Acta Metallurgica Sinica (English Letters) ›› 2025, Vol. 38 ›› Issue (5): 733-753.DOI: 10.1007/s40195-025-01860-y
Previous Articles Next Articles
Yaru Gong1, Wei Dou1, Yanan Li1, Pan Ying1, Guodong Tang1()
Received:
2024-10-16
Revised:
2025-02-11
Accepted:
2025-02-24
Online:
2025-05-10
Published:
2025-04-14
Contact:
Guodong Tang,tangguodong@njust.edu.cn
Yaru Gong, Wei Dou, Yanan Li, Pan Ying, Guodong Tang. A Review of Polycrystalline SnSe Thermoelectric Materials: Progress and Prospects[J]. Acta Metallurgica Sinica (English Letters), 2025, 38(5): 733-753.
Add to citation manager EndNote|Ris|BibTeX
Fig. 1 a SnSe crystal structure Pnma, b electronic band structures of low-temperature (Pnma), c electronic band structures of high-temperature (Cmcm) phases of SnSe. (Adapted with permission from Ref. [13], copyright Springer Nature 2014)
Product | Type | Methods | ZT | T (K) | σ (S cm−1) | S (μV K−1) | PF (μW cm−1 K−2) | κ (W m−1 K−1) | κL (W m−1 K−1) | Refs. |
---|---|---|---|---|---|---|---|---|---|---|
Na0.03Sn0.965Se | P | M + HR + SPS | 3.1 | 783 | ~ 110 | ~ 270 | 8.3 | 0.21 | 0.07 | [ |
Sn0.965Se | P | ST + SPS | 2.4 | 823 | 95.4 | ~ 300 | 8.35 | 0.28 | 0.2 | [ |
SnSe | P | MA + HP + alpha particle irradiation | 2.4 | 800 | ~ 55 | ~ 382 | 9 | 0.24 | 0.22 | [ |
Sn0.96Ge0.04Se0.96S0.04 | P | HT + SPS | 2.4 | 873 | 48.8 | ~ 340 | 5.84 | 0.21 | 0.15 | [ |
Na0.01(Sn0.95Pb0.05)0.99Se | P | MA + SPS | 2.3 | 773 | 93 | 271 | 6.85 | 0.2 | 0.11 | [ |
Cd0.0025(Sn0.76Pb0.24)0.9975Se0.98Cl0.02 | N | M + SPS | 2.23 | 873 | 75.37 | ~ 330 | ~ 8.7 | ~ 0.34 | 0.24 | [ |
SnSe0.92 + 0.03WCl6 | N | M + SPS | 2.2 | 773 | ~ 27 | ~ 500 | 7.95 | 0.27 | 0.24 | [ |
SnSe-3%CdSe | P | HT + SPS | 2.2 | 786 | ~ 6 | ~ 320 | ~ 6.1 | 0.2 | 0.14 | [ |
Sn0.96Ga0.04Se | P | HT + SPS | 2.2 | 873 | 61.47 | ~ 320 | 6.27 | 0.25 | 0.17 | [ |
Sn0.98Pb0.01Zn0.01Se | P | HT + SPS | 2.2 | 873 | 49.96 | ~ 320 | 5.43 | ~ 0.19 | 0.13 | [ |
SnSe | P | M + MA + HP | 2.1 | 873 | 77.9 | ~ 300 | 6.9 | 0.28 | 0.18 | [ |
Sn0.95Se | P | HT + SPS | 2.1 | 873 | 68 | 338 | 7.77 | 0.3 | 0.23 | [ |
Sn0.985Na0.01Er0.005Se | P | M + SPS | 2.1 | 873 | ~ 85 | ~ 275 | 6.6 | 0.275 | ~ 0.25 | [ |
Sn0.97Ge0.03Se | P | HT + SPS | 2.1 | 873 | 67.9 | ~ 276 | 5.1 | ~ 0.2 | 0.18 | [ |
Se quantum dot/Sn0.99Pb0.01Se | P | HT + SPS | 2 | 873 | ~ 30 | ~ 420 | 5.6 | 0.245 | ~ 0.2 | [ |
5 T-NP/QD Sn0.975Ga0.025Se | P | HT + SPS | 2.0 | 873 | ~ 55 | ~ 340 | 6.12 | 0.26 | 0.19 | [ |
SnSe0.92 + 1 mol% MoCl5 | P | M + SPS | 2.0 | 798 | ~ 42 | ~ 440 | ~ 9.0 | ~ 0.35 | ~ 0.3 | [ |
Sn0.96Ge0.02Cd0.02Se | P | HT + SPS | 2.0 | 873 | ~ 45 | ~ 325 | ~ 5 | 0.22 | 0.16 | [ |
PbSe QD/Sn0.965Cd0.025Pb0.01Se | P | HT + SPS | 1.9 | 873 | ~ 55 | 378.28 | 8.4 | 0.39 | 0.32 | [ |
Sn0.96Pb0.01Cd0.03Se | P | HT + SPS | 1.9 | 873 | 86.7 | ~ 280 | 7.5 | 0.34 | 0.23 | [ |
Sn0.97Zn0.01Ga0.02Se | P | HT + SPS | 1.86 | 873 | ~ 47 | ~ 315 | 4.72 | 0.221 | 0.157 | [ |
Pb0.01Sn0.99Se0.93S0.07 | P | HT + SPS | 1.85 | 873 | ~ 40 | ~ 330 | ~ 4 | 0.18 | 0.13 | [ |
Sn0.978Ag0.007S0.25Se0.75 | P | MA + SPS | 1.75 | 823 | ~ 52 | ~ 320 | 5.3 | 0.25 | 0.18 | [ |
SnSe-2. 5 mol% PbSe | P | HT + SPS | 1.75 | 788 | ~ 90 | ~ 280 | ~ 7.3 | ~ 0.33 | 0.18 | [ |
SnSe + 0.5 wt% Ag8GeSe6 | P | M + SPS | 1.7 | 823 | 65.1 | ~ 350 | 8.08 | ~ 0.4 | ~ 0.32 | [ |
4% nanopores SnSe | P | ST + SPS | 1.7 | 823 | 53.5 | 307.4 | 5.06 | 0.24 | ~ 0.2 | [ |
Sn0.948Cd0.023Se | P | ST + SPS | 1.7 | 823 | 78.8 | 295.1 | 6.9 | 0.33 | ~ 0.2 | [ |
SnSe | P | 3D printing | 1.7 | 758 | ~ 22.0 | ~ 340 | ~ 2.4 | ~ 0.14 | 0.15 | [ |
SnSe + 1% PbSe | P | HT + SPS | 1.7 | 873 | ~ 46 | ~ 320 | ~ 4.0 | ~ 0.21 | [ | |
Ag0.01Al0.01Sn0.98Se | P | M + MA + HR + SPS | 1.69 | 823 | ~ 110 | ~ 315 | 11.1 | ~ 0.54 | ~ 0.47 | [ |
Ag0.01Sn0.99Se0.85S0.15 | P | M + A + HP | 1.67 | 823 | ~ 25 | 296.4 | ~ 2.2 | 0.11 | [ | |
SnSe0.95 + 2.0% TaCl5 | N | M + SPS | 1.64 | 773 | ~ 37 | ~ 350 | ~ 5.5 | ~ 0.27 | 0.24 | [ |
(Sn0.9925Ge0.0075Se)0.985(AgInSe2)0.0015 | P | M + SPS | 1.6 | 773 | ~ 75 | ~ 340 | 9.3 | ~ 0.45 | ~ 0.36 | [ |
0.5 mol% SnTe/Ag0.005Sn0.995Se | P | M + SPS | 1.6 | 875 | ~ 112 | ~ 313 | ~ 11.0 | 0.50 | 0.38 | [ |
Sn0.98Ag0.01Ga0.01Se | P | M + SPS | 1.53 | 823 | ~ 53 | ~ 320 | 6.37 | ~ 0.35 | 0.27 | [ |
Sn1.005Se0.94Br0.06 | N | M + SPS | 1.5 | 783 | ~ 32 | ~ 460 | 6.813 | 0.36 | [ | |
Sn0.975Se | P | ST + SPS | 1.5 | 823 | ~ 75 | ~ 313 | ~ 7.4 | 0.41 | ~ 0.3 | [ |
Sn0.94Cd0.03In0.03Se | P | HT + SPS | 1.50 | 873 | ~ 32 | ~ 330 | ~ 3.5 | ~ 0.21 | 0.15 | [ |
Sn0.975Ag0.01Ge0.015Se | P | M + SPS | 1.5 | 793 | ~ 75 | ~ 360 | ~ 10.0 | ~ 0.5 | ~ 0.4 | [ |
Ag0.004Na0.016Sn0.98Se0.99Te0.01 | P | M + SPS | 1.47 | 790 | ~ 105 | ~ 300 | 8.9 | ~ 0.48 | 0.36 | [ |
Sn0.882Cu0.118Se | P | ST + SPS | 1.41 | 823 | ~ 56 | ~ 315 | ~ 5.7 | ~ 0.32 | ~ 0.25 | [ |
SnSe0.95 + 1.25 wt% SmCl3 + 0.125 wt% ErCl3 | P | SSR + SPS | 1.40 | 773 | ~ 30 | ~ 450 | ~ 5.5 | ~ 0.31 | 0.28 | [ |
Sn0.98Ag0.01Pb0.01Se | P | M + MA + HP | 1.4 | 873 | ~ 58 | ~ 280 | ~ 4.5 | 0.28 | ~ 0.23 | [ |
Sn0.93Pb0.02Se | P | HT + SPS | 1.4 | 773 | 41.8 | ~ 310 | 4.32 | 0.23 | ~ 0.18 | [ |
Sn0.97Se-0.5%AgCuTe | P | M + SPS | 1.4 | 798 | ~ 56 | ~ 330 | 6.2 | ~ 0.35 | ~ 0.27 | [ |
SnSe-Te | P | HT + HP | 1.4 | 790 | ~ 50 | ~ 310 | 4.2 | 0.23 | 0.2 | [ |
Sn0.98Se | P | ST + SPS | 1.36 | 823 | 72.4 | 309.9 | 6.9 | 0.42 | 0.33 | [ |
Sn0.97Pb0.03Se0.89I0.06-1.0%WSe | N | ST + SPS | 1.35 | 790 | 26.6 | 470.7 | 5.9 | 0.35 | ~ 0.31 | [ |
Na0.03Sn0.97Se0.7S0.3 | P | M + HP | 1.35 | 816 | ~ 56 | ~ 300 | ~ 5.1 | ~ 0.30 | ~ 0.23 | [ |
Sn0.99Ge0.01Se0.91Br0.04 | N | M + SPS | 1.34 | 773 | ~ 32 | ~ 465 | 6.62 | 0.38 | ~ 0.35 | [ |
Sn0.82Ag0.08Pb0.1Se | P | MA + SPS | 1.33 | 800 | ~ 58 | ~ 285 | 4.67 | 0.28 | 0.21 | [ |
Sn0.99Na0.01Se-Ag8SnSe6 | P | M + SPS | 1.33 | 773 | ~ 71 | ~ 317 | ~ 72 | ~ 0.42 | ~ 0.32 | [ |
SnSe0.95-1.5 mol% NdCl3 | N | M + SPS | 1.3 | 773 | ~ 25 | ~ 450 | ~ 5 | 0.3 | ~ 0.26 | [ |
SnSe0.9Br0.1 | N | M + HP | 1.3 | 773 | ~ 28 | ~ 400 | 4.5 | ~ 0.26 | [ | |
Sn0.99Ag0.02Se | P | M | 1.3 | 793 | ~ 50 | ~ 440 | ~ 10 | 0.5 | 0.44 | [ |
(SnSe)0.78(AgBiSe2)0.22 | P | M + BM + SPS | 1.3 | 823 | 685 | ~ 100 | 6.50 | ~ 0.4 | ~ 0.25 | [ |
Ag0.015Sn0.985Se | P | SSR | 1.3 | 773 | ~ 45 | ~ 344 | ~ 5.2 | ~ 0.30 | ~ 0.23 | [ |
SnSe | P | CSP + A | 1.3 | 890 | ~ 38 | ~ 325 | ~ 3.8 | ~ 0.3 | ~ 0.2 | [ |
Na0.03Sn0.97Se | P | M + HP | 1.3 | 793 | ~ 150 | ~ 250 | ~ 9.6 | ~ 0.61 | ~ 0.4 | [ |
SnSe | P | HT + SPS | 1.3 | 850 | 48.6 | ~ 300 | ~ 4 | 0.26 | ~ 0.2 | [ |
SnSe / 0.5% carbon fiber | P | M + SPS | 1.3 | 823 | ~ 49.5 | ~ 280 | 3.88 | ~ 0.24 | 0.19 | [ |
1.5 vol% PbTe/SnSe | P | M + HP | 1.26 | 880 | ~ 90 | ~ 310 | ~ 9 | ~ 0.62 | ~ 0.5 | [ |
SnSe0.95 + 0.5%NbCl5 | N | M + HP | 1.22 | 790 | ~ 34.23 | ~ 360 | ~ 5.4 | ~ 0.36 | ~ 0.32 | [ |
Sn0.90Pb0.15Se0.95Cl0.05 | N | MA + SPS | 1.2 | 823 | ~ 50 | ~ 360 | ~ 6.7 | ~ 0.46 | ~ 0.38 | [ |
Sn0.9Pb0.1Se0.97Br0.03 | N | M + SPS | 1.2 | 773 | ~ 35 | ~ 400 | ~ 5.6 | ~ 0.37 | ~ 0.26 | [ |
Cu0.01Sn0.99Se | P | HT + SPS | 1.2 | 873 | ~ 35 | ~ 310 | ~ 3.4 | ~ 0.25 | 0.2 | [ |
Sn0.98Cu0.01Ce0.01Se | P | ST + SPS | 1.2 | 786 | 18.61 | 426.4 | 3.38 | 0.275 | 0.25 | [ |
Na0.01(Sn0.95Pb0.05)0.99Se | P | M + SPS | 1.2 | 773 | ~ 90 | ~ 270 | ~ 6.7 | ~ 0.43 | ~ 0.3 | [ |
SnSe0.7S0.3 | P | HT + SPS | 1.2 | 773 | 34 | ~ 340 | 4.37 | ~ 0.3 | ~ 0.24 | [ |
Sn0.98Na0.02Se0.9S0.1 | P | M + SPS | 1.2 | 793 | ~ 71 | ~ 325 | 7.53 | ~ 0.5 | ~ 0.4 | [ |
Sn0.98Yb0.02Se | P | ST + SPS | 1.2 | 823 | 78.07 | ~ 316 | 7.8 | ~ 0.6 | ~ 0.5 | [ |
Sn0.98Na0.016Ag0.004Se | P | M + SPS | 1.2 | 785 | ~ 100 | ~ 270 | 7.3 | 0.44 | ~ 0.37 | [ |
(Sn0.97Na0.03Se)0.7(NaSbTe2)0.3 | P | M + SPS | 1.2 | 773 | ~ 325 | ~ 180 | 11 | ~ 0.8 | ~ 0.33 | [ |
(Sn0.9Pb0.1Se)0.6(AgSbTe2)0.4 | P | M + SPS | 1.20 | 773 | ~ 450 | ~ 175 | ~ 14 | ~ 0.9 | ~ 0.31 | [ |
Na0.01K0.01Sn0.98Se | P | MA + SPS | 1.2 | 773 | ~ 35 | ~ 375 | ~ 4.9 | 0.32 | 0.29 | [ |
SnSe0.95-0.5 mol% CeCl3 | N | M + SPS | 1.17 | 773 | 25.2 | ~ 475 | 5.63 | ~ 0.4 | ~ 0.37 | [ |
SnS0.1Se0.9 | P | AS + SPS | 1.16 | 923 | ~ 50 | ~ 335 | ~ 5.6 | ~ 0.45 | ~ 0.37 | [ |
Sn0.98Ag0.02Se | P | HT + SPS | 1.14 | 773 | ~ 40 | ~ 310 | ~ 4.0 | ~ 0.28 | ~ 0.15 | [ |
SnSe-0.20%KCu7S4 | P | ST + SPS | 1.13 | 823 | ~ 53 | ~ 345 | 6.3 | ~ 0.5 | ~ 0.4 | [ |
SnSe + 0.01Ag2S | P | MA + A + SPS | 1.13 | 773 | ~ 44 | ~ 315 | 4.38 | 0.3 | ~ 0.23 | [ |
Pb/SnSe | P | M + SPS + A | 1.12 | 773 | ~ 29.5 | ~ 460 | 6.23 | ~ 0.45 | ~ 0.4 | [ |
K0.001Sn0.999Se | P | M + HP | 1.11 | 823 | ~ 58 | ~ 280 | ~ 4.6 | 0.35 | 0.23 | [ |
SnSe0.95 + 3 wt% HfCl4 | N | M + SPS | 1.1 | 773 | ~ 31 | ~ 400 | 5.538 | ~ 0.42 | ~ 0.35 | [ |
SnSb0.02Se0.96 | N | ST + SPS | 1.1 | 773 | ~ 39 | 247 | 2.4 | 0.22 | 0.17 | [ |
SnSe0.95 + 1.0 wt% PbBr2 | N | MA + SPS | 1.1 | 773 | ~ 28 | ~ 425 | ~ 5.0 | 0.32 | ~ 0.3 | [ |
Sn0.995Ag0.005S0.2Se0.8 | P | MA + SPS | 1.1 | 823 | 55 | 310 | 5.3 | 0.4 | [ | |
SnSe | P | M + HP | 1.1 | 873 | ~ 62 | ~ 365 | ~ 8.3 | ~ 0.66 | [ | |
Sn0.975Na0.02In0.005Se | P | M + SPS | 1.1 | 773 | ~ 73 | 205 | 7.5 | 0.55 | ~ 0.45 | [ |
Sn0.985Gd0.015Se | P | HT + SPS | 1.1 | 873 | ~ 106 | ~ 287 | 8.6 | 0.7 | 0.56 | [ |
Na0.02Sn0.98Se | P | BM + SPS | 1.1 | 800 | ~ 70 | ~ 270 | ~ 5.5 | ~ 0.43 | [ | |
SnSe | P | HT + SPS | 1.08 | 773 | ~ 56.8 | ~ 302 | ~ 5.2 | ~ 0.35 | ~ 0.3 | [ |
Sn0.99Bi0.01Se0.95 + 0.5 wt% NdCl3 | N | M + SPS | 1.07 | 773 | ~ 30 | ~ 400 | ~ 5.5 | ~ 0.4 | 0.37 | [ |
0.5 wt% graphene-added SnSe | P | SPS | 1.06 | 823 | ~ 29.0 | ~ 282 | ~ 2.3 | ~ 0.18 | [ | |
K0.01Sn0.99Se | P | MA + HP | 1.06 | 798 | 46.95 | ~ 350 | ~ 5.5 | ~ 0.4 | ~ 0.35 | [ |
SnSe0.93I0.02 | N | MA + SPS | 1.02 | 723 | 25.9 | ~ 410 | ~ 4.3 | 0.30 | ~ 0.25 | [ |
SnSe | P | Zone-M + SPS | 1 | 873 | ~ 42 | ~ 470 | ~ 9.2 | ~ 0.9 | ~ 0.3 | [ |
Sn0.97Pb0.03Se0.89I0.06 + 1 wt% MWCNTS | N | M + SPS | 1.0 | 773 | 45.7 | ~ 325 | ~ 5.0 | ~ 0.39 | 0.34 | [ |
SnSe0.97Br0.03 | N | M + SPS | 1.0 | 773 | ~ 20.0 | ~ 500 | ~ 5 | ~ 0.36 | ~ 0.34 | [ |
Sn0.97Gd0.03Se nanoplates | P | HT + SPS | 1 | 868 | ~ 70 | ~ 310 | 6.7 | 0.41 | ~ 0.36 | [ |
Sn0.96Li0.04Se | P | HT | 1.0 | 773 | 61.66 | ~ 280 | 4.65 | 0.37 | 0.3 | [ |
Table 1 A summary of polycrystalline SnSe with ZT exceeds 1. For the synthesis method, melting, mechanical alloying, hydrothermal, solvothermal, annealing, aqueous solution, spark plasma sintering, hot pressing, hydrogen reduction, cold sintering mediated engineering are abbreviated as M, MA, HT, ST, A, SPS, AS, HP, HR, and CSM
Product | Type | Methods | ZT | T (K) | σ (S cm−1) | S (μV K−1) | PF (μW cm−1 K−2) | κ (W m−1 K−1) | κL (W m−1 K−1) | Refs. |
---|---|---|---|---|---|---|---|---|---|---|
Na0.03Sn0.965Se | P | M + HR + SPS | 3.1 | 783 | ~ 110 | ~ 270 | 8.3 | 0.21 | 0.07 | [ |
Sn0.965Se | P | ST + SPS | 2.4 | 823 | 95.4 | ~ 300 | 8.35 | 0.28 | 0.2 | [ |
SnSe | P | MA + HP + alpha particle irradiation | 2.4 | 800 | ~ 55 | ~ 382 | 9 | 0.24 | 0.22 | [ |
Sn0.96Ge0.04Se0.96S0.04 | P | HT + SPS | 2.4 | 873 | 48.8 | ~ 340 | 5.84 | 0.21 | 0.15 | [ |
Na0.01(Sn0.95Pb0.05)0.99Se | P | MA + SPS | 2.3 | 773 | 93 | 271 | 6.85 | 0.2 | 0.11 | [ |
Cd0.0025(Sn0.76Pb0.24)0.9975Se0.98Cl0.02 | N | M + SPS | 2.23 | 873 | 75.37 | ~ 330 | ~ 8.7 | ~ 0.34 | 0.24 | [ |
SnSe0.92 + 0.03WCl6 | N | M + SPS | 2.2 | 773 | ~ 27 | ~ 500 | 7.95 | 0.27 | 0.24 | [ |
SnSe-3%CdSe | P | HT + SPS | 2.2 | 786 | ~ 6 | ~ 320 | ~ 6.1 | 0.2 | 0.14 | [ |
Sn0.96Ga0.04Se | P | HT + SPS | 2.2 | 873 | 61.47 | ~ 320 | 6.27 | 0.25 | 0.17 | [ |
Sn0.98Pb0.01Zn0.01Se | P | HT + SPS | 2.2 | 873 | 49.96 | ~ 320 | 5.43 | ~ 0.19 | 0.13 | [ |
SnSe | P | M + MA + HP | 2.1 | 873 | 77.9 | ~ 300 | 6.9 | 0.28 | 0.18 | [ |
Sn0.95Se | P | HT + SPS | 2.1 | 873 | 68 | 338 | 7.77 | 0.3 | 0.23 | [ |
Sn0.985Na0.01Er0.005Se | P | M + SPS | 2.1 | 873 | ~ 85 | ~ 275 | 6.6 | 0.275 | ~ 0.25 | [ |
Sn0.97Ge0.03Se | P | HT + SPS | 2.1 | 873 | 67.9 | ~ 276 | 5.1 | ~ 0.2 | 0.18 | [ |
Se quantum dot/Sn0.99Pb0.01Se | P | HT + SPS | 2 | 873 | ~ 30 | ~ 420 | 5.6 | 0.245 | ~ 0.2 | [ |
5 T-NP/QD Sn0.975Ga0.025Se | P | HT + SPS | 2.0 | 873 | ~ 55 | ~ 340 | 6.12 | 0.26 | 0.19 | [ |
SnSe0.92 + 1 mol% MoCl5 | P | M + SPS | 2.0 | 798 | ~ 42 | ~ 440 | ~ 9.0 | ~ 0.35 | ~ 0.3 | [ |
Sn0.96Ge0.02Cd0.02Se | P | HT + SPS | 2.0 | 873 | ~ 45 | ~ 325 | ~ 5 | 0.22 | 0.16 | [ |
PbSe QD/Sn0.965Cd0.025Pb0.01Se | P | HT + SPS | 1.9 | 873 | ~ 55 | 378.28 | 8.4 | 0.39 | 0.32 | [ |
Sn0.96Pb0.01Cd0.03Se | P | HT + SPS | 1.9 | 873 | 86.7 | ~ 280 | 7.5 | 0.34 | 0.23 | [ |
Sn0.97Zn0.01Ga0.02Se | P | HT + SPS | 1.86 | 873 | ~ 47 | ~ 315 | 4.72 | 0.221 | 0.157 | [ |
Pb0.01Sn0.99Se0.93S0.07 | P | HT + SPS | 1.85 | 873 | ~ 40 | ~ 330 | ~ 4 | 0.18 | 0.13 | [ |
Sn0.978Ag0.007S0.25Se0.75 | P | MA + SPS | 1.75 | 823 | ~ 52 | ~ 320 | 5.3 | 0.25 | 0.18 | [ |
SnSe-2. 5 mol% PbSe | P | HT + SPS | 1.75 | 788 | ~ 90 | ~ 280 | ~ 7.3 | ~ 0.33 | 0.18 | [ |
SnSe + 0.5 wt% Ag8GeSe6 | P | M + SPS | 1.7 | 823 | 65.1 | ~ 350 | 8.08 | ~ 0.4 | ~ 0.32 | [ |
4% nanopores SnSe | P | ST + SPS | 1.7 | 823 | 53.5 | 307.4 | 5.06 | 0.24 | ~ 0.2 | [ |
Sn0.948Cd0.023Se | P | ST + SPS | 1.7 | 823 | 78.8 | 295.1 | 6.9 | 0.33 | ~ 0.2 | [ |
SnSe | P | 3D printing | 1.7 | 758 | ~ 22.0 | ~ 340 | ~ 2.4 | ~ 0.14 | 0.15 | [ |
SnSe + 1% PbSe | P | HT + SPS | 1.7 | 873 | ~ 46 | ~ 320 | ~ 4.0 | ~ 0.21 | [ | |
Ag0.01Al0.01Sn0.98Se | P | M + MA + HR + SPS | 1.69 | 823 | ~ 110 | ~ 315 | 11.1 | ~ 0.54 | ~ 0.47 | [ |
Ag0.01Sn0.99Se0.85S0.15 | P | M + A + HP | 1.67 | 823 | ~ 25 | 296.4 | ~ 2.2 | 0.11 | [ | |
SnSe0.95 + 2.0% TaCl5 | N | M + SPS | 1.64 | 773 | ~ 37 | ~ 350 | ~ 5.5 | ~ 0.27 | 0.24 | [ |
(Sn0.9925Ge0.0075Se)0.985(AgInSe2)0.0015 | P | M + SPS | 1.6 | 773 | ~ 75 | ~ 340 | 9.3 | ~ 0.45 | ~ 0.36 | [ |
0.5 mol% SnTe/Ag0.005Sn0.995Se | P | M + SPS | 1.6 | 875 | ~ 112 | ~ 313 | ~ 11.0 | 0.50 | 0.38 | [ |
Sn0.98Ag0.01Ga0.01Se | P | M + SPS | 1.53 | 823 | ~ 53 | ~ 320 | 6.37 | ~ 0.35 | 0.27 | [ |
Sn1.005Se0.94Br0.06 | N | M + SPS | 1.5 | 783 | ~ 32 | ~ 460 | 6.813 | 0.36 | [ | |
Sn0.975Se | P | ST + SPS | 1.5 | 823 | ~ 75 | ~ 313 | ~ 7.4 | 0.41 | ~ 0.3 | [ |
Sn0.94Cd0.03In0.03Se | P | HT + SPS | 1.50 | 873 | ~ 32 | ~ 330 | ~ 3.5 | ~ 0.21 | 0.15 | [ |
Sn0.975Ag0.01Ge0.015Se | P | M + SPS | 1.5 | 793 | ~ 75 | ~ 360 | ~ 10.0 | ~ 0.5 | ~ 0.4 | [ |
Ag0.004Na0.016Sn0.98Se0.99Te0.01 | P | M + SPS | 1.47 | 790 | ~ 105 | ~ 300 | 8.9 | ~ 0.48 | 0.36 | [ |
Sn0.882Cu0.118Se | P | ST + SPS | 1.41 | 823 | ~ 56 | ~ 315 | ~ 5.7 | ~ 0.32 | ~ 0.25 | [ |
SnSe0.95 + 1.25 wt% SmCl3 + 0.125 wt% ErCl3 | P | SSR + SPS | 1.40 | 773 | ~ 30 | ~ 450 | ~ 5.5 | ~ 0.31 | 0.28 | [ |
Sn0.98Ag0.01Pb0.01Se | P | M + MA + HP | 1.4 | 873 | ~ 58 | ~ 280 | ~ 4.5 | 0.28 | ~ 0.23 | [ |
Sn0.93Pb0.02Se | P | HT + SPS | 1.4 | 773 | 41.8 | ~ 310 | 4.32 | 0.23 | ~ 0.18 | [ |
Sn0.97Se-0.5%AgCuTe | P | M + SPS | 1.4 | 798 | ~ 56 | ~ 330 | 6.2 | ~ 0.35 | ~ 0.27 | [ |
SnSe-Te | P | HT + HP | 1.4 | 790 | ~ 50 | ~ 310 | 4.2 | 0.23 | 0.2 | [ |
Sn0.98Se | P | ST + SPS | 1.36 | 823 | 72.4 | 309.9 | 6.9 | 0.42 | 0.33 | [ |
Sn0.97Pb0.03Se0.89I0.06-1.0%WSe | N | ST + SPS | 1.35 | 790 | 26.6 | 470.7 | 5.9 | 0.35 | ~ 0.31 | [ |
Na0.03Sn0.97Se0.7S0.3 | P | M + HP | 1.35 | 816 | ~ 56 | ~ 300 | ~ 5.1 | ~ 0.30 | ~ 0.23 | [ |
Sn0.99Ge0.01Se0.91Br0.04 | N | M + SPS | 1.34 | 773 | ~ 32 | ~ 465 | 6.62 | 0.38 | ~ 0.35 | [ |
Sn0.82Ag0.08Pb0.1Se | P | MA + SPS | 1.33 | 800 | ~ 58 | ~ 285 | 4.67 | 0.28 | 0.21 | [ |
Sn0.99Na0.01Se-Ag8SnSe6 | P | M + SPS | 1.33 | 773 | ~ 71 | ~ 317 | ~ 72 | ~ 0.42 | ~ 0.32 | [ |
SnSe0.95-1.5 mol% NdCl3 | N | M + SPS | 1.3 | 773 | ~ 25 | ~ 450 | ~ 5 | 0.3 | ~ 0.26 | [ |
SnSe0.9Br0.1 | N | M + HP | 1.3 | 773 | ~ 28 | ~ 400 | 4.5 | ~ 0.26 | [ | |
Sn0.99Ag0.02Se | P | M | 1.3 | 793 | ~ 50 | ~ 440 | ~ 10 | 0.5 | 0.44 | [ |
(SnSe)0.78(AgBiSe2)0.22 | P | M + BM + SPS | 1.3 | 823 | 685 | ~ 100 | 6.50 | ~ 0.4 | ~ 0.25 | [ |
Ag0.015Sn0.985Se | P | SSR | 1.3 | 773 | ~ 45 | ~ 344 | ~ 5.2 | ~ 0.30 | ~ 0.23 | [ |
SnSe | P | CSP + A | 1.3 | 890 | ~ 38 | ~ 325 | ~ 3.8 | ~ 0.3 | ~ 0.2 | [ |
Na0.03Sn0.97Se | P | M + HP | 1.3 | 793 | ~ 150 | ~ 250 | ~ 9.6 | ~ 0.61 | ~ 0.4 | [ |
SnSe | P | HT + SPS | 1.3 | 850 | 48.6 | ~ 300 | ~ 4 | 0.26 | ~ 0.2 | [ |
SnSe / 0.5% carbon fiber | P | M + SPS | 1.3 | 823 | ~ 49.5 | ~ 280 | 3.88 | ~ 0.24 | 0.19 | [ |
1.5 vol% PbTe/SnSe | P | M + HP | 1.26 | 880 | ~ 90 | ~ 310 | ~ 9 | ~ 0.62 | ~ 0.5 | [ |
SnSe0.95 + 0.5%NbCl5 | N | M + HP | 1.22 | 790 | ~ 34.23 | ~ 360 | ~ 5.4 | ~ 0.36 | ~ 0.32 | [ |
Sn0.90Pb0.15Se0.95Cl0.05 | N | MA + SPS | 1.2 | 823 | ~ 50 | ~ 360 | ~ 6.7 | ~ 0.46 | ~ 0.38 | [ |
Sn0.9Pb0.1Se0.97Br0.03 | N | M + SPS | 1.2 | 773 | ~ 35 | ~ 400 | ~ 5.6 | ~ 0.37 | ~ 0.26 | [ |
Cu0.01Sn0.99Se | P | HT + SPS | 1.2 | 873 | ~ 35 | ~ 310 | ~ 3.4 | ~ 0.25 | 0.2 | [ |
Sn0.98Cu0.01Ce0.01Se | P | ST + SPS | 1.2 | 786 | 18.61 | 426.4 | 3.38 | 0.275 | 0.25 | [ |
Na0.01(Sn0.95Pb0.05)0.99Se | P | M + SPS | 1.2 | 773 | ~ 90 | ~ 270 | ~ 6.7 | ~ 0.43 | ~ 0.3 | [ |
SnSe0.7S0.3 | P | HT + SPS | 1.2 | 773 | 34 | ~ 340 | 4.37 | ~ 0.3 | ~ 0.24 | [ |
Sn0.98Na0.02Se0.9S0.1 | P | M + SPS | 1.2 | 793 | ~ 71 | ~ 325 | 7.53 | ~ 0.5 | ~ 0.4 | [ |
Sn0.98Yb0.02Se | P | ST + SPS | 1.2 | 823 | 78.07 | ~ 316 | 7.8 | ~ 0.6 | ~ 0.5 | [ |
Sn0.98Na0.016Ag0.004Se | P | M + SPS | 1.2 | 785 | ~ 100 | ~ 270 | 7.3 | 0.44 | ~ 0.37 | [ |
(Sn0.97Na0.03Se)0.7(NaSbTe2)0.3 | P | M + SPS | 1.2 | 773 | ~ 325 | ~ 180 | 11 | ~ 0.8 | ~ 0.33 | [ |
(Sn0.9Pb0.1Se)0.6(AgSbTe2)0.4 | P | M + SPS | 1.20 | 773 | ~ 450 | ~ 175 | ~ 14 | ~ 0.9 | ~ 0.31 | [ |
Na0.01K0.01Sn0.98Se | P | MA + SPS | 1.2 | 773 | ~ 35 | ~ 375 | ~ 4.9 | 0.32 | 0.29 | [ |
SnSe0.95-0.5 mol% CeCl3 | N | M + SPS | 1.17 | 773 | 25.2 | ~ 475 | 5.63 | ~ 0.4 | ~ 0.37 | [ |
SnS0.1Se0.9 | P | AS + SPS | 1.16 | 923 | ~ 50 | ~ 335 | ~ 5.6 | ~ 0.45 | ~ 0.37 | [ |
Sn0.98Ag0.02Se | P | HT + SPS | 1.14 | 773 | ~ 40 | ~ 310 | ~ 4.0 | ~ 0.28 | ~ 0.15 | [ |
SnSe-0.20%KCu7S4 | P | ST + SPS | 1.13 | 823 | ~ 53 | ~ 345 | 6.3 | ~ 0.5 | ~ 0.4 | [ |
SnSe + 0.01Ag2S | P | MA + A + SPS | 1.13 | 773 | ~ 44 | ~ 315 | 4.38 | 0.3 | ~ 0.23 | [ |
Pb/SnSe | P | M + SPS + A | 1.12 | 773 | ~ 29.5 | ~ 460 | 6.23 | ~ 0.45 | ~ 0.4 | [ |
K0.001Sn0.999Se | P | M + HP | 1.11 | 823 | ~ 58 | ~ 280 | ~ 4.6 | 0.35 | 0.23 | [ |
SnSe0.95 + 3 wt% HfCl4 | N | M + SPS | 1.1 | 773 | ~ 31 | ~ 400 | 5.538 | ~ 0.42 | ~ 0.35 | [ |
SnSb0.02Se0.96 | N | ST + SPS | 1.1 | 773 | ~ 39 | 247 | 2.4 | 0.22 | 0.17 | [ |
SnSe0.95 + 1.0 wt% PbBr2 | N | MA + SPS | 1.1 | 773 | ~ 28 | ~ 425 | ~ 5.0 | 0.32 | ~ 0.3 | [ |
Sn0.995Ag0.005S0.2Se0.8 | P | MA + SPS | 1.1 | 823 | 55 | 310 | 5.3 | 0.4 | [ | |
SnSe | P | M + HP | 1.1 | 873 | ~ 62 | ~ 365 | ~ 8.3 | ~ 0.66 | [ | |
Sn0.975Na0.02In0.005Se | P | M + SPS | 1.1 | 773 | ~ 73 | 205 | 7.5 | 0.55 | ~ 0.45 | [ |
Sn0.985Gd0.015Se | P | HT + SPS | 1.1 | 873 | ~ 106 | ~ 287 | 8.6 | 0.7 | 0.56 | [ |
Na0.02Sn0.98Se | P | BM + SPS | 1.1 | 800 | ~ 70 | ~ 270 | ~ 5.5 | ~ 0.43 | [ | |
SnSe | P | HT + SPS | 1.08 | 773 | ~ 56.8 | ~ 302 | ~ 5.2 | ~ 0.35 | ~ 0.3 | [ |
Sn0.99Bi0.01Se0.95 + 0.5 wt% NdCl3 | N | M + SPS | 1.07 | 773 | ~ 30 | ~ 400 | ~ 5.5 | ~ 0.4 | 0.37 | [ |
0.5 wt% graphene-added SnSe | P | SPS | 1.06 | 823 | ~ 29.0 | ~ 282 | ~ 2.3 | ~ 0.18 | [ | |
K0.01Sn0.99Se | P | MA + HP | 1.06 | 798 | 46.95 | ~ 350 | ~ 5.5 | ~ 0.4 | ~ 0.35 | [ |
SnSe0.93I0.02 | N | MA + SPS | 1.02 | 723 | 25.9 | ~ 410 | ~ 4.3 | 0.30 | ~ 0.25 | [ |
SnSe | P | Zone-M + SPS | 1 | 873 | ~ 42 | ~ 470 | ~ 9.2 | ~ 0.9 | ~ 0.3 | [ |
Sn0.97Pb0.03Se0.89I0.06 + 1 wt% MWCNTS | N | M + SPS | 1.0 | 773 | 45.7 | ~ 325 | ~ 5.0 | ~ 0.39 | 0.34 | [ |
SnSe0.97Br0.03 | N | M + SPS | 1.0 | 773 | ~ 20.0 | ~ 500 | ~ 5 | ~ 0.36 | ~ 0.34 | [ |
Sn0.97Gd0.03Se nanoplates | P | HT + SPS | 1 | 868 | ~ 70 | ~ 310 | 6.7 | 0.41 | ~ 0.36 | [ |
Sn0.96Li0.04Se | P | HT | 1.0 | 773 | 61.66 | ~ 280 | 4.65 | 0.37 | 0.3 | [ |
Fig. 2 Atomic-scale point defects (vacancies): a the atomically resolved STEM HAADF image of the matrix, the inset shows the atomic coordinates of a, in red and green are Sn and Se atoms, respectively, b, c the intensity mapping of Se atom and Sn atom columns overlaid on the STEM HAADF image, d, e the intensity mapping of Se and Sn, showing Se vacancies and Sn vacancies. f Total thermal conductivity (κT), g lattice thermal conductivity (κL), h comparison of κL, i calculated κL based on the Callaway’s model. (Adapted with permission from Ref. [80], copyright Creative Commons 2024)
Fig. 3 Microstructural characterizations of PbSe QD/Sn0.965Cd0.025Pb0.01Se: a low-magnification TEM image of high density of PbSe quantum dots, b atomic resolution HAADF-STEM image of PbSe quantum dots. c Schematic diagram of microstructure. d Schematic illustration of microstructural manipulation under high magnetic field. (Adapted with permission from Ref. [87], copyright Elsevier 2021)
Fig. 4 SEM images of a, b Sn0.96Ge0.04Se0.96S0.04 nanorods, c, dsingle nanorod and its elemental mapping. e, f STEM image showing nanorod-like grains. The temperature dependence of g lattice thermal conductivity (κL), h comparison of κL, i ZT, j ZTmax and ZTavg. Mechanical performance of SnSe and Sn0.96Ge0.04Se0.96S0.04 nanorods: k the Vickers microhardness and hardness (H), l compressive stress. (Reproduced from Ref [106]. with permission from the Royal Society of Chemistry.)
Fig. 5 a-h Micro-/nanostructural characterizations of polycrystalline Sn1-xSe. i Calculated spectral lattice thermal conductivity (κs) at 300 K using the Debye-Callaway model. Mechanical performance of polycrystalline Sn1-xSe. j Load-displacement curves. The inset SEM image shows typical nanoindentation. k Elastic modules Er. l Hardness H. m Compressive strength with reported value. The inset photograph shows typical specimens used for the compression tests. (Adapted with permission from Ref. [124], copyright John Wiley and Sons 2022)
Fig. 6 XRD patterns for the SnSe polycrystalline samples before and after texturing process along the directions that are perpendicular a and parallel b to the SPS pressure; the standard pattern of SnSe (PDF# 48-1224) is also plotted for comparison. c, d (111) and (400) pole figures of textured SnSe0.94Br0.06 along the direction that is perpendicular to the SPS pressure. e, f SEM images of the fractured surfaces for textured Sn1.005Se0.94Br0.06 along the two directions. g, h Typical samples for as-SPSed and SPS texturing 3 times, respectively. (Adapted with permission from Ref. [114], copyright Creative Commons 2019)
Fig. 7 Structural characterizations of Sn0.98Pb0.01Zn0.01Se: a HAADF-STEM image of layered grains; b, c HAADF-STEM images of nanoscale precipitates in the interior of grains viewed along [011] and [99] zone axes, respectively; e atomic resolution HAADF-STEM image of nanoscale precipitates in b; f atomic resolution HAADF-STEM image of nanoscale precipitates of yellow square area in c; d EDS maps of Pb with corresponding HAADF-STEM image c. g Phase map of Sn0.99−xPb0.01ZnxSe sample from T-EBSD measurements, which indicates that the SnSe Pnma phase (in blue) and PbSe cubic phase (in red). h Total thermal conductivity (κT), i lattice thermal conductivity (κL) and j ZT as a function of temperature. (Adapted with permission from Ref. [27], copyright Elsevier 2018)
Fig. 8 Nanocomposite construction of phonon scattering centers to enhance the thermoelectric and mechanical properties of SnSe. (Adapted with permission from Ref. [111], copyright American Chemical Society 2024)
Fig. 9 Electronic band structures of SnSe of a Sn0.984Ga0.016Se, Sn0.968Ga0.032Se, and Sn0.952Ga0.048Se. b Carrier concentration (p) and mobility (μ), c Seebeck coefficient (S), d PF and e ZT as a function of temperature. (Adapted with permission from Ref. [25], copyright American Chemical Society 2021)
[1] | G.J. Tan, L.D. Zhao, M.G. Kanatzidis, Chem. Rev. 116, 12123 (2016) |
[2] | W. He, G. Zhang, X.X. Zhang, J. Ji, G.Q. Li, X.D. Zhao, Appl. Energy 143, 1 (2015) |
[3] | S.M. Pourkiaei, M.H. Ahmadi, M. Sadeghzadeh, S. Moosavi, F. Pourfayaz, L.E. Chen, M.A.P. Yazdi, R. Kumar, Energy 186, 115849 (2019) |
[4] | D.L. Zhao, G. Tan, Appl. Therm. Eng. 66, 15 (2014) |
[5] |
L.D. Hicks, M.S. Dresselhaus, Phys. Rev. B 47, 16631 (1993)
PMID |
[6] | X. L. Shi, X. Y. Tao, Jin Zou, Z. G. Chen, Adv. Sci. 7, 1902923 (2020) |
[7] | X.L. Shi, J. Zou, Z.G. Chen, Chem. Rev. 120, 7399 (2020) |
[8] | Y. Wang, Y.G. Shi, D.Q. Mei, Z.C. Chen, Appl. Energy 215, 690 (2018) |
[9] | M.B. Naseem, J.H. Lee, S.I. In, Chem. Commun. 60, 14155 (2024) |
[10] | R. McMasters, L. Baarlaer, H. Wang, J. Thermophys. Heat Trans. 38, 604 (2024) |
[11] | G.J. Tan, M. Ohta, M.G. Kanatzidis, Philos. Trans. R. Soc. A 377, 180450 (2019) |
[12] | J. He, T.M. Tritt, Science 357, eaak9997 (2017) |
[13] | L.D. Zhao, S.H. Lo, Y.S. Zhang, H. Sun, G.J. Tan, C. Uher, C. Wolverton, V.P. Dravid, M.G. Kanatzidis, Nature 508, 373 (2014) |
[14] | L.D. Zhao, G.J. Tan, S.Q. Hao, J.Q. He, Y.L. Pei, H. Chi, H. Wang, S.K. Gong, H.B. Xu, V.P. Dravid, C. Uher, G.J. Snyder, C. Wolverton, M.G. Kanatzidis, Science 351, 141 (2016) |
[15] | C. Chang, M.H. Wu, D.S. He, Y.L. Pei, C.F. Wu, X.F. Wu, H.L. Yu, F.Y. Zhu, K.D. Wang, Y. Chen, L. Huang, J.F. Li, J.Q. He, L.D. Zhao, Science 360, 778 (2018) |
[16] | L.D. Zhao, C. Chang, G.J. Tan, M.G. Kanatzidis, Energy Environ. Sci. 9, 3044 (2016) |
[17] | S. Sassi, C. Candolfi, J.B. Vaney, V. Ohorodniichuk, P. Masschelein, A. Dauscher, B. Lenoir, Appl. Phys. Lett. 104, 212105 (2014) |
[18] | Y.L. Li, X. Shi, D.D. Ren, J.K. Chen, L.D. Chen, Energies 8, 6275 (2015) |
[19] | C.L. Chen, H. Wang, Y.Y. Chen, T. Day, G.J. Snyder, J. Mater. Chem. A 2, 11171 (2014) |
[20] | T.R. Wei, G.J. Tan, X.M. Zhang, C.F. Wu, J.F. Li, V.P. Dravid, G.J. Snyder, M.G. Kanatzidis, J. Am. Chem. Soc. 138, 8875 (2016) |
[21] | C. Chang, Q. Tan, Y.L. Pei, Y. Xiao, X. Zhang, Y.X. Chen, L. Zheng, S.K. Gong, J.F. Li, J.Q. He, L.D. Zhao, Rsc. Adv. 6, 98216 (2016) |
[22] | X. Wang, J.T. Xu, G.Q. Liu, X.J. Tan, D.B. Li, H.Z. Shao, T.Y. Tan, J. Jiang, Npg Asia Mater. 9, e426 (2017) |
[23] | X.L. Shi, A.Y. Wu, W.D. Liu, R. Moshwan, Y. Wang, Z.G. Chen, J. Zou, ACS Nano 12, 11417 (2018) |
[24] |
Z.H. Ge, D. Song, X. Chong, F. Zheng, L. Jin, X. Qian, L. Zheng, R.E. Dunin-Borkowski, P. Qin, J. Feng, L.D. Zhao, J. Am. Chem. Soc. 139, 9714 (2017)
DOI PMID |
[25] | X.N. Lou, S. Li, X. Chen, Q.T. Zhang, H.Q. Deng, J. Zhang, D. Li, X.M. Zhang, Y.S. Zhang, H.B. Zeng, G.D. Tang, ACS Nano 15, 8204 (2021) |
[26] | Y.X. Chen, Z.H. Ge, M.J. Yin, D. Feng, X.Q. Huang, W.Y. Zhao, J.Q. He, Adv. Funct. Mater. 26, 6836 (2016) |
[27] | J. Liu, P. Wang, M.Y. Wang, R. Xu, J. Zhang, J.Z. Liu, D. Li, N.N. Liang, Y.W. Du, G. Chen, G.D. Tang, Nano Energy 53, 683 (2018) |
[28] | R. Xu, L.L. Huang, J. Zhang, D. Li, J.Z. Liu, J. Liu, J. Fang, M.Y. Wang, G.D. Tang, J. Mater. Chem. A 7, 15757 (2019) |
[29] | C.J. Zhou, Y.K. Lee, Y. Yu, S. Byun, Z.Z. Luo, H. Lee, B.Z. Ge, Y.L. Lee, X.Q. Chen, J.Y. Lee, M.O. Cojocaru, H. Chang, J. Im, S.P. Cho, M. Wuttig, V.P. Dravid, M.G. Kanatzidis, I. Chung, Nat. Mater. 20, 1378 (2021) |
[30] | L.T. Yang, L.P. Ding, P. Shao, Y.H. Tiandong, Z.L. Zhao, F.H. Zhang, C. Lu, J. Alloy. Compd. 853, 157362 (2021) |
[31] | Y.P. Wang, B.C. Qin, T. Hong, L.Z. Su, X. Gao, D.Y. Wang, L.D. Zhao, Acta Mater. 227, 117681 (2022) |
[32] | I. Loa, R.J. Husband, R.A. Downie, S.R. Popuri, J.W.G. Bos, J. Phys.-Condens. Mat. 27, 072202 (2015) |
[33] | D. Li, J.C. Li, X.Y. Qin, J. Zhang, H.X. Xin, C.J. Song, L. Wang, Energy 116, 861 (2016) |
[34] | B. Cai, H.L. Zhuang, H. Tang, J.F. Li, Nano Energy 69, 104393 (2020) |
[35] | S. Zhang, C. Zhu, X. He, J. Wang, F. Luo, J.F. Wang, H.X. Liu, Z.G. Sun, J. Alloy. Compd. 910, 164900 (2022) |
[36] | X.L. Shi, W.D. Liu, A.Y. Wu, V.T. Nguyen, H. Gao, Q. Sun, R. Moshwan, J. Zou, Z.G. Chen, Infomat 2, 1201 (2020) |
[37] | X. Yang, W.H. Gu, W.J. Li, Y.X. Zhang, J. Feng, Z.H. Ge, J. Phys. Chem. Solids 172, 111077 (2023) |
[38] | X.L. Shi, Z.G. Chen, W.D. Liu, L. Yang, M. Hong, R. Moshwan, L.Q. Huang, J. Zou, Energy Storage Mater. 10, 130 (2018) |
[39] | G. Han, S.R. Popuri, H.F. Greer, R.Z. Zhang, L. Ferre-Llin, J.W.G. Bos, W.Z. Zhou, M.J. Reece, D.J. Paul, A.R. Knox, D.H. Gregory, Chem. Sci. 9, 3828 (2018) |
[40] | X. Yang, T.E. Shi, W.Q. Bao, Z.Y. Wang, J. Wang, P. Wu, Y.X. Zhang, J. Feng, Z.H. Ge, J. Materiomics 11, 100880 (2025) |
[41] | S. Li, Y.X. Hou, S.H. Zhang, Y.R. Gong, S. Siddique, D. Li, J. Fang, P.F. Nan, B.H. Ge, G.D. Tang, Chem. Eng. J. 451, 138637 (2023) |
[42] | X.L. Shi, K. Zheng, M. Hong, W.D. Liu, R. Moshwan, Y. Wang, X.L. Qu, Z.G. Chen, J. Zou, Chem. Sci. 9, 7376 (2018) |
[43] | J.F. Cai, Y. Zhang, Y.N. Yin, X.J. Tan, S.C. Duan, G.Q. Liu, H.Y. Hu, Y.K. Xiao, Z.H. Ge, J. Jiang, J. Mater. Chem. C 8, 13244 (2020) |
[44] | X.Y. Mao, X.L. Shi, L.C. Zhai, W.D. Liu, Y.X. Chen, H. Gao, M. Li, D.Z. Wang, H. Wu, Z.H. Zheng, Y.F. Wang, Q.F. Liu, Z.G. Chen, J. Mater. Sci. Technol. 114, 55 (2022) |
[45] | Y.R. Gong, C. Chang, W. Wei, J. Liu, W.J. Xiong, S. Chai, D. Li, J. Zhang, G.D. Tang, Scr. Mater. 147, 74 (2018) |
[46] | J.Q. Sheng, X.F. Liu, C.Z. Niu, Y.F. Sun, Y. Chen, H.Y. Wang, B. Zhang, G.Y. Wang, X.Y. Zhou, G. Han, J. Mater. Chem. C 8, 10333 (2020) |
[47] | Z.C. Wang, X.D. Jiang, Y.X. Duan, X. Wang, Z.H. Ge, J.M. Cai, X.M. Cai, H.L. Tan, J. Eur. Ceram. Soc. 44, 1636 (2024) |
[48] |
L. Chen, W.Y. Zhao, M. Li, G.S. Yang, S.M.K.N. Islam, D.R.G. Mitchell, Z.X. Cheng, X.L. Wang, Nanoscale 12, 12760 (2020)
DOI PMID |
[49] | Y.X. Chen, X.L. Shi, Z.H. Zheng, F. Li, W.D. Liu, W.Y. Chen, X.R. Li, G.X. Liang, J.T. Luo, P. Fan, Z.G. Chen, Mater. Today Phys. 16, 100306 (2021) |
[50] | S.L. Li, Z. Li, J. Duan, S.Y. Lou, S.M. Zhou, J. Phys. D Appl. Phys. 57, 225501 (2024) |
[51] | Y.P. Wang, S.L. Bai, H.A. Shi, Q. Cao, B.C. Qin, L.D. Zhao, J. Mater. Chem. A 12, 144 (2023) |
[52] | X. Yang, C.Y. Wang, W.Q. Bao, Z. Li, Z.Y. Wang, J. Feng, Z.H. Ge, J. Mater. Sci. Technol. 217, 18 (2025) |
[53] | M.M. Li, H.Z. Shao, J.T. Xu, Q.S. Wu, X.J. Tan, G.Q. Liu, M. Jin, H.Y. Hu, H.J. Huang, J.F. Zhang, J. Jiang, J. Materiomics 4, 321 (2018) |
[54] | X. Yang, T.E. Shi, X.Y. Ma, Z.Y. Wang, Y. Wang, J. Wang, J. Feng, Z.H. Ge, J. Mater. Res. Technol. 27, 7606 (2023) |
[55] | X. Yang, X.Y. Ma, T.E. Shi, W.Q. Bao, J. Wang, Z.Y. Wang, Y.X. Zhang, J. Feng, Z.H. Ge, Ceram. Int. 50, 20515 (2024) |
[56] | A. Abbas, Z.M. Xu, M. Nisar, D.L. Li, F. Li, Z.H. Zheng, G.X. Liang, P. Fan, Y.X. Chen, J. Eur. Ceram. Soc. 42, 7027 (2022) |
[57] | Y. Qin, T. Xiong, J.F. Zhu, Y.L. Yang, H.R. Ren, H.L. He, C.P. Niu, X.H. Li, M.Q. Xie, T. Zhao, J. Adv. Ceram. 11, 1671 (2022) |
[58] | S. Chandra, R. Arora, U.V. Waghmare, K. Biswas, Chem. Sci. 12, 13074 (2021) |
[59] | Y.K. Lee, K. Ahn, J. Cha, C. Zhou, H.S. Kim, G. Choi, S.I. Chae, J.H. Park, S.P. Cho, S.H. Park, Y.E. Sung, W.B. Lee, T. Hyeon, I. Chung, J. Am. Chem. Soc. 139, 10887 (2017) |
[60] | X. Yang, Z.Y. Wang, J. Wang, Y.X. Zhang, W.J. Li, J. Feng, Z.H. Ge, ACS Appl. Energy Mater. 5, 11662 (2022) |
[61] | Y. Liu, M. Calcabrini, Y. Yu, S. Lee, C. Chang, J. David, T. Ghosh, M.C. Spadaro, C.Y. Xie, O. Cojocaru-Miredin, J. Arbiol, M. Ibanez, ACS Nano 16, 78 (2022) |
[62] | Q. Zhao, D.Y. Wang, B.C. Qin, G.T. Wang, Y.T. Qiu, L.D. Zhao, J. Solid State Chem. 273, 85 (2019) |
[63] | Y. Liu, S. Lee, C. Fiedler, M.C. Spadaro, C. Chang, M.Q. Li, M. Hong, J. Arbiol, M. Ibáñez, Chem. Eng. J. 490, 151405 (2024) |
[64] | J.J. Yuan, K.P. Jin, Z. Shi, L.W. Fu, B.A. Xu, J. Alloy. Compd. 907, 164438 (2022) |
[65] | C.J. Li, H. Wu, B. Zhang, H.X. Zhu, Y.J. Fan, X. Lu, X.N. Sun, X. Zhang, G.Y. Wang, X.Y. Zhou, ACS Appl. Mater. Inter. 12, 8446 (2020) |
[66] | Y.P. Wang, B.C. Qin, H.A. Shi, L.Z. Su, D.Y. Wang, L.D. Zhao, Acta Mater. 247, 118754 (2023) |
[67] | S. Byun, B.Z. Ge, H. Song, S.P. Cho, M.S. Hong, J. Im, I. Chung, Joule 8, 1520 (2024) |
[68] | X.Q. Huang, Y.R. Gong, Y.Q. Liu, W. Dou, S. Li, Q.X. Xia, D.S. Xiang, D. Li, P. Ying, G.D. Tang, ACS Appl. Mater. Inter. 16, 20400 (2024) |
[69] | L.J. Zhang, J.L. Wang, Q. Sun, P. Qin, Z.X. Cheng, Z.H. Ge, Z. Li, S.X. Dou, Adv. Energy Mater. 7, 1700573 (2017) |
[70] | S. Li, Y.X. Hou, D. Li, B. Zou, Q.T. Zhang, Y. Cao, G.D. Tang, J. Mater. Chem. A 10, 12429 (2022) |
[71] | L.L. Su, X. Luo, B.W. Huang, B. Huang, J.H. Shen, Y.Q. Yang, J. Mater. Sci.-Mater. El. 34, 1334 (2023) |
[72] | N. Xin, Y.F. Li, G.H. Tang, L.Y. Shen, J. Alloy. Compd. 899, 163358 (2022) |
[73] | W.Q. Lu, S. Li, R. Xu, J. Zhang, D. Li, Z.Z. Feng, Y.S. Zhang, G.D. Tang, ACS Appl. Mater. Inter. 11, 45133 (2019) |
[74] | X.L. Shi, K. Zheng, W.D. Liu, Y. Wang, Y.Z. Yang, Z.G. Chen, J. Zou, Adv. Energy Mater. 8, 1800775 (2018) |
[75] | J. Cha, C. Zhou, Y.K. Lee, S.P. Cho, I. Chung, ACS Appl. Mater. Inter. 11, 21645 (2019) |
[76] | S.R. Popuri, M. Pollet, R. Decourt, F.D. Morrison, N.S. Bennett, J.W.G. Bos, J. Mater. Chem. C 4, 1685 (2016) |
[77] | S. Li, Y.M. Wang, C. Chen, X.F. Li, W.H. Xue, X.Y. Wang, Z.W. Zhang, F. Cao, J.H. Sui, X.J. Liu, Q. Zhang, Adv. Sci. 5, 1800598 (2018) |
[78] | S. Chandra, P. Dutta, K. Biswas, ACS Appl. Energy Mater. 3, 9051 (2020) |
[79] | C. Ma, X. Bai, Q. Ren, H.Q. Liu, Y.J. Gu, H.Z. Cui, J. Mater. Sci. Technol. 58, 10 (2020) |
[80] | Y.R. Gong, W. Dou, B.C. Lu, X.M. Zhang, H. Zhu, P. Ying, Q.T. Zhang, Y.Q. Liu, Y.A. Li, X.Q. Huang, M.F. Iqbal, S.H. Zhang, D. Li, Y.S. Zhang, H.J. Wu, G.D. Tang, Nat. Commun. 15, 4231 (2024) |
[81] |
Z.H. Ge, D.S. Song, X.Y. Chong, F.S. Zheng, L. Jin, X. Qian, L. Zheng, R.E. Dunin-Borkowski, P. Qin, J. Feng, L.D. Zhao, J. Am. Chem. Soc. 139, 9714 (2017)
DOI PMID |
[82] | X. Yang, T.E. Shi, W.J. Li, X.Y. Ma, J. Feng, Z.H. Ge, ACS Appl. Nano Mater. 6, 11754 (2023) |
[83] | H.F. Guo, H.X. Xin, X.Y. Qin, J. Zhang, D. Li, Y.Y. Li, C.J. Song, C. Li, J. Alloy. Compd. 689, 87 (2016) |
[84] | M. Nisar, A. Abbas, J.Z. Zhang, F. Li, Z.H. Zheng, G.X. Liang, P. Fan, Y.X. Chen, Small 20, 2312003 (2024) |
[85] | Y.P. Wang, B.C. Qin, D.Y. Wang, T. Hong, X. Gao, L.D. Zhao, Rare Met. 40, 2819 (2021) |
[86] | G.D. Tang, J. Liu, J. Zhang, D. Li, K.H. Rara, R. Xu, W.Q. Lu, J.Z. Liu, Y.S. Zhang, Z.Z. Peng, ACS Appl. Mater. Inter. 10, 30558 (2018) |
[87] | S. Li, X.N. Lou, B. Zou, Y.X. Hou, J. Zhang, D. Li, J. Fang, T. Feng, D.W. Zhang, Y.S. Liu, J.Z. Liu, G.D. Tang, Mater. Today Phys. 21, 100542 (2021) |
[88] | H.X. Liu, S. Zhang, Y. Zhang, S.T. Zong, W. Li, C. Zhu, F. Luo, J. Wang, Z.G. Sun, ACS Appl. Energy Mater. 5, 15093 (2022) |
[89] | P.F. Xu, Y.Z. Hua, K.P. Jin, B. Xu, Chem. Res. Chin. Univ. 39, 690 (2023) |
[90] | Y.J. Wang, C. Wang, X.X. Wang, S.Q. Cui, M. Hao, C.H. Wang, X.D. Huang, G. Yang, J. Phys. D Appl. Phys. 57, 495501 (2024) |
[91] | W.H. Gu, Y.X. Zhang, J. Guo, J.F. Cai, Y.K. Zhu, F.S. Zheng, L. Jin, J.T. Xu, J. Feng, Z.H. Ge, J. Alloy. Compd. 864, 158401 (2021) |
[92] | W.B. Lu, S.L. Wu, Q. Ding, M.M. Si, W. Luo, Y.C. Fan, W. Jiang, ACS Appl. Mater. Inter. 16, 4671 (2024) |
[93] | Q. Zhao, B.C. Qin, D.Y. Wang, Y.T. Qiu, L.D. Zhao, ACS Appl. Energy Mater. 3, 2049 (2020) |
[94] | S. Li, X.N. Lou, X.T. Li, J. Zhang, D. Li, H.Q. Deng, J.Z. Liu, G.D. Tang, Chem. Mater. 32, 9761 (2020) |
[95] | Z.L. Asfandiyar, F.H. Li, H.C. Sun, J.F. Tang, J.F. Dong, J. Li, J. Alloy. Compd. 745, 172 (2018) |
[96] |
W. Wei, C. Chang, T. Yang, J.Z. Liu, H.C. Tang, J. Zhang, Y.S. Li, F. Xu, Z.D. Zhang, J.F. Li, G.D. Tang, J. Am. Chem. Soc. 140, 499 (2018)
DOI PMID |
[97] | R.Z. Yang, Y.K. Li, W.P. Lin, J. Xu, L.G. Wang, J. Liu, Mod. Phys. Lett. B 38, 2450052 (2024) |
[98] | X.L. Shi, A. Wu, T.L. Feng, K. Zheng, W.D. Liu, Q. Sun, M. Hong, S.T. Pantelides, Z.G. Chen, J. Zou, Adv. Energy Mater. 9, 1803242 (2019) |
[99] | V. Karthikeyan, S.L. Oo, J.U. Surjadi, X.C. Li, V.C.S. Theja, V. Kannan, S.C. Lau, Y. Lu, K.H. Lam, V.A.L. Roy, ACS Appl. Mater. Inter. 13, 58701 (2021) |
[100] | C.C. Lin, R. Lydia, J.H. Yun, H.S. Lee, J.S. Rhyee, Chem. Mater. 29, 5344 (2017) |
[101] | S.J. Liang, J.T. Xu, J.G. Noudem, H.X. Wang, X.J. Tan, G.Q. Liu, H.Z. Shao, B. Yu, S. Yue, J. Jiang, J. Mater. Chem. A 6, 23730 (2018) |
[102] | C.J. Li, K.L. Peng, H. Wu, N.H. Li, B. Zhang, G.W. Wang, X.N. Gong, X. Lu, G.Y. Wang, X.Y. Zhou, J. Mater. Chem. A 9, 2991 (2021) |
[103] | N. Xin, G.H. Tang, Y.F. Li, H. Shen, Y.A. Nie, M. Zhang, X. Zhao, Adv. Electron. Mater. 8, 2200577 (2022) |
[104] | C. Chen, B.H. Wang, H.D. Zhao, B. Zhang, D. Wang, T. Shen, P.H. Li, S. Zhao, D.L. Yu, Y.J. Tian, B. Xu, J. Adv. Ceram. 12, 1081 (2023) |
[105] | S. Chandra, U. Bhat, P. Dutta, A. Bhardwaj, R. Datta, K. Biswas, Adv. Mater. 34, 2203725 (2022) |
[106] | Y.R. Gong, P. Ying, Q.T. Zhang, Y.Q. Liu, X.Q. Huang, W. Dou, Y.J. Zhang, D. Li, D.W. Zhang, T. Feng, M.Y. Wang, G. Chen, G.D. Tang, Energy Environ. Sci. 17, 1612 (2024) |
[107] | M.Y. Li, Y. Liu, Y. Zhang, Y. Zuo, J.S. Li, K.H. Lim, D. Cadavid, K.M. Ng, A. Cabot, Dalton T. 48, 3641 (2019) |
[108] | M.R. Burton, S. Mehraban, D. Beynon, J. McGettrick, T. Watson, N.P. Lavery, M.J. Carnie, Adv. Energy Mater. 9, 1900201 (2019) |
[109] | G.D. Tang, Q. Wen, T. Yang, Y. Cao, W. Wei, Z.H. Wang, Z.D. Zhang, Y.S. Li, Rsc. Adv. 7, 8258 (2017) |
[110] | M.M. Zhang, D.Y. Wang, C. Chang, T. Lin, K.D. Wang, L.D. Zhao, J. Mater. Chem. C 7, 10507 (2019) |
[111] | X.F. Liu, Y. Chen, H.Y. Wang, S.Y. Liu, B. Zhang, X. Lu, G.Y. Wang, G. Han, X.H. Chen, X.Y. Zhou, ACS Appl. Mater. Inter. 16, 2240 (2024) |
[112] | Y.B. Luo, S.T. Cai, X. Hua, H.J. Chen, Q.H. Liang, C.F. Du, Y. Zheng, J.H. Shen, J.W. Xu, C. Wolverton, V.P. Dravid, Q.Y. Yan, M.G. Kanatzidis, Adv. Energy Mater. 9, 1803072 (2019) |
[113] | Y.K. Lee, Z. Luo, S.P. Cho, M.G. Kanatzidis, I. Chung, Joule 3, 719 (2019) |
[114] | P.P. Shang, J.F. Dong, J. Pei, F.H. Sun, Y. Pan, H.C. Tang, B.P. Zhang, L.D. Zhao, J.F. Li, Research 2019, 9253132 (2019) |
[115] | B. Su, Z.R. Han, Y.L. Jiang, H.L. Zhuang, J.C. Yu, J. Pei, H.H. Hu, J.W. Li, Y.X. He, B.P. Zhang, J.F. Li, Adv. Funct. Mater. 230, 2023 (1971) |
[116] | G.S. Yang, L.N. Sang, M. Li, S.M.K.N. Islam, Z.J. Yue, L.Q. Liu, J.N. Li, D.R.G. Mitchell, N. Ye, X.L. Wang, ACS Appl. Mater. Inter. 12, 12910 (2020) |
[117] | S. Chandra, K. Biswas, J. Am. Chem. Soc. 141, 6141 (2019) |
[118] | G.D. Tang, W. Wei, J. Zhang, Y.S. Li, X. Wang, G.Z. Xu, C. Chang, Z.H. Wang, Y.W. Du, L.D. Zhao, J. Am. Chem. Soc. 138, 13647 (2016) |
[119] | X. Luo, B.W. Huang, X. Guo, W.J. Lu, G.Y. Zheng, B. Huang, J.K. Li, P.T. Li, Y.Q. Yang, ACS Appl. Mater. Inter. 13, 43011 (2021) |
[120] | Y.J. Fu, J.T. Xu, G.Q. Liu, J.K. Yang, X.J. Tan, Z. Liu, H.M. Qin, H.Z. Shao, H.C. Jiang, B. Liang, J. Jiang, J. Mater. Chem. C 4, 1201 (2016) |
[121] | Y.H. Zhu, J. Carrete, Q.L. Meng, Z.W. Huang, N. Mingo, P. Jiang, X.H. Bao, J. Mater. Chem. A 6, 7959 (2018) |
[122] | W. Dou, Y.R. Gong, X.Q. Huang, Y.N. Li, Q.T. Zhang, Y.Q. Liu, Q.X. Xia, Q.Y. Jian, D.S. Xiang, D. Li, D.W. Zhang, S.H. Zhang, P. Ying, G.D. Tang, Small 20, 2311153 (2024) |
[123] | C.C. Lin, D. Ginting, G. Kim, K. Ahn, J.S. Rhyee, Curr. Appl. Phys. 18, 1534 (2018) |
[124] | X.L. Shi, W.D. Liu, M. Li, Q. Sun, S.D. Xu, D. Du, J. Zou, Z.G. Chen, Adv. Energy Mater. 12, 2200670 (2022) |
[125] | X. Shi, L. Chen, C. Uher, Int. Mater. Rev. 61, 379 (2016) |
[126] | E.K. Chere, Q. Zhang, K. Dahal, F. Cao, J. Mao, Z.F. Ren, J. Mater. Chem. A 4, 1848 (2016) |
[127] | Y.M. Han, J. Zhao, M. Zhou, X.X. Jiang, H.Q. Leng, L.F. Li, J. Mater. Chem. A 3, 4555 (2015) |
[128] | Z.H. Ge, Y. Qiu, Y.X. Chen, X.Y. Chong, J. Feng, Z.K. Liu, J.Q. He, Adv. Funct. Mater. 29, 1902893 (2019) |
[129] | H.L. Liu, X. Zhang, S.H. Li, Z.Q. Zhou, Y.Q. Liu, J.X. Zhang, J. Electron. Mater. 46, 2629 (2017) |
[130] | Z.H. Ge, K.Y. Wei, H. Lewis, J. Martin, G.S. Nolas, J. Solid State Chem. 225, 354 (2015) |
[131] | Y.W. Li, F. Li, J.F. Dong, Z.H. Ge, F.Y. Kang, J.Q. He, H.D. Du, B. Li, J.F. Li, J. Mater. Chem. C 4, 2047 (2016) |
[132] | G. Han, S.R. Popuri, H.F. Greer, J.W.G. Bos, W.Z. Zhou, A.R. Knox, A. Montecucco, J. Siviter, E.A. Man, M. Macauley, D.J. Paul, W.G. Li, M.C. Paul, M. Gao, T. Sweet, R. Freer, F. Azough, H. Baig, N. Sellami, T.K. Mallick, D.H. Gregory, Angew. Chem. Int. Edit. 55, 6433 (2016) |
[133] | J.F. Fu, X. Su, H.Y. Xie, Y.G. Yan, W. Liu, Y.H. You, X. Cheng, C. Uher, X.F. Tang, Nano Energy 44, 53 (2018) |
[134] | Y.W. Zhang, X.P. Jia, H.R. Sun, B. Sun, B.W. Liu, H.Q. Liu, L.J. Kong, H.G. Ma, J. Alloy. Compd. 667, 123 (2016) |
[135] | C.L. Wu, X.L. Shi, M. Li, Z.H. Zheng, L.K. Zhu, K.K. Huang, W.D. Liu, P. Yuan, L.N. Cheng, Z.G. Chen, X.D. Yao, Adv. Funct. Mater. 34, 2402317 (2024) |
[136] | Y. Gong, P. Ying, Q. Zhang, Y. Liu, X. Huang, W. Dou, Y. Zhang, D. Li, D. Zhang, T. Feng, M. Wang, Energy Environ. Sci. 17, 1612 (2024) |
[137] | M. Liu, J.J. Zhang, K. Sun, Y. Yang, J. Xu, B.F. Hu, B.G. Liu, J. Wang, T.C. Su, B.L. Du, J. Solid State Chem. 293, 121760 (2021) |
[138] |
D. Feng, Z.H. Ge, D. Wu, Y.X. Chen, T.T. Wu, J. Li, J.Q. He, Phys. Chem. Chem. Phys. 18, 31821 (2016)
PMID |
[139] | N. Xin, Y.F. Li, H. Shen, L.Y. Shen, G.H. Tang, J. Materiomics 8, 475 (2022) |
[1] | Siqi Lin, Shiyun Wang, Yanjiao Li, Zhenyu Lai, Xiaotang Yang, Xinyu Lu, Min Jin. Efficient Reduction of Carrier Concentration in SnTe: The Case of Gd Doping [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(5): 859-868. |
[2] | Hong Zeng, Liqing Xu, Wei Liu, Xinxiu Cheng, Wenke He, Yu Xiao. Thermoelectric Performance of Layered PbBi4Te7 Compound [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(5): 772-780. |
[3] | Ze Li, Xing Yang, Tian-En Shi, Wang-Qi Bao, Jing Feng, Zhen-Hua Ge. One-Step Carrier Modulation and Nano-Composition Enhancing Thermoelectric and Mechanical Properties of p-Type SnSe Polycrystals by Introducing Ag9GaSe6 Compound [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(5): 781-792. |
[4] | Cuicui Shu, Pengcheng Zhai, Xiege Huang, Sergey I. Morozov, Guodong Li, Zhiyuan Pan. First Principles Study of CoSb3/Ni Interface Structure and Mechanical Properties [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(5): 793-802. |
[5] | Baocheng Yuan, Yi Wen, Lei Wang, Zhihao Li, Hong-Chao Wang, Cheng Chang, Li-Dong Zhao. Impact of CuFeS2 on the Thermoelectric Performance of SnTe [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(5): 803-810. |
[6] | Mi Qin, Bingqing Cao, Pan Zhang, Xuemei Zhang, Ziqi Han, Xiaohong Zheng, Xianlong Wang, Xin Chen, Yongsheng Zhang. Point Defects and Grain Boundaries Effects on Electrical Transports of PbTe Using the Non-equilibrium Green’s Function [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(5): 811-822. |
[7] | Chengwei Sun, Wang Li, Chengjun Li, Yingchao Wei, Wenyuan Ma, Xin Li, Qinghui Jiang, Yubo Luo, Junyou Yang. Thermoelectric Performance of CuInSe2-ZnSe Solid Solution [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(5): 823-830. |
[8] | Yuqing Sun, Fulong Liu, Zhihao Li, Panpan Peng, Yujie Zong, Peng Cao, Chunlei Wang, Hongchao Wang. Influence of Carbon Nanotubes on the Thermoelectric and Mechanical Properties of Cu2.1Mn0.9SnSe4 Alloy [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(5): 831-838. |
[9] | Longli Wang, Rongcheng Li, Peilin Miao, Jiushun Zhu, Gangjian Tan, Xinfeng Tang. Heterogeneous Interface Microstructure and Thermoelectromagnetic Conversion Performance of BiSbTe/MnCoGe Multifunctional Materials [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(5): 839-848. |
[10] | Xicheng Guan, Zhiyuan Liu, Ni Ma, Zhou Li, Juan Liu, Huiyan Zhang, Hailing Li, Qian Ba, Junjie Ma, Chuangui Jin, Ailin Xia. High-Performance p-Type Bi2Te3-Based Thermoelectric Materials with a Wide Temperature Range Obtained by Direct Sb Doping [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(5): 849-858. |
[11] | Pengpeng Chen, Hongyao Xie, Li-Dong Zhao. Recent Progress on Diamondoid Cu2SnSe3 Thermoelectric Materials: A Review [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(5): 707-719. |
[12] | Haolin Ye, Chongjian Zhou. Low Thermal Conductivity Contributes to High Thermoelectric Performance: A Review [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(5): 720-732. |
[13] | Yicheng Wang, Rongcheng Li, Bowen Jin, Chenghao Xie, Xinfeng Tang, Gangjian Tan. Revealing the True Thermoelectric Properties of SnTe through Removing SnO2 Contamination [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(5): 754-762. |
[14] | Xinghui Wang, Yu Yan, Wen Zhang, Huijun Kang, Enyu Guo, Zongning Chen, Rongchun Chen, Tongmin Wang. Enhanced Thermoelectric and Mechanical Properties of ZrNiSn Half-Heusler Compounds by Excess Ag Doping at Ni Sites [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(5): 763-771. |
[15] | Sai Chen, Shuangjie Chu, Bo Mao. Iron-Based Metal Matrix Composite: A Critical Review on the Microstructural Design, Fabrication Processes, and Mechanical Properties [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(1): 1-44. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||