Acta Metallurgica Sinica (English Letters) ›› 2025, Vol. 38 ›› Issue (5): 849-858.DOI: 10.1007/s40195-024-01794-x
Previous Articles Next Articles
Xicheng Guan1, Zhiyuan Liu1,2(), Ni Ma3, Zhou Li4, Juan Liu1, Huiyan Zhang1,5, Hailing Li1, Qian Ba1, Junjie Ma1, Chuangui Jin1, Ailin Xia1
Received:
2024-08-20
Revised:
2024-10-11
Accepted:
2024-10-12
Online:
2025-05-10
Published:
2024-11-23
Contact:
Zhiyuan Liu,zhiyuanliu826@163.com
Xicheng Guan, Zhiyuan Liu, Ni Ma, Zhou Li, Juan Liu, Huiyan Zhang, Hailing Li, Qian Ba, Junjie Ma, Chuangui Jin, Ailin Xia. High-Performance p-Type Bi2Te3-Based Thermoelectric Materials with a Wide Temperature Range Obtained by Direct Sb Doping[J]. Acta Metallurgica Sinica (English Letters), 2025, 38(5): 849-858.
Add to citation manager EndNote|Ris|BibTeX
Fig. 1 Structural characterization of Bi2−xSbxTe3 (x = 1.50-1.69) samples: a XRD patterns of Bi2−xSbxTe3 samples, b the enlarged XRD patterns of in the 2θ range of 26-31°, c-g rietveld refinement of XRD patterns of Bi2−xSbxTe3 samples, h Raman spectra of Bi2−xSbxTe3 samples
Fig. 2 Microstructural characterization of Bi2−xSbxTe3 (x = 1.50-1.69) samples. FESEM images of fractured Bi2−xSbxTe3 samples: a BST163, b BST166, c BST169. BEI images of polished Bi2−xSbxTe3 samples: d BST150, e BST160, f BST163, g BST166, h BST169. i EDS spectrum of yellow elliptical region in BST166 sample
Nominal composition | Bi0.50Sb1.50Te3 | Bi0.40Sb1.60Te3 | Bi0.37Sb1.63Te3 | Bi0.34Sb1.66Te3 | Bi0.31Sb1.69Te3 |
---|---|---|---|---|---|
EDS composition | Bi0.53Sb1.47Te2.85 | Bi0.40Sb1.60Te3 | Bi0.35Sb1.65Te2.88 | Bi0.32Sb1.68Te2.72 | Bi0.31Sb1.69Te2.74 |
a or b (Å) | 4.3122 | 4.3005 | 4.2954 | 4.2911 | 4.2878 |
c (Å) | 30.5564 | 30.5190 | 30.5086 | 30.4836 | 30.4780 |
RH (cm3/C) | 0.24171 | 0.22782 | 0.20878 | 0.18837 | 0.16513 |
n (× 1019 cm−3) | 2.58252 | 2.73997 | 2.98984 | 3.3138 | 3.78017 |
μH (cm2·V−1·s−1) | 116 | 113 | 108 | 104 | 98.9 |
m⁎ | 1.95me | 1.39me | 1.35me | 1.36me | 1.32me |
Table 1 Nominal compositions, EDS compositions, lattice parameter (a, b, and c), room-temperature Hall coefficients (RH), carrier concentrations (n), carrier mobilities (μH), and effective masses (m*) of Bi2−xSbxTe3 samples
Nominal composition | Bi0.50Sb1.50Te3 | Bi0.40Sb1.60Te3 | Bi0.37Sb1.63Te3 | Bi0.34Sb1.66Te3 | Bi0.31Sb1.69Te3 |
---|---|---|---|---|---|
EDS composition | Bi0.53Sb1.47Te2.85 | Bi0.40Sb1.60Te3 | Bi0.35Sb1.65Te2.88 | Bi0.32Sb1.68Te2.72 | Bi0.31Sb1.69Te2.74 |
a or b (Å) | 4.3122 | 4.3005 | 4.2954 | 4.2911 | 4.2878 |
c (Å) | 30.5564 | 30.5190 | 30.5086 | 30.4836 | 30.4780 |
RH (cm3/C) | 0.24171 | 0.22782 | 0.20878 | 0.18837 | 0.16513 |
n (× 1019 cm−3) | 2.58252 | 2.73997 | 2.98984 | 3.3138 | 3.78017 |
μH (cm2·V−1·s−1) | 116 | 113 | 108 | 104 | 98.9 |
m⁎ | 1.95me | 1.39me | 1.35me | 1.36me | 1.32me |
Fig. 3 Electrical transport properties of Bi2−xSbxTe3 (x = 1.50-1.69) samples: a Hall coefficients (RH), b carrier concentrations (n) and Hall mobilities (μH) as a function of Sb content at 300 K; c electrical conductivity and d Seebeck coefficient as a function of temperature for Bi2−xSbxTe3 samples in the temperature range of 300-500 K; e curves of |S| vs. n of Bi2−xSbxTe3 samples at 300 K obtained by Pisarenko relation with m* = 1.32me and m* = 1.95me; f power factor as a function of temperature for Bi2−xSbxTe3 samples in the temperature range of 300-500 K
Fig. 4 Temperature dependence of a total thermal conductivity, b carrier thermal conductivity, and c Lorentz number L of Bi2−xSbxTe3 (x = 1.50-1.69) samples; d the difference between the total thermal conductivity and carrier thermal conductivity as a function of temperature for Bi2−xSbxTe3 samples in the temperature range of 300-500 K; e the calculation process of bipolar thermal conductivity of Bi0.34Sb1.66Te3 sample in the temperature range of 300-500 K, and the blue dashed line is linearly fitting to the lattice thermal conductivity at low temperatures from 300 to 330 K; f temperature dependence of bipolar thermal conductivity for Bi2−xSbxTe3 samples in the range of 300-500 K
Fig. 5 Effect of the Sb doping on the band gap of the Bi2Te3 material: a UV-visible spectra of Bi2−xSbxTe3 (x = 1.50-1.69), b-e (αhv)2 versus hv for the direct bandgap of Bi2−xSbxTe3, f variation in the direct band gap for Bi2−xSbxTe3 with the Sb doping
Fig. 6 Temperature dependence of a ZT values of Bi2−xSbxTe3 samples in the temperature range of 300-500 K, b average ZT (300-500 K) values of Bi2−xSbxTe3 samples, c comparison of the average ZT (300-500 K) of the optimized Bi0.34Sb1.66Te3 in this study and other studies on Sb-doped Bi2Te3-based alloys [9,24,29,45]
[1] | L.E. Bel, Science 321, 1457 (2008) |
[2] | Y. Fan, C. Xie, J. Li, X.Y. Meng, J.C. Sun, J.S. Wu, X.F. Tang, G.J. Tan, Energy Environ. Mater. 7, e12535 (2024) |
[3] | X.P. Lu, X.F. Lu, C.Y. Fan, W. Jiang, Adv. Ceram. 44, 67 (2023). (in Chinese) |
[4] | Z.Y. Liu, Y.G. Wang, T. Yang, Z.J. Ma, H.Y. Zhang, H.L. Li, A.L. Xia, J. Adv. Ceram. 12, 539 (2023) |
[5] | Z.T. Liu, T. Hong, L.Q. Xu, S.N. Wang, X. Gao, C. Chang, X.D. Ding, Y. Xiao, L.D. Zhao, Interdiscip. Mater. 2, 161 (2023) |
[6] | S.K. Zheng, K.L. Peng, S.J. Xiao, Z.Z. Zhou, X. Lu, G. Han, B. Zhang, G.Y. Wang, X.Y. Zhou, J. Adv. Ceram. 11, 1604 (2022) |
[7] | S.H. Yang, H.W. Ming, D. Li, T. Chen, S.J. Li, J. Zhang, H.X. Xin, X.Y. Qin, Chem. Eng. J. 455, 140923 (2023) |
[8] | X.F. Tang, Z.W. Li, W. Liu, Q.J. Zhang, C. Uher, Mater. Sci. Eng. B 117, 334 (2005) |
[9] | J. Jiang, L. Chen, S. Bai, Mater. Sci. Eng. B 117, 334 (2005) |
[10] | J. An, M.K. Han, S.J. Kim, J. Solid State Chem. 270, 407 (2019) |
[11] | A.Y. Haruna, Y.B. Luo, Z. Ma, W. Li, H.Q. Liu, X. Li, Q.H. Jiang, J.Y. Yang, A.C.S. Appl, Mater. Interfaces 15, 49259 (2023) |
[12] |
O. Ivanov, M. Yaprintsev, E. Danshina, J. Rare Earth. 37, 292 (2019)
DOI |
[13] | N.K. Singh, J. Pandey, S. Acharya, A. Soni, J. Alloy. Compd. 746, 350 (2018) |
[14] | M.Z. Saeed, Z.M. Zhang, H.M. Zhang, B. Qin, M. Hossain, H.F. Ying, J.L. Liu, K. He, P. Lu, W. Li, F. Ding, R.X. Wu, B. Li, J. Li, X.D. Duan, Adv. Function. Mater. 34, 2400723 (2024) |
[15] | G. Zheng, X. Su, H. Xie, H.Y. Xie, Y.J. Shu, T. Liang, X.Y. She, W. Liu, Y.G. Yan, Q.J. Zhang, C. Uher, M.G. Kanatzidis, X.F. Tang, Energ. Environ. Sci. 10, 2638 (2017) |
[16] | O. Park, M. Heo, S.W. Lee, S.J. Park, H.S. Kim, Mater. Sci. Semicon. Proc. 165, 107694 (2023) |
[17] | L. Li, P. Wei, M.J. Yang, W.T. Zhu, X.L. Nie, W.Y. Zhao, Q.J. Zhang, Sci. China Mater. 66, 3651 (2023) |
[18] | K. Rani, V. Gupta, Ranjeet, A. Pandey, J. Solid State Chem. 330, 124486 (2024) |
[19] | L.P. Hu, T.J. Zhu, X.H. Liu, X.B. Zhao, Adv. Function. Mater. 24, 5211 (2014) |
[20] | T.J. Zhu, L.P. Hu, X.B. Zhao, J. Xie, Adv. Sci. 3, 1600004 (2016) |
[21] | Y.C. Li, S.L. Bai, Y. Wen, Z. Zhao, L. Wang, S.B. Liu, J.Q. Zheng, S.Q. Wang, S. Liu, D.Z. Gao, D.R. Liu, Y.C. Zhu, Q. Cao, X. Gao, H.Y. Xie, L.D. Zhao, Sci. Bull. 69, 1728 (2024) |
[22] | J. Horak, P. Lostak, L. Benes, Philos. Mag. B 50, 665 (1984) |
[23] | J. Jiang, L.D. Chen, S.Q. Bai, Q. Yao, Q. Wang, J. Cryst. Growth 277, 258 (2005) |
[24] | D. Li, R. Sun, X. Qin, Prog. Nat. Sci. Mater. Inter. 21, 336 (2011) |
[25] | M.M. Yang, H.Y. Zhu, W.C. Yi, S.S. Li, M.H. Hu, Q. Hu, B.L. Du, X.B. Liu, T.C. Su, Phys. Lett. A 383, 2615 (2019) |
[26] |
D. Teweldebrhan, V. Goyal, A.A. Balandin, Nano Lett. 10, 1209 (2010)
DOI PMID |
[27] | D. Li, L. Li, D.W. Liu, J.F. Li, Phys. Status Solidi-R 6, 268 (2012) |
[28] | O. Ben-Yehuda, R. Shuker, Y. Gelbstein, Z. Dashevsky, M.P. Dariel, J. Appl. Phys. 101, 113707 (2007) |
[29] | Q. Zhang, X. Ai, L. Wang, L. Chen, Adv. Function. Mater. 25, 966 (2015) |
[30] | X.G. Li, W.D. Liu, S.M. Li, D. Li, H. Zhong, Z.G. Chen, A.C.S. Appl, Mater. Interfaces 13, 54185 (2021) |
[31] | X. Guo, X.P. Jia, T.C. Su, K.K. Jie, H.R. Sun, H.G. Ma, Chem. Phys. Lett. 550, 170 (2012) |
[32] | Z. Starý, J. Horák, M. Stordeur, M. Stölzer, J. Phys. Chem. Solids 49, 29 (1988) |
[33] | M. Cutler, J.F. Leavy, R.L. Fitzpatrick, Phys. Rev. A 133, 1143 (1964) |
[34] | J.L. Zhu, Z.Y. Liu, X. Tong, A.L. Xia, D. Xu, Y. Lei, J. Yu, D.G. Tang, X.F. Ruan, W.Y. Zhao, A.C.S. Appl, Mater. Interfaces 13, 23894 (2021) |
[35] |
L.D. Zhao, S.H. Lo, J.Q. He, H. Li, K. Biswas, J. Androulakis, C.I. Wu, T.P. Hogan, D.Y. Chung, V.P. Dravid, M.G. Kanatzidis, J. Am. Chem. Soc. 133, 20476 (2011)
DOI PMID |
[36] | H.S. Kim, Z.M. Gibbs, Y. Tang, H. Wang, G.J. Snyder, APL Mater. 3, 041506 (2015) |
[37] | F. Li, X.Y. Huang, Z.L. Sun, J. Ding, J. Jiang, W. Jiang, L.D. Chen, J. Alloy. Compd. 509, 4769 (2011) |
[38] | G.S. Nolas, J. Sharp, H.J. Goldsmid, in Thermoelectrics: basic principles and new materials developments ed. by A. Zunger, R.M. Osgood JR, R. Hull, H. Sakaki (Springer, New York, 2001) |
[39] | D.Y. Shen, R.H. Cheng, W.X. Wang, H.Q. Li, C. Chen, Q. Zhang, Y. Chen, Mater. Today Phys. 37, 101185 (2023) |
[40] | Z.W. Zhang, H.H. Yao, Q. Wang, W.H. Xue, Y.M. Wang, L. Yin, X.Y. Wang, X.F. Li, C. Chen, J.H. Sui, X. Lin, Y. Chen, X.J. Liu, J. Mao, G.Q. Xie, Q. Zhang, Adv. Funct. Mater. 32, 2205215 (2022) |
[41] | J.H. Bahk, A. Shakouri, Appl. Phys. Lett. 105, 052106 (2014) |
[42] | V. Sharma, S.P. Singh, G.S. Mudahar, K.S. Thind, New J. Glass Ceram 2, 128 (2012) |
[43] | M. Muzaffar, B. Zhu, Q. Yang, Y. Zhou, J.Q. He, Mater. Today Phys. 9, 100130 (2019) |
[44] | J.J. Shen, S.N. Zhang, S.H. Yang, Z.Z. Yin, T.J. Zhu, X.B. Zhang, J. Alloy. Compd. 509, 161 (2011) |
[45] | Y.Q. Cao, T.J. Zhu, X.B. Zhao, X.B. Zhao, J.P. Tu, Appl. Phys. A 92, 321 (2008) |
[1] | Xinghui Wang, Yu Yan, Wen Zhang, Huijun Kang, Enyu Guo, Zongning Chen, Rongchun Chen, Tongmin Wang. Enhanced Thermoelectric and Mechanical Properties of ZrNiSn Half-Heusler Compounds by Excess Ag Doping at Ni Sites [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(5): 763-771. |
[2] | Zhenqing Hu, Hailong Yu, Juan He, Yijun Ran, Hao Zeng, Yang Zhao, Zhi Yu, Kaiping Tai. High-Performance Sb-Doped GeTe Thermoelectric Thin Film and Device [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(10): 1699-1708. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||