Acta Metallurgica Sinica (English Letters) ›› 2025, Vol. 38 ›› Issue (4): 642-656.DOI: 10.1007/s40195-025-01821-5
Previous Articles Next Articles
Yang Feng1, Shuai Wang1, Yang Zhao2, Li-Qing Chen1()
Received:
2024-10-27
Revised:
2024-12-09
Accepted:
2024-12-21
Online:
2025-04-10
Published:
2025-02-25
Contact:
Li-Qing Chen, Yang Feng, Shuai Wang, Yang Zhao, Li-Qing Chen. Achieving High-Temperature Oxidation and Corrosion Resistance in Fe-Mn-Cr-Al-Cu-C TWIP Steel via Annealing Control[J]. Acta Metallurgica Sinica (English Letters), 2025, 38(4): 642-656.
Add to citation manager EndNote|Ris|BibTeX
C | Mn | Cr | Al | Cu | Fe |
---|---|---|---|---|---|
0.22 | 22.40 | 6.26 | 2.61 | 2.58 | Bal. |
Table 1 Specific composition of the newly designed experimental steel (wt%)
C | Mn | Cr | Al | Cu | Fe |
---|---|---|---|---|---|
0.22 | 22.40 | 6.26 | 2.61 | 2.58 | Bal. |
Steel code | Yield strength (MPa) | Ultimate tensile strength (MPa) | Total elongation (%) | Product of strength and elongation (GPa·%) |
---|---|---|---|---|
AT700 | 895 | 1020 | 18.4 | 18.8 |
AT800 | 430 | 730 | 47.2 | 34.5 |
AT1100 | 295 | 560 | 64.7 | 36.2 |
Table 2 Mechanical properties of the experimental steels
Steel code | Yield strength (MPa) | Ultimate tensile strength (MPa) | Total elongation (%) | Product of strength and elongation (GPa·%) |
---|---|---|---|---|
AT700 | 895 | 1020 | 18.4 | 18.8 |
AT800 | 430 | 730 | 47.2 | 34.5 |
AT1100 | 295 | 560 | 64.7 | 36.2 |
Fig. 2 Microstructural evolution of the experimental steels annealed at different temperatures: a-c orientation imaging maps; d-f grain orientation spread maps; g-i phase maps; j-l grain size distribution
Fig. 3 EBSD analysis of grain boundary characteristics of the experimental steels annealed at different temperatures: a-c grain boundary maps; d-f misorientation angle distribution. a, d AT700; b, e AT800; c, f AT1100 (The red, green and blue lines indicate the low-angle grain boundaries with an orientation difference of 2°-15°, the high-angle grain boundaries with an orientation difference of > 15°, and the Σ3 grain boundaries, respectively)
Fig. 5 Oxidation kinetics curve of the experimental steels at 800 °C in air for 8 h: a mass gain curves; b relationship between square of mass gain and exposure time
Steel code | Stage I | Stage II | Stage III |
---|---|---|---|
AT700 | 0.077 (t = 0-0.67 h) | 0.285 (t = 0.67-3 h) | 0.121 (t = 3-8 h) |
AT800 | 0.073 (t = 0-0.67 h) | 0.064 (t = 0.67-8 h) | − |
AT1100 | 0.068 (t = 0-0.67 h) | 0.011 (t = 0.67-8 h) | − |
Table 3 Oxidation rate of the experimental steels at different oxidation stages (mg2·cm−4·h−1)
Steel code | Stage I | Stage II | Stage III |
---|---|---|---|
AT700 | 0.077 (t = 0-0.67 h) | 0.285 (t = 0.67-3 h) | 0.121 (t = 3-8 h) |
AT800 | 0.073 (t = 0-0.67 h) | 0.064 (t = 0.67-8 h) | − |
AT1100 | 0.068 (t = 0-0.67 h) | 0.011 (t = 0.67-8 h) | − |
Steel code | Ecorr (V) | Icorr (A·cm−2) | Rs (Ω·cm−2) | CPE | n | Rp (Ω·cm−2) |
---|---|---|---|---|---|---|
AT700 | − 0.481 | 6.52 × 10−6 | 20.03 | 3.26 × 10−4 | 0.81 | 1461 |
AT800 | − 0.401 | 5.19 × 10−6 | 21.39 | 2.68 × 10−4 | 0.84 | 2274 |
AT1100 | − 0.366 | 1.32 × 10−6 | 20.78 | 1.18 × 10−4 | 0.85 | 3339 |
Table 4 Parameters of characteristic electrochemical based on EIS results of the experimental steels
Steel code | Ecorr (V) | Icorr (A·cm−2) | Rs (Ω·cm−2) | CPE | n | Rp (Ω·cm−2) |
---|---|---|---|---|---|---|
AT700 | − 0.481 | 6.52 × 10−6 | 20.03 | 3.26 × 10−4 | 0.81 | 1461 |
AT800 | − 0.401 | 5.19 × 10−6 | 21.39 | 2.68 × 10−4 | 0.84 | 2274 |
AT1100 | − 0.366 | 1.32 × 10−6 | 20.78 | 1.18 × 10−4 | 0.85 | 3339 |
Fig. 11 EIS of the experimental steels in 3.5 wt% NaCl solution under OCP condition: a Nyquist plot; b Bode plot. The inset in a is the equivalent electric circuit model used to fit the EIS data
[1] | B.C. De Cooman, Y. Estrin, S.K. Kim, Acta Mater. 142, 283 (2018) |
[2] | O. Bouaziz, S. Allain, C.P. Scott, P. Cugy, D. Barbier, Curr. Opin. Solid State Mater. Sci. 15, 141 (2011) |
[3] | L.Q. Chen, Y. Zhao, X.M. Qin, Acta Metall. Sin.-Engl. Lett. 26, 1 (2013) |
[4] |
S. Fajardo, I. Llorente, J.A. Jiménez, J.M. Bastidas, D.M. Bastidas, Corros. Sci. 154, 246 (2019)
DOI |
[5] | X.Y. Yuan, Y. Zhao, X. Li, L.Q. Chen, J. Mater. Sci. Technol. 33, 1555 (2017) |
[6] | S. Fajardo, I. Llorente, J.A. Jiménez, N. Calderón, D. Herrán-Medina, J.M. Bastidas, J. Ress, D.M. Bastidas, Appl. Surf. Sci. 513, 145852 (2020) |
[7] | H.X. Wan, Y. Cai, D.D. Song, C.F. Chen, Corros. Sci. 167, 108518 (2020) |
[8] | J.H. Yuan, M.H. Huang, Y.Z. Li, L.Y. Wang, H.B. Li, W. Xu, Mater. Sci. Eng. A 864, 144577 (2023) |
[9] | X.Y. Yuan, L.Q. Chen, Y. Zhao, H.S. Di, F.X. Zhu, J. Mater. Process. Technol. 217, 278 (2015) |
[10] | L.X. Tian, R.X. Zheng, C.Q. Yuan, G. Yang, C. Shi, B.Y. Zhang, Z. Zhang, Mater. Charact. 174, 110995 (2021) |
[11] | P.J. Wang, J.B. Zhao, L.W. Ma, X.Q. Cheng, X.G. Li, Mater. Charact. 179, 111385 (2021) |
[12] | Z.J. Jin, F.C. An, S.X. Li, Z.Y. Cui, W.J. Lu, S.Y. Lu, Corros. Sci. 228, 111813 (2024) |
[13] | S.Y. Quan, R.B. Song, S.R. Su, Y. Huang, C.H. Cai, Y.J. Wang, K.K. Wang, Mater. Charact. 196, 112601 (2023) |
[14] | T.L. Liu, Y.X. Cui, K.H. Zheng, F.X. Yin, Z.C. Luo, Corros. Sci. 215, 111054 (2023) |
[15] | X. Wang, J.A. Szpunar, J. Alloy. Compd. 752, 40 (2018) |
[16] | G.M. Yang, Y.F. Du, S.Y. Chen, Y.S. Ren, Mater. Today Commun. 34, 105407 (2023) |
[17] | M.M. Zhao, H.Y. Wu, J.N. Lu, G.S. Sun, L.X. Du, Mater. Charact. 194, 112360 (2022) |
[18] | A. Bahmani, S. Moradi, M. Lotfpour, H.T. Jeong, W.J. Kim, Corros. Sci. 230, 111892 (2024) |
[19] | S.K. Pradhan, P. Bhuyan, S. Mandal, Corros. Sci. 158, 108091 (2019) |
[20] | Z.H. Han, W.N. Ren, J. Yang, A.L. Tian, Y.Z. Du, G. Liu, R. Wei, G.J. Zhang, Y.Q. Chen, J. Alloy. Compd. 816, 152583 (2020) |
[21] | Y.Z. Tian, Y. Bai, L.J. Zhao, S. Gao, H.K. Yang, A. Shibata, Z.F. Zhang, N. Tsuji, Mater. Charact. 126, 74 (2017) |
[22] | N.K. Tewary, S.K. Ghosh, S. Chatterjee, A. Ghosh, Mater. Sci. Eng. A 733, 43 (2018) |
[23] | D.M. Bastidas, J. Ress, J. Bosch, U. Martin, Metals 11, 287 (2021) |
[24] | M. Yeganeh, M. Eskandari, S.R. Alavi-Zaree, J. Mater. Eng. Perform. 26, 2484 (2017) |
[25] | X.Y. Yuan, L.Q. Chen, Acta Metall. Sin. 52, 1345 (2016) |
[26] | X.Y. Yuan, Y.T. Yao, L.Q. Chen, Acta Metall. Sin.-Engl. Lett. 27, 401 (2014) |
[27] | D.B. Lee, I.R. Sohn, Steel Res. Int. 83, 398 (2012) |
[28] | J.X. Liu, L.L. Li, S.W. Yang, C. Ding, E.M. Wang, X.P. Yu, H.B. Wu, G. Niu, J. Mater. Res. Technol. 27, 2346 (2023) |
[29] | K.J. Lu, Z.R. Lei, S. Deng, J.H. Li, T.F. Feng, Z.Y. Luo, X.K. Ma, Corros. Sci. 225, 111588 (2023) |
[30] | L.L. Wei, J.H. Zheng, L.Q. Chen, R.D.K. Misra, Corros. Sci. 142, 79 (2018) |
[31] | M.H. Su, J.H. Zhao, C. Gu, Corros. Sci. 220, 111294 (2023) |
[32] | P. Varshney, R.S. Mishra, N. Kumar, J. Alloy. Compd. 904, 164100 (2022) |
[33] | H. Zhao, L.Q. Wang, Y.P. Ren, B. Yang, S. Li, G.W. Qin, Acta Metall. Sin.-Engl. Lett. 31, 575 (2018) |
[34] | P.K. Rai, S. Shekhar, K. Mondal, Corros. Sci. 138, 85 (2018) |
[35] | P.J. Wang, J.X. Cai, X.Q. Cheng, L.W. Ma, X.G. Li, Mater. Today Commun. 31, 103742 (2022) |
[36] | L. Xue, Y. Ding, K.G. Pradeep, R. Case, H. Castaneda, M. Paredes, Corros. Sci. 208, 110625 (2022) |
[37] | G.Q. Huang, T.H. Chou, S.F. Liu, J. Ju, J. Gan, T. Yang, X.M. Feng, Y.F. Shen, J.C. Gao, M.S. Li, F.Q. Meng, Appl. Surf. Sci. 652, 159285 (2024) |
[38] | X.W. Cheng, Z.Y. Jiang, B.J. Monaghan, D.B. Wei, R.J. Longbottom, J.W. Zhao, J.G. Peng, M. Luo, L. Ma, S.Z. Luo, L.Z. Jiang, Corros. Sci. 108, 11 (2016) |
[39] | T.L. Liu, K.H. Zheng, J. Wang, Y.F. Lin, Z.B. Zheng, J. Long, Corros. Sci. 166, 108423 (2020) |
[40] | H.G. Shi, J.X. Li, J.W. Mao, W.J. Lu, Corros. Sci. 163, 108255 (2020) |
[41] | X.L. Gao, Y. Han, G.Q. Fu, M.Y. Zhu, X.Z. Zhang, Acta Metall. Sin.-Engl. Lett. 29, 1025 (2016) |
[42] | H.Y. Li, C.F. Dong, K. Xiao, X.G. Li, P. Zhong, Acta Metall. Sin.-Engl. Lett. 29, 1064 (2016) |
[43] | A. Paul, T. Laurila, V. Vuorinen, S.V. Divinski, Thermodynamics, Diffusion and the Kirkendall Effect in Solids (Springer, Switzerland, 2014), pp.467-483 |
[44] | V. Bongiorno, P. Piccardo, S. Anelli, R. Spotorno, Acta Metall. Sin.-Engl. Lett. 30, 697 (2017) |
[45] | L. Liu, Y. Li, F.H. Wang, J. Mater. Sci. Technol. 26, 1 (2010) |
[46] | H.Y. Ha, M.H. Jang, T.H. Lee, Electrochim. Acta 191, 864 (2016) |
[47] | J.H. Jia, X.Q. Cheng, X.J. Yang, X.G. Li, W. Li, Constr. Build. Mater. 259, 119760 (2020) |
[48] | S.M. Abd El Haleem, S. Abd El Wanees, E.E. Abd El Aal, A. Diab, Corros. Sci. 52, 1675 (2010) |
[49] | Y.H. Tang, B. Li, H.Y. Shi, Y.X. Guo, J.S. Zhang, X.Y. Zhang, R.P. Liu, Electrochim. Acta 469, 143254 (2023) |
[50] | Y. Wang, J.S. Jin, M. Zhang, F.M. Liu, X.J. Wang, P. Gong, X.F. Tang, J. Alloy. Compd. 891, 161822 (2022) |
[51] | X.Q. Fu, Y.C. Ji, X.Q. Cheng, C.F. Dong, Y. Fan, X.G. Li, Mater. Today Commun. 25, 101429 (2020) |
[52] | H.B. Li, W.C. Jiao, H. Feng, Z.H. Jiang, C.D. Ren, Acta Metall. Sin.-Engl. Lett. 29, 1148 (2016) |
[53] | W. Xin, B. Song, Z. Yang, Y. Yang, L. Li, ISIJ Int. 56, 1232 (2016) |
[54] | R.Y. Chen, W.Y.D. Yuen, Oxid. Met. 63, 145 (2005) |
[55] | Y. Kondo, ISIJ Int. 44, 1576 (2004) |
[56] | S. Liu, H. Guo, J. Iron. Steel Res. Int. 31, 24 (2023) |
[1] | X. W. Shang, Z. G. Lu, R. P. Guo, L. Xu. Influence of Hot Isostatic Pressing Temperature on Microstructure and Mechanical Properties of Ti-6.5Al-3.5Mo-1.5Zr-0.3Si Alloy [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(4): 627-641. |
[2] | Chao Hai, Yuetong Zhu, Cuiwei Du, Xiaogang Li. Effect of Retained Austenite on the Corrosion Resistance of High-Strength Low-Carbon Steel in Artificial Seawater [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(4): 657-671. |
[3] | Yifei Gao, Peng Zhang, Pan Ren, Yingfei Yang, Guofeng Han, Wenbo Du, Wei Li, Qiwei Wang. Effect of CeO2 on the H2O/NaCl-Induced Corrosion Behavior of Ni-Co Coating at 650 °C [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(4): 672-690. |
[4] | Jing Wang, Xuejian Wang, Zongning Chen, Huijun Kang, Tongmin Wang, Enyu Guo. In Vitro Corrosion Behavior and Mechanical Property of Novel Mg-Sn-In-Ga Alloys for Orthopedic Applications [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(3): 353-366. |
[5] | Nafiseh Mollaei, Seyed Mahmood Fatemi, Mohammad Reza Aboutalebi, Seyed Hossein Razavi, Wiktor Bednarczyk. Microstructure, Texture, Mechanical Properties, and Corrosion Behavior of Biodegradable Zn-0.2Mg Alloy Processed by Multi-Directional Forging [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(3): 507-525. |
[6] | Yifan Li, Shengyao Ma, Xinrui Zhang, Tong Xi, Chunguang Yang, Hanyu Zhao, Ke Yang. Copper Precipitation Behavior and Mechanical Properties of Cu-Bearing Ferritic Stainless Steel with Different Cr Addition [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(3): 383-395. |
[7] | Hongbin Liu, Zhenqiang Xing, Yitong Yang, Jingyu Pang, Wen Li, Zhengwang Zhu, Long Zhang, Aimin Wang, Haifeng Zhang, Hongwei Zhang. A Novel BCC/B2 Structural Nb38Ti35Al15V6Cr4(TaHfMoW)2 Refractory High-Entropy Alloy with Excellent Specific Yield Strength-Plasticity Synergy [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(3): 396-406. |
[8] | Jingxiang Xu, Yuyan Yang, Ruiyang Huang, Xinwei Yuan, Huakang Bian, Zhenhua Chu, Yang Wang, Yanhua Lei. Enhancing the Corrosion Resistance of FeNiCoCrW0.2Al0.1 High-Entropy Alloy in 3.5 wt% NaCl Solution by Bilayer Passivation [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(3): 407-418. |
[9] | Jian Dong, Jufu Jiang, Ying Wang, Minjie Huang, Jingbo Cui, Tao Song. Effect of Solution and Aging Treatment on Microstructure and Mechanical Properties of Al-14Si-5Cu-1.1Mg-2.3Ni-0.3La Alloy [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(3): 449-464. |
[10] | Wei Qiu, Shuang-Long Li, Zhao-Yuan Lu, Sen-Mao Zhang, Jian Chen, Wei Chen, Lang Gan, Wei Li, Yan-Jie Ren, Jun Luo, Mao-Hai Yao, Wen Xie. Effects of CeO2 Content on the Microstructure and Mechanical Properties of ZK60 Mg Alloy [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(2): 287-298. |
[11] | Xiaoqing Liu, Xianke Zhang, Jinwei Gao, Xiurong Zhu, Lei Xiao, Zhengchi Yang, Lijun Tan, Chubin Yang, Biao Wu, Huixin Chen, Jiayu Huang. Achieving Ultrahigh Strength in Mg-1.2Y-1.2Ni (at.%) Alloy via Tailoring Extrusion Rate [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(2): 299-312. |
[12] | Dongfang Lou, Mingda Zhang, Yuping Ren, Hongxiao Li, Gaowu Qin. Fabrication of Zn-0.5Mn-0.05 Mg Micro-Tube with Suitable Strength and Ductility for Vascular Stent Application [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(2): 327-337. |
[13] | Xiaoming Liu, Fengyang Quan, Yuan Gao, Shaodong Zhang, Jianbin Wang, Zhijun Wang, Junjie Li, Feng He, Jincheng Wang. Comparison of Hot Corrosion Behavior of Ni36Fe34Al17Cr10Mo1Ti2 and Ni34Co25Fe12Al15Cr12W2 Alloys in NaCl-KCl-Na2SO4 Salt [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(2): 205-217. |
[14] | Lingxiao Du, Hang Ding, Yun Xie, Li Ji, Wanbin Chen, Yunze Xu. Effect of Laser Energy Density on Microstructures and Properties of Additively Manufactured AlCoCrFeNi2.1 Eutectic High-Entropy Alloy [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(2): 233-244. |
[15] | Sai Chen, Shuangjie Chu, Bo Mao. Iron-Based Metal Matrix Composite: A Critical Review on the Microstructural Design, Fabrication Processes, and Mechanical Properties [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(1): 1-44. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||