys. 90, 1847 (2001) |
[41] | H. Xie, Y. Liu, Y. Zhang, S. Hao, Z. Li, M. Cheng, S. Cai, G.J. Snyder, C. Wolverton, C. Uher, V.P. Dravid, M.G. Kanatzidis, J. Am. Chem. Soc. 144, 9113 (2022) |
[42] | H. Ming, C. Zhu, T. Chen, S. Yang, Y. Chen, H. Xin, J. Zhang, D. Li, X. Qin, Inorg. Chem. 62, 2607 (2023) |
[43] | X. Shi, L. Xi, J. Fan, W. Zhang, L. Chen, Chem. Mater. 22, 6029 (2010) |
[44] | D.H. Kuo, W. Wubet, J. Solid State Chem. 218, 44 (2014) |
[45] | Y. Li, S. Bai, Y. Wen, Z. Zhao, L. Wang, S. Liu, J. Zheng, S. Wang, S. Liu, D. Gao, D. Liu, Y. Zhu, Q. Cao, H. Xie, L.D. Zhao, Sci. Bull. 69, 1728 (2024) |
[46] | Y. Yu, A. Sheskin, Z. Wang, A. Uzhansky, Y. Natazon, M. Dawod, L. Abdellaoui, T. Schwarz, C. Scheu, M. Wuttig, O. Cojocaru-Miredin, Y. Amouyal, S. Zhang, Adv. Energy Mater. 14, 2304442 (2024) |
[47] | J. Qiu, Y. Yan, T. Luo, K. Tang, L. Yao, J. Zhang, M. Zhang, X. Su, G. Tan, H. Xie, M.G. Kanatzidis, C. Uher, X. Tang, Energy Environ. Sci. 12, 3106 (2019) |
[48] | G. Zheng, X. Su, H. Xie, Y. Shu, T. Liang, X. She, W. Liu, Y. Yan, Q. Zhang, C. Uher, M.G. Kanatzidis, X. Tang, Energy Environ. Sci. 10, 2638 (2017) |
[49] | X. Tang, Z. Li, W. Liu, Q. Zhang, C. Uher, Interdiscip. Mater. 1, 88 (2022) |
[50] | L. Xi, Y.B. Zhang, X.Y. Shi, J. Yang, X. Shi, L.D. Chen, W. Zhang, J. Yang, D.J. Singh, Phys. Rev. B 86, 155201 (2012) |
[51] | X. Lu, D.T. Morelli, J. Electron. 41, 1554 (2012) |
[52] | J. Fan, H. Liu, X. Shi, S. Bai, X. Shi, L. Chen, Acta Mater. 61, 4297 (2013) |
[53] | Y. Li, G. Liu, T. Cao, L. Liu, J. Li, K. Chen, L. Li, Y. Han, M. Zhou, Adv. Funct. Mater. 26, 6025 (2016) |
[54] | K. Shyam-Prasad, A. Rao, K. Tyagi, N. Singh-Chauhan, B. Gahtori, S. Bathula, A. Dhar, Phys. Rev. B Condens. Matter 512, 39 (2017) |
[55] | Y. Zhou, H. Wu, D. Wang, L. Fu, Y. Zhang, J. He, S.J. Pennycook, L.D. Zhao, Mater. Today Phys. 7, 77 (2018) |
[56] | S.K. Prasad, A.G. Rao, S. Bathula, A. Dhar, J.S. Du, Y.K. Kuo, Mater. Res. Bull. 83, 160 (2016) |
[57] | M. Ding, C. Bai, Y. Lang, Y. Wang, L. Pan, X. Hu, C. Chen, S. He, K. Ahmad, Z. Almutairi, J. Alloys Compd. 988, 174272 (2024) |
[58] | J. Zhang, L.L. Huang, X.G. Zhu, Z.M. Wang, C.J. Song, H.X. Xin, D. Li, X.Y. Qin, Scr. Mater. 159, 46 (2019) |
[59] | M.L. Liu, F.Q. Huang, L.D. Chen, I.W. Chen, Appl. Phys. Lett. 94, 202103 (2009) |
[60] | M. Liu, I. Chen, F. Huang, L. Chen, Adv. Mater. 21, 3808 (2009) |
[61] | Y. Jin, T. Hong, D. Wang, Y. Xiao, W. He, X. Gao, Y. Qiu, L.D. Zhao, Mater. Today Phys. 20, 100444 (2021) |
[62] | Y. Fan, C. Xie, J. Li, X. Meng, J. Sun, J. Wu, X. Tang, G. Tan, Energy Environ. Sci. 7, e12535 (2024) |
[63] | T. Hong, C. Guo, B. Qin, X. Zhang, X. Gao, L.D. Zhao, Acta Mater. 261, 119412 (2023) |
[64] | Z. Zheng, X. Su, R. Deng, C. Stoumpos, H. Xie, W. Liu, Y. Yang, S. Hao, C. Uher, C. Wolverton, M.G. Kanatzidis, X. Tang, J. Am. Chem. Soc. 140, 7 (2018) |
[65] | S. Wang, Y. Wen, S. Bai, Z. Zhao, Y. Li, X. Gao, Q. Cao, C. Chang, L.D. Zhao, Energy Environ. Sci. 17, 2588 (2024) |
[66] |
S. Roychowdhury, T. Ghosh, R. Arora, M. Samanta, L. Xie, N.K. Singh, A. Soni, J. He, U.V. Waghmare, K. Biswas, Science 371, 722 (2021)
DOI PMID |
[67] | R. Basu, A. Singh, Mater. Today Phys. 21, 100468 (2021) |
[68] | Y. Tang, Z.M. Gibbs, L.A. Agapito, G. Li, H.S. Kim, M.B. Nardelli, S. Curtarolo, G.J. Snyder, Nat. Mater. 14, 1223 (2015) |
[69] | W. Li, S. Ghosh, N. Liu, B. Poudel, Joule 8, 1274 (2024) |
[70] | L.D. Zhao, S.H. Lo, Y. Zhang, H. Sun, G. Tan, C. Uher, C. Wolverton, V.P. Dravid, M.G. Kanatzidis, Nature 508, 373 (2014) |
[71] | H. Xie, E.S. Bozin, Z. Li, M. Abeykoon, S. Banerjee, J.P. Male, G.J. Snyder, C. Wolverton, S.J.L. Billinge, M.G. Kanatzidis, Adv. Mater. 34, 2202255 (2022) |
[72] | J. Zhang, R. Liu, N. Cheng, Y. Zhang, J. Yang, C. Uher, X. Shi, L. Chen, W. Zhang, Adv. Mater. 26, 3848 (2014) |
[73] | H. Ming, G. Zhu, C. Zhu, X. Qin, T. Chen, J. Zhang, D. Li, H. Xin, B. Jabar, ACS Nano 15, 10532 (2021) |
[74] | H. Hu, Y. Ju, J. Yu, Z. Wang, J. Pei, H. Thong, J. Li, B. Cai, F. Liu, Z. Han, B. Su, H. Zhuang, Y. Jiang, H. Li, Q. Li, H. Zhao, B. Zhang, J. Zhu, J. Li, Nat. Mater. 23, 527 (2024) |
[75] | E.S. Bozin, H. Xie, A.M.M. Abeykoon, S.M. Everett, M.G. Tucker, M.G. Kanatzidis, S.J.L. Billinge, Phys. Rev. Lett. 131, 036101 (2023) |
[76] | W. He, D. Wang, H. Wu, Y. Xiao, J. He, J. Li, L.D. Zhao, Science 365, 1418 (2019) |
[77] | S. Bai, J. Zhang, M. Wu, D. Luo, D. Wan, X. Li, S. Tang, Small Methods 7, 2201368 (2023) |
[78] | H. Hu, H. Zhuang, Y. Jiang, J. Shi, J. Li, B. Cai, Z. Han, J. Pei, B. Su, Z. Ge, B. Zhang, J. Ling, Adv. Mater. 33, 2103633 (2021) |
[79] | H. Xie, X. Su, S. Hao, C. Zhang, Z. Zhang, W. Liu, Y. Yan, C. Wolverton, X. Tang, M.G. Kanatzidis, J. Am. Chem. Soc. 141, 18900 (2019) |
[80] | H. Xie, X. Su, X. Zhang, T.P. Bailey, C. Stoumpos, A.P. Douvalis, X. Hu, C. Wolverton, V.P. Dravid, C. Uher, X. Tang, M.G. Kanatzidis, J. Am. Chem. Soc. 141, 10905 (2019) |
[81] | H. Xie, S. Hao, J. Bao, T.J. Slade, G.J. Snyder, C. Wolverton, M.G. Kanatzidis, J. Am. Chem. Soc. 142, 9553 (2020) |
[82] | Y. Fan, G. Wang, B. Zhang, Z. Li, G.W. Wang, X. Zhang, Y. Huang, K. Chen, H. Gu, X. Lu, X. Zhou, J. Mater. Chem. A 8, 21181 (2020) |
[83] | R. Deng, X. Su, S. Hao, Z. Zheng, M. Zhang, H. Xie, W. Liu, Y. Yan, C. Wolverton, C. Uher, M.G. Kanatzidis, X. Tang, Energy Environ. Sci. 11, 1520 (2018) |
[84] | G. Zheng, X. Su, X. Li, T. Liang, H. Xie, X. She, Y. Yan, C. Uher, M.G. Kanatzidis, X. Tang, Adv. Energy Mater. 6, 1600595 (2016) |
[85] | Y. Zheng, Q. Zhang, X. Su, H. Xie, S. Shu, T. Chen, G. Tan, Y. Yan, X. Tang, C. Uher, S.G. Snyder, Adv. Energy Mater. 5, 1401391 (2015) |
[86] | W. Li, Y. Luo, Z. Ma, C. Li, Y. Wei, X. Li, Q. Jiang, X. Liu, J. Yang, Mater. Chara. 206, 113424 (2023) |
[87] | H. Ming, C. Zhu, X. Qin, B. Jabar, T. Chen, J. Zhang, H. Xin, D. Li, J. Zhang, Nanoscale 13, 4233 (2021) |
[88] | H. Ming, C. Zhu, T. Chen, S. Yang, Y. Chen, J. Zhang, D. Li, H. Xin, X. Qin, Nano Energy 100, 107510 (2022) |
[89] | J. Yang, B. Lu, R. Song, H. Hou, L. Zhao, X. Zhang, G. Liu, G. Qiao, J. Eur. Ceram. Soc. 42, 169 (2022) |
[90] | W. Li, Y. Luo, Z. Ma, C. Li, B. Yang, Y. Wei, X. Li, Q. Jiang, X. Liu, J. Yang, Acta Mater. 265, 119587 (2024) |
[1] | Haolin Ye, Chongjian Zhou. Low Thermal Conductivity Contributes to High Thermoelectric Performance: A Review [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(5): 720-732. |
[2] | Hong Zeng, Liqing Xu, Wei Liu, Xinxiu Cheng, Wenke He, Yu Xiao. Thermoelectric Performance of Layered PbBi4Te7 Compound [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(5): 772-780. |
[3] | Siqi Lin, Shiyun Wang, Yanjiao Li, Zhenyu Lai, Xiaotang Yang, Xinyu Lu, Min Jin. Efficient Reduction of Carrier Concentration in SnTe: The Case of Gd Doping [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(5): 859-868. |
[4] | Zhaoqun Chen, Yuxiang Lai, Linghong Liu, Ziran Liu, Jianghua Chen. Impacts of Microalloying Elements on the Hardening β"-Phase in Automotive AlMgSi Alloys [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(3): 495-506. |
[5] | Zhenqing Hu, Hailong Yu, Juan He, Yijun Ran, Hao Zeng, Yang Zhao, Zhi Yu, Kaiping Tai. High-Performance Sb-Doped GeTe Thermoelectric Thin Film and Device [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(10): 1699-1708. |
[6] | Chao Xiang, Zhi-Ming Zhang, Hua-Meng Fu, En-Hou Han, Jian-Qiu Wang, Hai-Feng Zhang, Guo-Dong Hu. Microstructure, Mechanical Properties, and Corrosion Behavior of MoNbFeCrV, MoNbFeCrTi, and MoNbFeVTi High-Entropy Alloys [J]. Acta Metallurgica Sinica (English Letters), 2019, 32(9): 1053-1064. |
[7] | Yu Zhang, Fan-Song Wei, Jia-Ning Xiao, Xin Cai. Phase Structure and Electrochemical Properties of Melt-Spun La4MgNi17.5Mn1.5 Hydrogen Storage Alloys [J]. Acta Metallurgica Sinica (English Letters), 2017, 30(11): 1033-1039. |
[8] | Min Liu,Hui-Qiang Liu,Sheng Chu,Ru-Fang Peng,Shi-Jin Chu. [0001]-Oriented InN Nanoleaves and Nanowires: Synthesis, Growth Mechanism and Optical Properties [J]. Acta Metallurgica Sinica (English Letters), 2016, 29(9): 820-826. |
[9] | Santhosh Manoharan, Rajeswarapalanichamy Ratnavelu, Sudhapriyanga Ganesapandian, Kanagaprabha Shanmugam, Iyakutti Kombiah. Investigation of Structural, Electronic and Mechanical Properties of Rubidium Metal Hydrides RbMH4 (M=B, Al, Ga) [J]. Acta Metallurgica Sinica (English Letters), 2015, 28(8): 975-983. |
[10] | Rangasami Chinnusamy. Non-equilibrium Phases Formed in Cu-In-Se-Te System Synthesized by Melt-Quench Method [J]. Acta Metallurgica Sinica (English Letters), 2015, 28(5): 567-578. |
[11] | Ratnavelu Rajeswarapalanichamy, Manoharan Santhosh, Ganesapandian Sudhapriyanga, Shanmugam Kanagaprabha, Kombaih Iyakutti. Structural Stability, Electronic Structure and Mechanical Properties of Li-N-H System [J]. Acta Metallurgica Sinica (English Letters), 2015, 28(5): 550-558. |
[12] | M. Jay Chithra, M. Sathya, K. Pushpanathan. Effect of pH on Crystal Size and Photoluminescence Property of ZnO Nanoparticles Prepared by Chemical Precipitation Method [J]. Acta Metallurgica Sinica (English Letters), 2015, 28(3): 394-404. |
[13] | K. Usharani, A. R. Balu. Structural, Optical, and Electrical Properties of Zn-Doped CdO Thin Films Fabricated by a Simplified Spray Pyrolysis Technique [J]. Acta Metallurgica Sinica (English Letters), 2015, 28(1): 64-71. |
[14] | Y. Zhang, D.J. Wen. Relationship Between Infrared Radiation and Crystal Structure in Fe-Mn-CO-Cu-O Spinels [J]. Acta Metallurgica Sinica (English Letters), 2008, 21(1): 15-20 . |
[15] | Z.J.Liu, B.Y.Huang, Z.Y.Li. PREPARATION AND XRD STUDY OF LITHIUM DEFICIENT LiB COMPOUND [J]. Acta Metallurgica Sinica (English Letters), 2004, 17(5): 667-671 . |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||