Acta Metallurgica Sinica (English Letters) ›› 2024, Vol. 37 ›› Issue (2): 242-254.DOI: 10.1007/s40195-023-01627-3
Previous Articles Next Articles
Ying Shen1, Xianfeng Shan2, Iniobong P. Etim3, Muhammad Ali Siddiqui4, Yang Yang1, Zewen Shi5, Xuping Su1(), Junxiu Chen1(
)
Received:
2023-07-23
Revised:
2023-09-07
Accepted:
2023-09-15
Online:
2024-02-10
Published:
2024-02-27
Contact:
Xuping Su, Ying Shen, Xianfeng Shan, Iniobong P. Etim, Muhammad Ali Siddiqui, Yang Yang, Zewen Shi, Xuping Su, Junxiu Chen. Comparative Study of the Effects of Nano ZnO and CuO on the Biodegradation, Biocompatibility, and Antibacterial Properties of Micro-arc Oxidation Coating of Magnesium Alloy[J]. Acta Metallurgica Sinica (English Letters), 2024, 37(2): 242-254.
Add to citation manager EndNote|Ris|BibTeX
Coatings | Ca(OH)2 (g/L) | (NaPO3)6 (g/L) | KF (g/L) | Nano-CuO (g/L) | Nano-ZnO (g/L) |
---|---|---|---|---|---|
MAO | 1.2 | 4.0 | 8.0 | - | - |
CuO + MAO | 1.2 | 4.0 | 8.0 | 1.0 | - |
ZnO + MAO | 1.2 | 4.0 | 8.0 | - | 1.0 |
Table 1 Composition of the electrolyte fabricating MAO coatings
Coatings | Ca(OH)2 (g/L) | (NaPO3)6 (g/L) | KF (g/L) | Nano-CuO (g/L) | Nano-ZnO (g/L) |
---|---|---|---|---|---|
MAO | 1.2 | 4.0 | 8.0 | - | - |
CuO + MAO | 1.2 | 4.0 | 8.0 | 1.0 | - |
ZnO + MAO | 1.2 | 4.0 | 8.0 | - | 1.0 |
Samples | Position | Composition (at.%) | ||||||
---|---|---|---|---|---|---|---|---|
O | Mg | F | P | Ca | Cu | Zn | ||
MAO coating | A | 46.15 | 25.61 | 13.08 | 11.28 | 3.87 | - | - |
Pore opening | 46.41 | 21.21 | 15.66 | 12.38 | 4.35 | - | - | |
Pore sealing | 43.29 | 21.05 | 22.00 | 9.50 | 4.16 | - | - | |
CuO + MAO coating | B | 43.53 | 24.44 | 14.89 | 12.11 | 4.95 | 0.08 | - |
Pore opening | 31.02 | 25.36 | 9.42 | 17.49 | 16.72 | - | - | |
Pore sealing | 44.4 | 23.68 | 22.47 | 6.98 | 2.29 | 0.18 | - | |
ZnO + MAO coating | C | 43.21 | 31.99 | 15.56 | 8.14 | 0.76 | - | 0.35 |
Pore opening | 38.66 | 28.18 | 7.77 | 18.38 | 2.02 | - | 4.99 | |
Pore sealing | 42.12 | 31.43 | 13.53 | 10.32 | 0.69 | - | 1.91 |
Table 2 EDS analysis of the areas marked in Fig. 1
Samples | Position | Composition (at.%) | ||||||
---|---|---|---|---|---|---|---|---|
O | Mg | F | P | Ca | Cu | Zn | ||
MAO coating | A | 46.15 | 25.61 | 13.08 | 11.28 | 3.87 | - | - |
Pore opening | 46.41 | 21.21 | 15.66 | 12.38 | 4.35 | - | - | |
Pore sealing | 43.29 | 21.05 | 22.00 | 9.50 | 4.16 | - | - | |
CuO + MAO coating | B | 43.53 | 24.44 | 14.89 | 12.11 | 4.95 | 0.08 | - |
Pore opening | 31.02 | 25.36 | 9.42 | 17.49 | 16.72 | - | - | |
Pore sealing | 44.4 | 23.68 | 22.47 | 6.98 | 2.29 | 0.18 | - | |
ZnO + MAO coating | C | 43.21 | 31.99 | 15.56 | 8.14 | 0.76 | - | 0.35 |
Pore opening | 38.66 | 28.18 | 7.77 | 18.38 | 2.02 | - | 4.99 | |
Pore sealing | 42.12 | 31.43 | 13.53 | 10.32 | 0.69 | - | 1.91 |
Fig. 3 Electrochemical tests of potentiodynamic polarization and impedance curves: a potentiodynamic polarization curves, b Nyquist curves, c Bode curves, d Bode phase angle curves, e equivalent circuit of MAO coated alloy and CuO + MAO coated alloy, f equivalent circuit of ZnO + MAO coated alloy
Samples | icorr (µA/cm2) | Ecorr (V) | Corrosion rate (mm/y) |
---|---|---|---|
MAO coated | 0.44 ± 0.03 | − 1.55 ± 0.02 | 0.010 ± 0.0001 |
CuO + MAO coated | 0.42 ± 0.04 | − 1.53 ± 0.03 | 0.009 ± 0.0009 |
ZnO + MAO coated | 0.19 ± 0.02 | − 1.50 ± 0.02 | 0.004 ± 0.0004 |
Table 3 Tafel fitting results based on potentiodynamic polarization tests in Hank's solution
Samples | icorr (µA/cm2) | Ecorr (V) | Corrosion rate (mm/y) |
---|---|---|---|
MAO coated | 0.44 ± 0.03 | − 1.55 ± 0.02 | 0.010 ± 0.0001 |
CuO + MAO coated | 0.42 ± 0.04 | − 1.53 ± 0.03 | 0.009 ± 0.0009 |
ZnO + MAO coated | 0.19 ± 0.02 | − 1.50 ± 0.02 | 0.004 ± 0.0004 |
Samples | Rs (Ω cm2) | CPE1 | R1 (Ω cm2) | CPE2 | R2 (Ω cm2) | R3 (Ω cm2) | L (H cm−2) | ||
---|---|---|---|---|---|---|---|---|---|
Y01 (μΩ−1 cm−2 s−1) | n1 | Y02 (μΩ−1 cm−2 s−1) | n2 | ||||||
MAO coated | 24.91 | 4.75 × 10-8 | 0.90 | 2317 | 3.64 × 10-6 | 0.43 | 4.75 × 104 | 2.93 × 105 | 8.35 × 104 |
CuO + MAO coated | 19.00 | 4.99 × 10-7 | 0.73 | 8.14 × 104 | 6.17 × 10-7 | 0.70 | 1.49 × 105 | 1.97 × 105 | 1.13 × 107 |
ZnO + MAO coated | 17.67 | 1.55 × 10-8 | 0.99 | 1011 | 4.46 × 10-7 | 0.70 | 3.99 × 105 | - | - |
Table 4 Fitting results of different samples immersed in Hank's solution
Samples | Rs (Ω cm2) | CPE1 | R1 (Ω cm2) | CPE2 | R2 (Ω cm2) | R3 (Ω cm2) | L (H cm−2) | ||
---|---|---|---|---|---|---|---|---|---|
Y01 (μΩ−1 cm−2 s−1) | n1 | Y02 (μΩ−1 cm−2 s−1) | n2 | ||||||
MAO coated | 24.91 | 4.75 × 10-8 | 0.90 | 2317 | 3.64 × 10-6 | 0.43 | 4.75 × 104 | 2.93 × 105 | 8.35 × 104 |
CuO + MAO coated | 19.00 | 4.99 × 10-7 | 0.73 | 8.14 × 104 | 6.17 × 10-7 | 0.70 | 1.49 × 105 | 1.97 × 105 | 1.13 × 107 |
ZnO + MAO coated | 17.67 | 1.55 × 10-8 | 0.99 | 1011 | 4.46 × 10-7 | 0.70 | 3.99 × 105 | - | - |
Fig. 5 Corrosion morphologies of the samples after 14 days of immersion in Hank's solution: a1-c1 micro-cross-sectional morphologies of the coated samples; a2-c2 micro-surface morphologies of the coated samples; a3-c3 macro-surface morphologies of the coated samples
Samples | Position | Composition (at.%) | ||||||
---|---|---|---|---|---|---|---|---|
O | Mg | F | P | Ca | Cu | Zn | ||
MAO coating | A | 55.19 | 23.11 | 3.46 | 14.30 | 3.95 | - | - |
CuO + MAO coating | B | 49.06 | 25.44 | 9.39 | 13.85 | 2.25 | - | - |
ZnO + MAO coating | C | 51.45 | 25.12 | 6.56 | 13.29 | 3.15 | - | 0.43 |
Table 5 EDS analysis of the areas marked in Fig. 5
Samples | Position | Composition (at.%) | ||||||
---|---|---|---|---|---|---|---|---|
O | Mg | F | P | Ca | Cu | Zn | ||
MAO coating | A | 55.19 | 23.11 | 3.46 | 14.30 | 3.95 | - | - |
CuO + MAO coating | B | 49.06 | 25.44 | 9.39 | 13.85 | 2.25 | - | - |
ZnO + MAO coating | C | 51.45 | 25.12 | 6.56 | 13.29 | 3.15 | - | 0.43 |
Fig. 6 Antibacterial tests of a antibacterial effects of materials co-cultured with S. aureus for 6, 12, and 24 h, respectively, b the content of Zn and Cu ions in Hank’s solution for 6, 12, and 24 h, respectively. c S. aureus concentration in the bacterial solution co-cultured with different samples, and d antibacterial rates of different samples against S. aureus
Fig. 7 SEM morphologies of S. aureus on surfaces of different samples after co-culture for 24 h with a MAO-coated alloy, b CuO + MAO coated alloy, and c ZnO + MAO-coated alloy
Fig. 8 a Cell viability of cells (MC3T3-E1) in different extracts after 1, 3, and 5 d, b relative ALP activity of cells after being cultured in the extracts of different samples for 7 and 14 d. (*p < 0.05)
[1] |
W. Zhang, M. Li, Q. Chen, W. Hu, W. Zhang, W. Xin, Mater. Des. 39, 379 (2012)
DOI URL |
[2] |
M.P. Staiger, A.M. Pietak, J. Huadmai, G. Dias, Biomaterials 27, 1728 (2006)
DOI PMID |
[3] |
Y. Li, G. Liu, Z. Zhai, L. Liu, H. Li, K. Yang, L. Tan, P. Wan, X. Liu, Z. Ouyang, Z. Yu, T. Tang, Z. Zhu, X. Qu, K. Dai, Antimicrob. Agents Ch. 58, 7586 (2014)
DOI URL |
[4] |
J.Y. Lock, E. Wyatt, S. Upadhyayula, A. Whall, V. Nunez, V.I. Vullev, H. Liu, J. Biomed. Mater. Res. A 102, 781 (2014)
DOI URL |
[5] |
E.K. Brooks, R. Ahn, M.E. Tobias, L.A. Hansen, N.R. Luke-Marshall, L. Wild, A.A. Campagnari, M.T. Ehrensberger, J. Biomed. Mater. Res. B 106, 221 (2018)
DOI PMID |
[6] | Y.J. Nie, J.W. Dai, X.B. Zhang, Acta Metall. Sin. -Engl. Lett. 36, 295 (2023) |
[7] |
Y.H. Zou, J. Wang, L.Y. Cui, R.C. Zeng, Q.Z. Wang, Q.X. Han, J. Qiu, X.B. Chen, D.C. Chen, S.K. Guan, Y.F. Zheng, Acta Biomater. 98, 196 (2019)
DOI URL |
[8] |
W. Zhou, Z. Hu, T. Wang, G. Yang, W. Xi, Y. Gan, W. Lu, J. Hu, Colloid Surface B 186, 110710 (2020)
DOI URL |
[9] | J.W. Yin, P.C. Xu, K. Wu, H. Zhou, X. Lin, L.L. Tan, H.L. Yang, K. Yang, L. Yang, Acta Metall. Sin. -Engl. Lett. 35, 853 (2022) |
[10] |
H.R. Bakhsheshi-Rad, E. Dayaghi, A.F. Ismail, M. Aziz, A. Akhavan-Farid, X. Chen, Trans. Nonferrous Met. Soc. China 29, 984 (2019)
DOI URL |
[11] |
X. Yan, M.C. Zhao, Y. Yang, L. Tan, Y.C. Zhao, D.F. Yin, K. Yang, A. Atrens, Corros. Sci. 156, 125 (2019)
DOI URL |
[12] | T. Wang, Y. Xu, Q. Zhang, G. Li, Y. Guo, J. Lian, Z. Zhang, L. Ren, A.C.S. Appl, Nano Mater. 5, 18965 (2022) |
[13] |
J. Chen, Y. Zhang, M. Ibrahim, I.P. Etim, L. Tan, K. Yang, Colloid Surface B 179, 77 (2019)
DOI URL |
[14] |
L. Zhu, X. Tong, Z. Ye, Z. Lin, T. Zhou, S. Huang, Y. Li, J. Lin, C. Wen, J. Ma, Chem. Eng. J. 450, 137946 (2022)
DOI URL |
[15] | K. Xing, Q. Chen, J. Lin, Z. Hu, Z. Li, J. Chen, X. Xu, C. Gu, J. Tu, Prog. Org. Coat. 171, 107029 (2022) |
[16] |
R. Alvarez-Chimal, V.I. Garcia-Perez, M.A. Alvarez-Perez, R. Tavera-Hernandez, L. Reyes-Carmona, M. Martinez-Hernandez, J.A. Arenas-Alatorre, Arab. J. Chem. 15, 103804 (2022)
DOI URL |
[17] |
B.M. Wilke, L. Zhang, W. Li, C. Ning, C.F. Chen, Y. Gu, Appl. Surf. Sci. 363, 328 (2016)
DOI URL |
[18] |
Q. Xia, X. Li, Z. Yao, Z. Jiang, Surf. Coat. Technol. 409, 126874 (2021)
DOI URL |
[19] |
R. Liu, Y. Tang, L. Zeng, Y. Zhao, Z. Ma, Z. Sun, L. Xiang, L. Ren, K. Yang, Dent. Mater. 34, 1112 (2018)
DOI URL |
[20] |
F. Bir, H. Khireddine, A. Touati, D. Sidane, S. Yala, H. Oudadesse, Appl. Surf. Sci. 258, 7021 (2012)
DOI URL |
[21] |
V. Stanic, S. Dimitrijevic, J. Antic-Stankovic, M. Mitric, B. Jokic, I.B. Plecas, S. Raicevic, Appl. Surf. Sci. 256, 6083 (2010)
DOI URL |
[22] |
F. Liu, D. Shan, Y. Song, E.H. Han, W. Ke, Corros. Sci. 53, 3845 (2011)
DOI URL |
[23] |
L. Ren, K. Yang, L. Guo, H.W. Chai, Mat. Sci. Eng. C-Mater. 32, 1204 (2012)
DOI URL |
[24] |
H. Zhang, Q. Ju, S. Pang, N. Wei, Y. Zhang, Dyes Pigments 194, 109569 (2021)
DOI URL |
[25] |
B. Salami, A. Afshar, A. Mazaheri, J. Magnes. Alloy. 2, 72 (2014)
DOI URL |
[26] | J. Chen, X. Zhu, I.P. Etim, M.A. Siddiqui, X. Su, Mater. Technol. 37, 21 (2022) |
[27] |
J.M. Zhang, K. Wang, X. Duan, Y. Zhang, H. Cai, Z.H. Wang, J. Mater. Eng. Perform. 29, 4032 (2020)
DOI |
[28] |
C.L. Chu, X. Han, F. Xue, J. Bai, P.K. Chu, Appl. Surf. Sci. 271, 271 (2013)
DOI URL |
[29] |
E. Matykina, A. Berkani, P. Skeldon, G.E. Thompson, Electrochim. Acta 53, 1987 (2007)
DOI URL |
[30] |
M. Roknian, A. Fattah-alhosseini, S.O. Gashti, M.K. Keshavarz, J. Alloys Compd. 740, 330 (2018)
DOI URL |
[31] |
Y. Chen, J. Dou, Z. Pang, Z. Zheng, H. Yu, C. Chen, Surf. Eng. 37, 926 (2020)
DOI URL |
[32] |
D. Zhang, Q. Han, K. Yu, X. Lu, Y. Liu, Z. Lu, Q. Wang, J. Mater. Sci. Technol. 61, 33 (2021)
DOI |
[33] |
L.Y. Cui, H.P. Liu, K. Xue, W.L. Zhang, R.C. Zeng, S.Q. Li, D.K. Xu, E.H. Han, S.K. Guan, J. Electrochem. Soc. 165, C821 (2018)
DOI URL |
[34] |
Q. Yu, X. Xu, C. Wang, Y. Ma, D. Hui, Z. Zhou, Compos. Pt. B-Eng. 110, 32 (2017)
DOI URL |
[35] |
S. Rtimi, R. Sanjines, C. Pulgarin, J. Kiwi, A.C.S. Appl, Mater. Inter. 8, 47 (2016)
DOI URL |
[36] |
M.S. Hassan, T. Amna, H.Y. Kim, M.S. Khil, Compos. Pt. B-Eng. 45, 904 (2013)
DOI URL |
[37] |
E.L. Zhang, S. Fu, R.X. Wang, H.X. Li, Y. Liu, Z.Q. Ma, G.K. Liu, C.S. Zhu, G.W. Qin, D.F. Chen, Rare Met. 38, 476 (2019)
DOI |
[38] |
X. Zhang, J. Zhao, C. Yang, K. Yang, Mater. Chem. Phys. 295, 127083 (2023)
DOI URL |
[39] | S. Riaz, A. Rehman, M. Ashraf, T. Hussain, M.T. Hussain, J. Text. I. 108, 2197 (2017) |
[40] |
D. Hu, J. Zhang, R. Hang, C. Li, Y. Sun, X. Yao, R. Hang, Mater. Lett. 251, 30 (2019)
DOI URL |
[41] | B.H. Zhao, W. Zhang, D.N. Wang, W. Feng, Y. Liu, Z. Lin, K.Q. Du, C.F. Deng, Surf. Coat. Technol. 228, 5428 (2013) |
[42] |
C.R. Arciola, D. Campoccia, L. Montanaro, Nat. Rev. Microbiol. 16, 397 (2018)
DOI PMID |
[43] |
K. Zuo, L. Wang, Z. Wang, Y. Yin, C. Du, B. Liu, L. Sun, X. Li, G. Xiao, Y. Lu, A.C.S. Appl, Mater. Inter. 14, 7690 (2022)
DOI URL |
[44] |
G. Chandra, A. Pandey, Biocybern. Biomed. Eng. 40, 596 (2020)
DOI URL |
[45] |
H.M. Wong, Y. Zhao, V. Tam, S. Wu, P.K. Chu, Y. Zheng, M.K. To, F.K. Leung, K.D. Luk, K.M. Cheung, K.W. Yeung, Biomaterials 34, 9863 (2013)
DOI PMID |
[46] |
Z. Lin, T. Wang, X. Yu, X. Sun, H. Yang, J. Alloys Compd. 879, 160453 (2021)
DOI URL |
[47] |
Y. Li, L. Liu, P. Wan, Z. Zhai, Z. Mao, Z. Ouyang, D. Yu, Q. Sun, L. Tan, L. Ren, Z. Zhu, Y. Hao, X. Qu, K. Yang, K. Dai, Biomaterials 106, 250 (2016)
DOI PMID |
[48] |
M. Yamaguchi, J. Trace Elem. Exp. Med. 11, 119 (1998)
DOI URL |
[49] |
M. Nagata, B. Lonnerdal, J. Nutr. Biochem. 22, 172 (2011)
DOI URL |
[1] | Gang Niu, Rui Yuan, R. D. K. Misra, Na Gong, Zhi-Hui Zhang, Hao-Xiu Chen, Hui-Bin Wu, Cheng-Jia Shang, Xin-Ping Mao. Effect of La on the Corrosion Behavior and Mechanism of 3Ni Weathering Steel in a Simulated Marine Atmospheric Environment [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(2): 308-324. |
[2] | Yu-Hang Chu, Liang-Yu Chen, Bo-Yuan Qin, Wenbin Gao, Fanmin Shang, Hong-Yu Yang, Lina Zhang, Peng Qin, Lai-Chang Zhang. Unveiling the Contribution of Lactic Acid to the Passivation Behavior of Ti-6Al-4V Fabricated by Laser Powder Bed Fusion in Hank’s Solution [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(1): 102-118. |
[3] | Kai Hu, Lei Zhang, Yuanjie Zhang, Bo Song, Shifeng Wen, Qi Liu, Yusheng Shi. Electrochemical Corrosion Behavior and Mechanical Response of Selective Laser Melted Porous Metallic Biomaterials [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(8): 1235-1246. |
[4] | Xian Zhang, Li Gong, Yanpeng Feng, Zhihui Wang, Miao Yang, Lin Cheng, Jing Liu, Kaiming Wu. Effect of Retained Austenite on Corrosion Behavior of Ultrafine Bainitic Steel in Marine Environment [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(5): 717-731. |
[5] | Xin Wei, Yupeng Sun, Junhua Dong, Nan Chen, Qiying Ren, Wei Ke. Effects of Aerobic and Anoxic Conditions on the Corrosion Behavior of NiCu Low Alloy Steel in the Simulated Groundwater Solutions [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(5): 745-757. |
[6] | Xuejian Wang, Huaqiang Xiao, Keqiang Su, Bo Lin, Tongmin Wang, Enyu Guo. Effect of Extrusion Temperature on the Mechanical Properties and Corrosion Behavior of LZ91 Alloys [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(11): 1822-1832. |
[7] | Ziyue Xu, Huan Liu, Guangyang Hu, Xiaoru Zhuo, Kai Yan, Jia Ju, Wenkai Wang, Hang Teng, Jinghua Jiang, Jing Bai. Developing Zn-1.5Mg Alloy with Simultaneous Improved Strength, Ductility and Suitable Biodegradability by Rolling at Room Temperature [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(11): 1833-1843. |
[8] | Bao-Chang Liu, Shuai Zhang, Hong-Wei Xiong, Wen-Hao Dai, Yin-Long Ma. Effect of Al Content on the Corrosion Behavior of Extruded Dilute Mg-Al-Ca-Mn Alloy [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(1): 77-90. |
[9] | Xiong Zhou, Qichi Le, Chenglu Hu, Ruizhen Guo, Tong Wang, Chunming Liu, Dandan Li, Xiaoqiang Li. Mechanical Properties and Corrosion Behavior of Multi-Microalloying Mg Alloys Prepared by Adding AlCoCrFeNi Alloy [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(8): 1301-1316. |
[10] | Xin Wei, Junhua Dong, Yupeng Sun, Nan Chen, Qiying Ren, Madhusudan Dhakal, Xiaofang Li, Wei Ke. Influence of Deteriorated Bentonite Sediments on the Corrosion Behavior of NiCu Low Alloy Steel [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(6): 1011-1022. |
[11] | Min Wang, Yuanjie Zhang, Bo Song, Qingsong Wei, Yusheng Shi. Wear Performance and Corrosion Behavior of Nano-SiCp-Reinforced AlSi7Mg Composite Prepared by Selective Laser Melting [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(9): 1213-1222. |
[12] | Shuai Zhang, Bao-Chang Liu, Mei-Xuan Li, Hui-Yuan Wang, Yin-Long Ma. Effect of Microstructures and Textures on Different Surfaces on Corrosion Behavior of an as-Extruded ATZ411 Magnesium Alloy Sheet [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(8): 1029-1041. |
[13] | Krishnaswamy Kanagamani, Pitchaipillai Muthukrishnan, Ayyasami Kathiresan, Karikalan Shankar, Pandurengan Sakthivel, Murugan Ilayaraja. Detoxication and Theranostic Aspects of Biosynthesised Zinc Oxide Nanoparticles for Drug Delivery [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(5): 729-740. |
[14] | Chuang-Shi Feng, Tian-Wei Lu, Tian-Li Wang, Man-Zhen Lin, Junhua Hou, Wenjun Lu, Wei-Bing Liao. A Novel High-Entropy Amorphous Thin Film with High Electrical Resistivity and Outstanding Corrosion Resistance [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(11): 1537-1545. |
[15] | Tao Liu, Yuejiao Chen, Libao Chen. 3D Printing Engineered Multi-porous Cu Microelectrodes with In Situ Electro-Oxidation Growth of CuO Nanosheets for Long Cycle, High Capacity and Large Rate Supercapacitors [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(1): 85-97. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||