Acta Metallurgica Sinica (English Letters) ›› 2025, Vol. 38 ›› Issue (5): 831-838.DOI: 10.1007/s40195-025-01833-1
Previous Articles Next Articles
Yuqing Sun1, Fulong Liu1, Zhihao Li1, Panpan Peng1, Yujie Zong1, Peng Cao1, Chunlei Wang1, Hongchao Wang1()
Received:
2024-11-19
Revised:
2024-12-19
Accepted:
2024-12-27
Online:
2025-05-10
Published:
2025-03-01
Contact:
Hongchao Wang,wanghc@sdu.edu.cn
Yuqing Sun, Fulong Liu, Zhihao Li, Panpan Peng, Yujie Zong, Peng Cao, Chunlei Wang, Hongchao Wang. Influence of Carbon Nanotubes on the Thermoelectric and Mechanical Properties of Cu2.1Mn0.9SnSe4 Alloy[J]. Acta Metallurgica Sinica (English Letters), 2025, 38(5): 831-838.
Add to citation manager EndNote|Ris|BibTeX
Sample | a & b (Å) | c (Å) | Rp | Rwp | χ2 | ρe (g cm−3) | ρr (%) |
---|---|---|---|---|---|---|---|
x = 0 | 5.7603 | 11.3744 | 5.23 | 6.60 | 2.03 | 5.43 | 99.88 |
x = 0.125 | 5.7588 | 11.3797 | 6.79 | 8.63 | 3.33 | 5.33 | 98.04 |
x = 0.25 | 5.7599 | 11.3770 | 5.48 | 6.99 | 2.34 | 5.36 | 98.69 |
x = 0.5 | 5.7598 | 11.3756 | 6.04 | 7.61 | 2.62 | 5.30 | 97.44 |
x = 1 | 5.7599 | 11.3743 | 5.37 | 6.95 | 2.26 | 5.21 | 95.82 |
Table 1 Lattice parameters a & b and c, Rietveld parameters (Rp, Rwp and χ2), experimental densities (ρe) and relative densities (ρr) of CMTS + x wt% CNTs (x = 0, 0.125, 0.25, 0.5, 1) samples
Sample | a & b (Å) | c (Å) | Rp | Rwp | χ2 | ρe (g cm−3) | ρr (%) |
---|---|---|---|---|---|---|---|
x = 0 | 5.7603 | 11.3744 | 5.23 | 6.60 | 2.03 | 5.43 | 99.88 |
x = 0.125 | 5.7588 | 11.3797 | 6.79 | 8.63 | 3.33 | 5.33 | 98.04 |
x = 0.25 | 5.7599 | 11.3770 | 5.48 | 6.99 | 2.34 | 5.36 | 98.69 |
x = 0.5 | 5.7598 | 11.3756 | 6.04 | 7.61 | 2.62 | 5.30 | 97.44 |
x = 1 | 5.7599 | 11.3743 | 5.37 | 6.95 | 2.26 | 5.21 | 95.82 |
Fig. 2 Scanning electron microscopy (SEM) images of a x = 0 sample and b x = 0.25 sample with a magnification of 5000. SEM image of x = 0.25 sample with a magnification of c 50,000 and d 100,000. e, f EDS result of x = 0.25 sample
Fig. 3 Temperature dependence of a electrical conductivity (σ), b Seebeck coefficient (S), c weighted mobility (μw), d power factor (PF) for CMTS + x wt% CNTs (x = 0, 0.125, 0.25, 0.5, 1) samples
Sample | nH (1019 cm−3) | μH (cm2 V−1 s−1) | σ (S cm−1) |
---|---|---|---|
x = 0 | 2.0 | 41.5 | 134.2 |
x = 0.125 | 5.2 | 21.7 | 179.8 |
x = 0.25 | 5.4 | 21.7 | 187.6 |
x = 0.5 | 5.7 | 21.9 | 199.8 |
x = 1 | 6.1 | 17.1 | 167.2 |
Table 2 Carrier concentration (nH), carrier mobility (μH) and electrical conductivity (σ) of CMTS + x wt% CNTs (x = 0, 0.125, 0.25, 0.5, 1) samples near room temperature
Sample | nH (1019 cm−3) | μH (cm2 V−1 s−1) | σ (S cm−1) |
---|---|---|---|
x = 0 | 2.0 | 41.5 | 134.2 |
x = 0.125 | 5.2 | 21.7 | 179.8 |
x = 0.25 | 5.4 | 21.7 | 187.6 |
x = 0.5 | 5.7 | 21.9 | 199.8 |
x = 1 | 6.1 | 17.1 | 167.2 |
Fig. 4 Temperature dependence of a total thermal conductivity (κtot), b lattice thermal conductivity (κL) and d zT values. c Schematic diagram of phonon scattering mechanism
Fig. 5 Mechanical properties of CMTS + x wt% CNTs (x = 0, 0.125, 0.25, 0.5, 1) samples. a Compressive stress-strain curves. b Compression modulus (Es). c Compressive strength. e Vickers hardness. Comparisons of d compressive strength and f Vickers hardness of x = 0.125 sample with other common chalcogenides
[1] | W. Ding, X. Shen, M. Jin, Y. Hu, Z. Chen, E. Meng, J. Luo, W. Li, Y. Pei, Nat. Commun. 15, 9767 (2024) |
[2] | J. Zhu, R. Li, X. Tan, F. Feng, Q. Sun, P. Song, M. Hong, R. Ang, Adv. Funct. Mater. (2024). https://doi.org/10.1002/adfm.202417260 |
[3] | Y. Qin, B. Qin, T. Hong, X. Zhang, D. Wang, D. Liu, Z.Y. Wang, L. Su, S. Wang, X. Gao, Z.H. Ge, L.D. Zhao, Science 383, 1204 (2024) |
[4] | Q. Deng, F. Zhang, X. Yang, R. Li, C. Xia, P. Nan, Y. Chen, B. Ge, R. Ang, J. He, Energy Environ. Sci. 17, 9467 (2024) |
[5] | B. Jia, D. Wu, L. Xie, W. Wang, T. Yu, S. Li, Y. Wang, Y. Xu, B. Jiang, Z. Chen, Y. Weng, J. He, Science 384, 81 (2024) |
[6] | J. Liang, L. Yu, S. Luo, S. Wei, Z. Wei, T. Wang, Y. Jiang, W. Song, S. Zheng, ACS Appl. Mater. Interfaces 16, 62235 (2024) |
[7] | C. Liu, D. Liang, T. Chen, X. Ye, D. He, W. Zhu, X. Nie, P. Wei, W. Zhao, Q. Zhang, Adv. Funct. Mater. (2024). https://doi.org/10.1002/adfm.202415368 |
[8] | G. Yang, L. Sang, F.F. Yun, D.R.G. Mitchell, G. Casillas, N. Ye, K. See, J. Pei, X. Wang, J.F. Li, G.J. Snyder, X. Wang, Adv. Funct. Mater. 31, 2008851 (2021) |
[9] | Y. Sun, A. Abbas, H. Wang, C. Tan, Z. Li, Y. Zong, H. Sun, C. Wang, H. Wang, Chem. Eng. J. 486, 150158 (2024) |
[10] | Y. Sun, H. Wang, J. Yao, F. Mehmood, C. Tan, L. Wang, J. Zhai, H. Wang, C. Wang, Chem. Eng. J. 462, 142185 (2023) |
[11] | Q. Song, P. Qiu, H. Chen, K. Zhao, D. Ren, X. Shi, L. Chen, ACS Appl. Mater. Interfaces 10, 10123 (2018) |
[12] | F. Mehmood, Y. Sun, W. Su, G. Chebanova, J. Zhai, L. Wang, M. Khan, A. Romanenko, H. Wang, C. Wang, Phys. Status Solidi (RRL) Rapid Res. Lett. 16, 2200049 (2022) |
[13] | S.D. Sharma, B. Khasimsaheb, Y.Y. Chen, S. Neeleshwar, Ceram. Int. 45, 2060 (2019) |
[14] | S.D. Sharma, K. Bayikadi, S. Raman, S. Neeleshwar, Nanotechnology 31, 365402 (2020) |
[15] | B. Kumanek, D. Janas, J. Mater. Sci. 54, 7397 (2019) |
[16] | Q. Jin, S. Jiang, Y. Zhao, D. Wang, J. Qiu, D.M. Tang, J. Tan, D.M. Sun, P.X. Hou, X.Q. Chen, K. Tai, N. Gao, C. Liu, H.M. Cheng, X. Jiang, Nat. Mater. 18, 62 (2019) |
[17] | R. Nunna, P. Qiu, M. Yin, H. Chen, R. Hanus, Q. Song, T. Zhang, M.Y. Chou, M.T. Agne, J. He, G.J. Snyder, X. Shi, L. Chen, Energy Environ. Sci. 10, 1928 (2017) |
[18] | B. Khasimsaheb, N.K. Singh, S. Bathula, B. Gahtori, D. Haranath, S. Neeleshwar, Curr. Appl. Phys. 17, 306 (2017) |
[19] | J. Lei, D. Zhang, W. Guan, Z. Ma, Z. Cheng, C. Wang, Y. Wang, Appl. Phys. Lett. 113, 083901 (2018) |
[20] | M. Shojaei, A. Shokuhfar, A. Zolriasatein, A. Ostovari Moghaddam, Adv. Powder Technol. 33, 103445 (2022) |
[21] | F. Ren, H. Wang, P.A. Menchhofer, J.O. Kiggans, Appl. Phys. Lett. 103, 221907 (2013) |
[22] | M. Yuan, L. Sun, X.W. Lu, P. Jiang, X.H. Bao, Mater. Today Phys. 16, 100311 (2021) |
[23] | P. Che, B. Wang, C. Sun, Y. Han, W. Li, J. Alloy. Compd. 695, 1908 (2017) |
[24] | V.L. Kuznetsov, K.V. Elumeeva, A.V. Ishchenko, N.Y. Beylina, A.A. Stepashkin, S.I. Moseenkov, L.M. Plyasova, I.Y. Molina, A.I. Romanenko, O.B. Anikeeva, E.N. Tkachev, Phys. Status Solidi B Basic Solid State Phys. 247, 2695 (2010) |
[25] | C. Tan, H. Wang, J. Yao, T. Chen, L. Wang, Y. Sun, M. Khan, H. Wang, C. Wang, J. Eur. Ceram. Soc. 42, 7010 (2022) |
[26] | G.J. Snyder, A.H. Snyder, M. Wood, R. Gurunathan, B.H. Snyder, C. Niu, Adv. Mater. 32, 2001537 (2020) |
[27] | L. Wang, J. Li, Y. Xie, L. Hu, F. Liu, W. Ao, J. Luo, C. Zhang, Mater. Today Phys. 16, 100308 (2021) |
[28] | Y. Gelbstein, G. Gotesman, Y. Lishzinker, Z. Dashevsky, M.P. Dariel, Scr. Mater. 58, 251 (2008) |
[29] | X. Liu, H. Wang, Y. Chen, B. Zhang, H. Zhang, S. Zheng, X. Chen, X. Lu, G. Wang, X. Zhou, G. Han, Scr. Mater. 218, 114846 (2022) |
[30] | K. Tyagi, B. Gahtori, S. Bathula, M. Jayasimhadri, S. Sharma, N.K. Singh, D. Haranath, A.K. Srivastava, A. Dhar, Solid State Commun. 207, 21 (2015) |
[31] | D. Bao, J. Chen, Y. Yu, W. Liu, L. Huang, G. Han, J. Tang, D. Zhou, L. Yang, Z.G. Chen, Chem. Eng. J. 388, 124295 (2020) |
[32] | Z. Zhang, K. Zhao, H. Chen, Q. Ren, Z. Yue, T.R. Wei, P. Qiu, L. Chen, X. Shi, Acta Mater. 224, 117512 (2022) |
[33] | Y.K. Zhu, J. Guo, L. Chen, S.W. Gu, Y.X. Zhang, Q. Shan, J. Feng, Z.H. Ge, Chem. Eng. J. 407, 126407 (2021) |
[34] | X. Liu, Y. Chen, H. Wang, S. Liu, B. Zhang, X. Lu, G. Wang, G. Han, X. Chen, X. Zhou, ACS Appl. Mater. Interfaces 16, 2240 (2024) |
[35] | J. Zhang, C. Zhang, T. Zhu, Y. Yan, X. Su, X. Tang, ACS Appl. Mater. Interfaces 13, 45736 (2021) |
[1] | Siqi Lin, Shiyun Wang, Yanjiao Li, Zhenyu Lai, Xiaotang Yang, Xinyu Lu, Min Jin. Efficient Reduction of Carrier Concentration in SnTe: The Case of Gd Doping [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(5): 859-868. |
[2] | Pengpeng Chen, Hongyao Xie, Li-Dong Zhao. Recent Progress on Diamondoid Cu2SnSe3 Thermoelectric Materials: A Review [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(5): 707-719. |
[3] | Haolin Ye, Chongjian Zhou. Low Thermal Conductivity Contributes to High Thermoelectric Performance: A Review [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(5): 720-732. |
[4] | Yaru Gong, Wei Dou, Yanan Li, Pan Ying, Guodong Tang. A Review of Polycrystalline SnSe Thermoelectric Materials: Progress and Prospects [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(5): 733-753. |
[5] | Yicheng Wang, Rongcheng Li, Bowen Jin, Chenghao Xie, Xinfeng Tang, Gangjian Tan. Revealing the True Thermoelectric Properties of SnTe through Removing SnO2 Contamination [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(5): 754-762. |
[6] | Xinghui Wang, Yu Yan, Wen Zhang, Huijun Kang, Enyu Guo, Zongning Chen, Rongchun Chen, Tongmin Wang. Enhanced Thermoelectric and Mechanical Properties of ZrNiSn Half-Heusler Compounds by Excess Ag Doping at Ni Sites [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(5): 763-771. |
[7] | Hong Zeng, Liqing Xu, Wei Liu, Xinxiu Cheng, Wenke He, Yu Xiao. Thermoelectric Performance of Layered PbBi4Te7 Compound [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(5): 772-780. |
[8] | Ze Li, Xing Yang, Tian-En Shi, Wang-Qi Bao, Jing Feng, Zhen-Hua Ge. One-Step Carrier Modulation and Nano-Composition Enhancing Thermoelectric and Mechanical Properties of p-Type SnSe Polycrystals by Introducing Ag9GaSe6 Compound [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(5): 781-792. |
[9] | Cuicui Shu, Pengcheng Zhai, Xiege Huang, Sergey I. Morozov, Guodong Li, Zhiyuan Pan. First Principles Study of CoSb3/Ni Interface Structure and Mechanical Properties [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(5): 793-802. |
[10] | Baocheng Yuan, Yi Wen, Lei Wang, Zhihao Li, Hong-Chao Wang, Cheng Chang, Li-Dong Zhao. Impact of CuFeS2 on the Thermoelectric Performance of SnTe [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(5): 803-810. |
[11] | Mi Qin, Bingqing Cao, Pan Zhang, Xuemei Zhang, Ziqi Han, Xiaohong Zheng, Xianlong Wang, Xin Chen, Yongsheng Zhang. Point Defects and Grain Boundaries Effects on Electrical Transports of PbTe Using the Non-equilibrium Green’s Function [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(5): 811-822. |
[12] | Chengwei Sun, Wang Li, Chengjun Li, Yingchao Wei, Wenyuan Ma, Xin Li, Qinghui Jiang, Yubo Luo, Junyou Yang. Thermoelectric Performance of CuInSe2-ZnSe Solid Solution [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(5): 823-830. |
[13] | Longli Wang, Rongcheng Li, Peilin Miao, Jiushun Zhu, Gangjian Tan, Xinfeng Tang. Heterogeneous Interface Microstructure and Thermoelectromagnetic Conversion Performance of BiSbTe/MnCoGe Multifunctional Materials [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(5): 839-848. |
[14] | Xicheng Guan, Zhiyuan Liu, Ni Ma, Zhou Li, Juan Liu, Huiyan Zhang, Hailing Li, Qian Ba, Junjie Ma, Chuangui Jin, Ailin Xia. High-Performance p-Type Bi2Te3-Based Thermoelectric Materials with a Wide Temperature Range Obtained by Direct Sb Doping [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(5): 849-858. |
[15] | Zhenqing Hu, Hailong Yu, Juan He, Yijun Ran, Hao Zeng, Yang Zhao, Zhi Yu, Kaiping Tai. High-Performance Sb-Doped GeTe Thermoelectric Thin Film and Device [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(10): 1699-1708. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||