Acta Metallurgica Sinica (English Letters) ›› 2021, Vol. 34 ›› Issue (1): 85-97.DOI: 10.1007/s40195-020-01097-x
Previous Articles Next Articles
Tao Liu1, Yuejiao Chen2(), Libao Chen3(
)
Received:
2020-04-09
Revised:
2020-04-27
Accepted:
2020-05-11
Online:
2021-01-10
Published:
2021-01-28
Contact:
Yuejiao Chen,Libao Chen
Tao Liu, Yuejiao Chen, Libao Chen. 3D Printing Engineered Multi-porous Cu Microelectrodes with In Situ Electro-Oxidation Growth of CuO Nanosheets for Long Cycle, High Capacity and Large Rate Supercapacitors[J]. Acta Metallurgica Sinica (English Letters), 2021, 34(1): 85-97.
Add to citation manager EndNote|Ris|BibTeX
Fig. 2 Digital images to show the printing process and the rheological properties of the ink: a pristine PF127 gel, PF127/Cu ink stored in inverted vials to show the viscosity; b Cu current collector printed layer by layer; c scaffold printed with PF127/Cu ink after drying; d different layers of current collector from 3 to 12 printed layers with PF127/Cu ink; e expected and actual heights of PF127/Cu ink as a function of layer number; f apparent viscosity as a function of shear rate; g storage modulus (G′) and loss modulus (G″) as a function of shear stress for the composite ink
Fig. 3 a TGA curve of the PF127 powder; b curve of the heat treatment program; c-f SEM images of top-view of the 3DP Cu lattice after debinding process; SEM images showing the morphology of the 3DP Cu lattice after further sintering process at different views; g, h SEM images of lateral-view; i-l element mapping results of the 3DP Cu lattice after further sintering
Fig. 4 SEM images to show the morphologies of CuO nanosheets on different substrates: a-c 3DP Cu@CuO nanosheet arrays; d-f Cu foam@CuO nanosheet arrays; g-i Cu foil@CuO nanosheet arrays
Fig. 5 a XRD patterns of 3DP Cu and 3DP Cu@CuO; b XPS survey spectrum of 3DP Cu@CuO and high-resolution XPS spectra for c Cu 2p and d O 1s of 3DP Cu@CuO
Fig. 6 a CV curves of 3DP Cu@CuO electrode obtained at different CVO cycles; b GCD curves of 3DP Cu@CuO electrode with different CVO cycles; c CV curves of 3DP Cu@CuO electrode with 1500 CVO cycles at various scan rates; d voltage profiles at various current density from 2 to 30 mA cm-2; e cycling performance of 3DP Cu@CuO electrode at a current density of 30 mA cm-2, the inset showing the SEM image of 3DP Cu@CuO electrode after 10,000 cycles; f GCD curves of the first and 10,000th cycles at a current density of 30 mA cm-2; g Nyquist plots of 3DP Cu@CuO before and after cycle, the inset showing the plots in high-frequency range
Active material | Current density (mA cm-2) | Cycle number | Capacitance retention (%) | References |
---|---|---|---|---|
CVO Cu@CuO | 20 | 4000 | 96.45 | [ |
NSA-CuO/Ni-foam | 10 | 500 | 93 | [ |
Lotus-like CuO/Cu(OH)2 | 5 | 5000 | 85 | [ |
3D-CuONA-Cu | 30 | s4000 | 88.6 | [ |
Cu(OH)2/Cu/Dacron | 2 | 3000 | 90 | [ |
Cu@CoF-LDH | 10 | 1000 | 96.2 | [ |
3DP Cu@CuO | 30 | 5000/10000 | 93.11/88.20 | This work |
Table 1 A comparison of cycle performance with recently reported CuO electrodes
Active material | Current density (mA cm-2) | Cycle number | Capacitance retention (%) | References |
---|---|---|---|---|
CVO Cu@CuO | 20 | 4000 | 96.45 | [ |
NSA-CuO/Ni-foam | 10 | 500 | 93 | [ |
Lotus-like CuO/Cu(OH)2 | 5 | 5000 | 85 | [ |
3D-CuONA-Cu | 30 | s4000 | 88.6 | [ |
Cu(OH)2/Cu/Dacron | 2 | 3000 | 90 | [ |
Cu@CoF-LDH | 10 | 1000 | 96.2 | [ |
3DP Cu@CuO | 30 | 5000/10000 | 93.11/88.20 | This work |
Fig. 7 a TEM image and b HRTEM image of the 3DP Cu@CuO, the inset showing the SAED image; c corresponding EDS elemental mapping images; d TEM image and e HRTEM image of the 3DP Cu@CuO after 10,000 cycles, the inset showing the SAED image; f corresponding EDS mapping images for Cu and O in the CuO nanosheet after 10,000 cycles
Fig. 8 a CV curves of 3DP Cu@CuO, Cu foam@CuO and Cu foil@CuO electrodes at a scan rate of 50 mV s-1; b GCD curves of 3DP Cu@CuO, Cu foam@CuO and Cu foil@CuO electrodes at a current density of 2 mA cm-2; c capacitance retention and areal capacitance versus different current densities for 3DP Cu@CuO, Cu foam@CuO and Cu foil@CuO electrodes; d comparison of specific capacitance; e schematic illustration of the advantages of the 3DP Cu@CuO electrode
[1] | K. Sun, T.S. Wei, B.Y. Ahn, J.Y. Seo, S.J. Dillon, J.A. Lewis , Adv. Mater. 25, 4539( 2013) |
[2] | M.R. Lukatskaya, B. Dunn, Y. Gogotsi , Nat. Commun. 7, 12647( 2016) |
[3] | P. Simon, Y. Gogotsi, B. Dunn , Science 343, 1210 ( 2014) |
[4] | G. Nagaraju, S.C. Sekhar, B. Ramulu, L.K. Bharat, G.S.R. Raju, Y.K. Han, J.S. Yu, Nano Energy 50, 448 ( 2018) |
[5] | D. Bae, T. Pedersen, B. Seger, M. Malizia, A.Y. Kuznetsov, O. Hansen, I. Chorkendorff, P.C.K. Vesborg, Energy Environ. Sci. 8, 650( 2015) |
[6] | M.J. Synodis, M. Kim, S.A.B. Allen, M.G. Allen Mems Enabled Scalable Fabrication of High Performance Lithium Ion Battery Electrodes. Paper presented at 31st IEEE International Conference on Micro Electro Systems, Belfast 2018 |
[7] | G. Wang, L. Zhang, J. Zhang , Chem. Soc. Rev. 41, 797( 2012) |
[8] |
C. Zhu, T. Liu, F. Qian, T.Y. Han, E.B. Duoss, J.D. Kuntz, C.M. Spadaccini, M.A. Worsley, Y. Li , Nano Lett. 16, 3448( 2016)
DOI URL PMID |
[9] | J.R. Miller, P. Simon , Science 321, 651 ( 2008) |
[10] | P. Simon, Y. Gogotsi , Nanoscience and Technology: A Collection of Reviews from Nature Journals (World Scientific, Singapore, 2010), p. 320 |
[11] | J. Song, Y. Chen, K. Cao, Y. Lu, J.H. Xin, X. Tao , ACS Appl. Mater. Interfaces 10, 39839 ( 2018) |
[12] | L. Zhang, L. Dong, M. Li, P. Wang, J. Zhang, H. Lu , J. Mater. Chem. A 6, 1412 ( 2018) |
[13] | L. Ma, H. Fan, X. Wei, S. Chen, Q. Hu, Y. Liu, C. Zhi, W. Lu, J.A. Zapien, H. Huang , J. Mater. Chem. A 6, 19058 ( 2018) |
[14] | J. Xue, L. Gao, X. Hu, K. Cao, W. Zhou, W. Wang, Y. Lu , Nano-Micro Lett. 11, 46( 2019) |
[15] | C.J. Zhang, L. McKeon, M.P. Kremer, S.H. Park, O. Ronan, A. Seral-Ascaso, S. Barwich, C.O. Coileain, N. McEvoy, H.C. Nerl, B. Anasori, J.N. Coleman, Y. Gogotsi, V. Nicolosi , Nat. Commun. 10, 1795( 2019) |
[16] | L. Zhou, W. Ning, C. Wu, D. Zhang, W. Wei, J. Ma, C. Li, L. Chen , Adv. Mater. Technol. 4, 1800402( 2018) |
[17] | V.G. Rocha, E. Garcia-Tunon, C. Botas, F. Markoulidis, E. Feilden, E. D’Elia, N. Ni, M. Shaffer, E. Saiz , ACS Appl. Mater. Interfaces 9, 37136 ( 2017) |
[18] |
K. Fu, Y. Wang, C. Yan, Y. Yao, Y. Chen, J. Dai, S. Lacey, Y. Wang, J. Wan, T. Li, Z. Wang, Y. Xu, L. Hu , Adv. Mater. 28, 2587( 2016)
URL PMID |
[19] | J. Wang, Q. Sun, X. Gao, C. Wang, W. Li, F.B. Holness, M. Zheng, R. Li, A.D. Price, X. Sun, T.K. Sham, X. Sun , ACS Appl. Mater. Interfaces 10, 39794 ( 2018) |
[20] | C. Zhang, K. Shen, B. Li, S. Li, S. Yang , J. Mater. Chem. A 6, 19960 ( 2018) |
[21] | J. Ding, K. Shen, Z. Du, B. Li, S. Yang , ACS Appl. Mater. Interfaces 9, 41871 ( 2017) |
[22] | K. Shen, H. Mei, B. Li, J. Ding, S. Yang , Adv. Energy Mater. 8, 1701527( 2018) |
[23] | X. Tang, C. Zhu, D. Cheng, H. Zhou, X. Liu, P. Xie, Q. Zhao, D. Zhang, T. Fan , Adv. Funct. Mater. 28, 1805057( 2018) |
[24] | H. Zheng, J. Li, X. Song, G. Liu, V.S. Battaglia , Electrochim. Acta 71, 258 ( 2012) |
[25] | J. Hu, Y. Jiang, S. Cui, Y. Duan, T. Liu, H. Guo, L. Lin, Y. Lin, J. Zheng, K. Amine , Adv. Energy Mater. 6, 1600856( 2016) |
[26] | S. Zhu, Z. Wang, F. Huang, H. Zhang, S. Li , J. Mater. Chem. A 5, 9960 ( 2017) |
[27] | Y. Liu, X. Cao, D. Jiang, D. Jia, J. Liu , J. Mater. Chem. A 6, 10474 ( 2018) |
[28] | J. Huang, H. Li, Y. Zhu, Q. Cheng, X. Yang, C. Li , J. Mater. Chem. A 3, 8734 ( 2015) |
[29] | X. Tang, H. Zhou, Z. Cai, D. Cheng, P. He, P. Xie, D. Zhang, T. Fan , ACS Nano 12, 3502 ( 2018) |
[30] | P. Jiang, Z. Ji, X. Zhang, Z. Liu, X. Wang , Prog. Addit. Manuf. 3, 65( 2018) |
[31] | J.J. Teo, Y. Chang, H.C. Zeng , Langmuir 22, 7369 ( 2006) |
[32] | Y. Li, X. Chen, L. Li , RSC Adv. 9, 33395( 2019) |
[33] | G. Wang, J. Huang, S. Chen, Y. Gao, D. Cao , J. Power Sources 196, 5756 ( 2011) |
[34] | M. Zhi, C. Xiang, J. Li, M. Li, N. Wu , Nanoscale 5, 72 ( 2013) |
[35] | L.Q. Mai, A. Minhas-Khan, X. Tian, K.M. Hercule, Y.L. Zhao, X. Lin, X. Xu , Nat. Commun. 4, 2923( 2013) |
[36] | Y.K. Hsu, Y.C. Chen, Y.G. Lin , J. Electroanal. Chem. 673, 43( 2012) |
[37] | S. Lei, Y. Liu, L. Fei, R. Song, W. Lu, L. Shu, C.L. Mak, Y. Wang, H. Huang , J. Mater. Chem. A 4, 14781 ( 2016) |
[38] | Z. Li, M. Shao, L. Zhou, R. Zhang, C. Zhang, J. Han, M. Wei, D.G. Evans, X. Duan , Nano Energy 20, 294 ( 2016) |
[39] | A. Paolella, R. Brescia, M. Prato, M. Povia, S. Marras, L. De Trizio, A. Falqui, L. Manna, C. George , ACS Appl. Mater. Interfaces 5, 2745 ( 2013) |
[40] | S.E. Moosavifard, M.F. El-Kady, M.S. Rahmanifar, R.B. Kaner, M.F. Mousavi ACS Appl. Mater. Interfaces 7, 4851 ( 2015) |
[41] | Z. Wang, Q.E. Zhang, S. Long, Y. Luo, P. Yu, Z. Tan, J. Bai, B. Qu, Y. Yang, J. Shi, H. Zhou, Z.Y. Xiao, W. Hong, H. Bai , ACS Appl. Mater. Interfaces 10, 10437 ( 2018) |
[1] | M. Kassem. Phase Characterizations and Photocatalytic Applications of CuO–K2Mo4O13 Composites [J]. Acta Metallurgica Sinica (English Letters), 2014, 27(1): 180-184. |
[2] | C. Liu and G. T. Burstein(Department of Materials Science and Metallurgy, University of Cambridge, Pembroke Street, CambridgeCB2 3QZ, UK). LOCALISED DEPASSIVATION OF TITANIUM IN VITRO [J]. Acta Metallurgica Sinica (English Letters), 1997, 10(2): 79-87. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||